当前位置:文档之家› 高中数学复习专题讲座(第5讲)求解函数解析式的几种常用方法

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用方法

高中数学复习专题讲座(第5讲)求解函数解析式的几种常用方法
高中数学复习专题讲座(第5讲)求解函数解析式的几种常用方法

高中数学《求解函数解析式的几种常用方法》专题复习高分冲刺技巧例解及考点能力强化训练

高考要求

求解函数解析式是高考重点考查内容之一,需引起重视 本节主要帮

助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力

重难点归纳

求解函数解析式的几种常用方法主要有

1 待定系数法,如果已知函数解析式的构造时,用待定系数法;

2 换元法或配凑法,已知复合函数f [g (x )]的表达式可用换元法,当表达式较简单时也可用配凑法;

3 消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解

f (x );

另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法

典型题例示范讲解

例1 (1)已知函数f (x )满足f (log a x )=

)1(1

2

x

x a a -

- (其中a >0,a ≠1,x >0),

求f (x )的表达式

(2)已知二次函数f (x )=ax 2+bx +c 满足|f (1)|=|f (-1)|=|f (0)|=1,求 f (x ) 的

表达式

命题意图 本题主要考查函数概念中的三要素 定义域、值域和对应

法则,以及计算能力和综合运用知识的能力

知识依托 利用函数基础知识,特别是对“f ”的理解,用好等价转化,注意定义域

错解分析 本题对思维能力要求较高,对定义域的考查、等价转化易出错

技巧与方法 (1)用换元法;(2)用待定系数法 解 (1)令t=log a x (a >1,t >0;0

因此f (t )=1

2

-a a (a t -a -t

)

∴f (x )=

1

2

-a a (a x -a -x )(a >1,x >0;0

(2)由f (1)=a +b +c ,f (-1)=a -b +c ,f (0)=c

得???

?

?

?

???

=--=--+=)0()]1()1([21)0()]1()1([21f c f f b f f f a

并且f (1)、f (-1)、f (0)不能同时等于1或-1, 所以所求函数为

f (x )=2x 2-1 或f (x )=-2x 2+1 或f (x )=-x 2

-x +1 或f (x )=x 2-x -1 或f (x )=-x 2+x +1 或f (x )=x 2+x -1

例2设f (x )为定义在R 上的偶函数,当x ≤-1时,y =f (x )的图象是经过点(-2,0),斜率为1的射线,又在y =f (x )的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象

命题意图 本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力 因此,分段函数是今后高考的热点题型

知识依托 函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲

线方程是主线

错解分析 本题对思维能力要求很高,分类讨论、综合运用知识易发

生混乱

技巧与方法 合理进行分类,并运用待定系数法求函数表达式

解 (1)当x ≤-1时,设f (x )=x +b

∵射线过点(-2,0) ∴0=-2+b 即b =2,∴f (x )=x +2

(2)当-1

+2

∵抛物线过点(-1,1),∴1=a ·(-1)2

+2,即a =-1 ∴f (x )=-x 2+2

(3)当x ≥1时,f (x )=-x +2

综上可知 f (x )=??

?

??≥+-<<---≤+1,211,21,12x x x x x x 作图由读者来完成

例3已知f (2-cos x )=cos2x +cos x ,求f (x -1) 解法一 (换元法)

∵f (2-cos x )=cos2x -cos x =2cos 2x -cos x -1 令u =2-cos x (1≤u ≤3),则cos x =2-u

∴f (2-cos x )=f (u )=2(2-u )2-(2-u )-1=2u 2

-7u +5(1≤u ≤3) ∴f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +4(2≤x ≤4) 解法二 (配凑法)

f (2-cos x )=2cos 2x -cos x -1=2(2-cos x )2-7(2-cos x )+5

∴f (x )=2x 2

-7x -5(1≤x ≤3),

即f (x -1)=2(x -1)2-7(x -1)+5=2x 2-11x +14(2≤x ≤4)

考点能力强化巩固训练

1 若函数f (x )=

3

4-x mx (x ≠

4

3)在定义域内恒有f [f (x )]=x ,则m 等于( )

A 3

B

2

3 C -

2

3 D -3

2 设函数y =f (x )的图象关于直线x =1对称,在x ≤1时,f (x )=(x +1)2-1,则x >1时f (x )等于( )

A f (x )=(x +3)2

-1 B f (x )=(x -3)2

-1 C f (x )=(x -3)2+1

D f (x )=(x -1)2-1

3 已知f (x )+2f (

x

1)=3x ,求f (x )的解析式为_________

4 已知f (x )=ax 2+bx +c ,若f (0)=0且f (x +1)=f (x )+x +1,则f (x )=_________

5 设二次函数f (x )满足f (x -2)=f (-x -2),且其图象在y 轴上的截距为1,

在x 轴上截得的线段长为2,求f (x )的解析式

6 设f (x )是在(-∞,+∞)上以4为周期的函数,且f (x )是偶函数,在区间

[2,3]上时,f (x )=-2(x -3)2+4,求当x ∈[1,2]时f (x )的解析式 若矩

形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0≤x≤2)的图象上,求这个矩形面积的最大值

7动点P从边长为1的正方形ABCD的顶点A出发Array顺次经过B、C、D再回到A,设x表示P点的行程,f(x)

表示P A的长,g(x)表示△ABP的面积,求f(x)和g(x),并

作出g(x)的简图

8已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时,函数取得最小值,最小值为-5

(1)证明f(1)+f(4)=0;

(2)试求y=f(x),x∈[1,4]的解析式;

(3)试求y=f(x)在[4,9]上的解析式

参考答案

1 解析 ∵f (x mx

∴f [f (x )]=

33

4434--?-?

x mx x mx

m =x ,整理比较系数得m =3 答案 A

2 解析 利用数形结合,x ≤1时,

f (x )=(x +1)2-1的对称轴为x =-1,最小值为-1, 又y =f (x )关于x =1对称,

故在x >1上,f (x )的对称轴为x =3且最小值为-1 答案 B

3 解析 由f (x )+2f (

x

1)=3x 知f (

x

1)+2f (x

由上面两式联立消去f (x

1)可得f (x )=x

2-x

答案 f (x )=

x

2-x

4 解析 ∵f (x )=ax 2+bx +c ,f (0)=0,可知c =0 又f (x +1)=f (x )+x +1, ∴a (x +1)2+b (x +1)+0=ax 2+bx +x +1,即(2a +b )x +a +b =bx +x +1

故2a +b =b +1且a +b =1,解得a =2

1,b =

2

1,∴f (x )=

2

1x 2+

2

1x

答案

2

1x 2+

2

1x

5 解 利用待定系数法,设f (x )=ax 2+bx +c ,然后找关于a 、b 、c 的方程

组求解,f (x )=

17

87

22

++

x x

6 解 (1)设x ∈[1,2],则4-x ∈[2,3],

∵f (x )是偶函数,∴f (x )=f (-x ),

又因为4是f (x )的周期,∴f (x )=f (-x )=f (4-x )=-2(x -1)2

+4 (2)设x ∈[0,1],则2≤x +2≤3,f (x )=f (x +2)=-2(x -1)2+4,

又由(1)可知x ∈[0,2]时,f (x )=-2(x -1)2+4,

设A 、B 坐标分别为(1-t ,0),(1+t ,0)(0<t ≤1),

则|AB |=2t ,|AD |=-2t 2+4,S 矩形=2t (-2t 2+4)=4t (2-t 2),令S 矩=S , ∴

8

2

S

=2t 2(2-t 2)·(2-t 2

)≤(

3

2222

22t

t t -+-+)3=

27

64,

当且仅当2t 2

=2-t 2

,即t =3

6时取等号

∴S 2

27

864?即S ≤

9

6

16,∴S max =

9

6

16

7 解 (1)如原题图,当P 在AB 上运动时,PA =x ;当P 点在BC 上运

动时,由Rt △ABD 可得P A =2)1(1-+x ;当P 点在CD 上运动时,由Rt △ADP 易得PA =2)3(1x -+;

当P 点在DA 上运动时,PA =4-x ,故f (x )的表达式为

f (x )=?

??????≤<-≤<+-≤<+-≤≤)

43( 4)32( 106)21( 22)10( 2

2

x x x x x x x x x x

(2)由于P 点在折线ABCD 上不同位置时,△ABP 的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P 点的位置进行分类求解

如原题图,当P 在线段AB 上时,△ABP 的面积S =0;

当P 在BC 上时,即1<x ≤2时, S △ABP =

21AB ·BP =

2

1(x -1);

当P 在CD 上时,即2<x ≤3时, S △ABP =

2

1·1·1=

2

1;当P 在DA 上时,

即3<x ≤4时,S △ABP =

2

1(4-x )

故g (x )=???

???

?????≤<-≤<≤<-≤≤)43( )4(2

1)32( 21)21( )1(21

)10( 0x x x x x x

8 (1)证明 ∵y =f (x )是以5为周期的周期函数,

∴f (4)=f (4-5)=f (-1),

又y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0 (2)解 当x ∈[1,4]时,由题意,可设

f (x )=a (x -2)2-5(a ≠0),由f (1)+f (4)=0

得a (1-2)2-5+a (4-2)2

-5=0,

解得a =2,∴f (x )=2(x -2)2-5(1≤x ≤4)

(3)解 ∵y =f (x )(-1≤x ≤1)是奇函数,

∴f (0)=-f (-0),∴f (0)=0,

又y =f (x ) (0≤x ≤1)是一次函数, ∴可设f (x )=kx (0≤x ≤1),

∵f (1)=2(1-2)2-5=-3, f (1)=k ·1=k ,∴k =-3

∴当0≤x ≤1时,f (x ) =-3x ,

当-1≤x <0时,f (x )=-3x ,

当4≤x ≤6时,-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15, 当6<x ≤9时,

1<x -5≤4,f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2

-5

∴f (x )=?

??≤<--≤≤+-)96( 5)7(2)

64( 1532

x x x x

高中数学函数解析式求法

函数解析式的表示形式及五种确定方式 函数的解析式是函数的最常用的一种表示方法,本文重点研究函数的解析式的表达形式与解析式的求法。 一、解析式的表达形式 解析式的表达形式有一般式、分段式、复合式等。 1、一般式是大部分函数的表达形式,例 一次函数:b kx y += )0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、分段式 若函数在定义域的不同子集上对应法则不同,可用n 个式子来表示函数,这种形式的函数叫做分段函数。 例1、设函数(]() ???+∞∈∞-∈=-,1,log 1,,2)(81x x x x f x ,则满足41)(=x f 的x 的值为 。 解:当(]1,∞-∈x 时,由4 12= -x 得,2=x ,与1≤x 矛盾; 当()+∞∈,1x 时,由4 1log 81=x 得,3=x 。 ∴ 3=x 3、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例2、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g 二、解析式的求法 根据已知条件求函数的解析式,常用待定系数法、换元法、配凑法、赋值(式)法、方程法等。 1待定系数法 若已知函数为某种基本函数,可设出解析式的表达形式的一般式,再利用已知条件求出系数。

高三数学复习专题讲座

2010届高三数学复习专题讲座 数列复习建议 江苏省睢宁高级中学北校袁保金 数列是高中数学的重点内容之一,是初等数学与高等数学的重要衔接点,由于它既具有函数特征,又能构成独特的递推关系,使得它既与高中数学其他部分的知识有着密切的联系,又有自己鲜明的特点.而且具有内容的丰富性、应用的广泛性和思想方法的多样性,所以数列一直是高考考查的重点和热点.纵观江苏省近几年高考数学试卷,数列都占有相当重要的地位,一般情况下都是以一道填空题和一道解答题形式出现,填空题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式等内容,对基本的计算技能要求比较高,具有“小、巧、活、新”的特点,解答题属于中高档难度的题目,甚至是压轴题.具有综合性强、变化多、难度较大特点,重点以等差数列和等比数列内容为主,考查数列内在的本质的知识和推理能力,运算能力以及分析问题和解决问题的能力. 一、考纲解读 2、考纲解读(1)考纲中对数列的有关概念要求为A级,也就是说只要了解数列概念的基本含义,并能解决相关的简单问题.(2)等差数列和等比数列要求都为C级,2010年数学科考试说明中共列出八个C级要求的知识点,等差数列、等比数列占了其中两个,说明这两个基本数列在高考中的地位相当重要.具体要求我们对这两个数列的定义、性质、通项公式以及前n项和公式需要有深刻的认识,能够

系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.这也说明涉及等差数列和等比数列的综合题在高考中一定出现.(3)由于数列这一章含有两个C级要求的知识点,可以命制等差数列、等比数列以及它们之间相互联系的综合题,也可以命制数列与函数、方程、不等式等知识点相融合的综合题,以及数列应用问题,着重考查思维能力、推理论证能力以及分析问题,解决实际问题的能力. 二、考题启示1、考题分布 自2004年江苏省单独命题以来,对数列知识的考查一直是命题的重 2、考题启示(1)数列在高考试卷中占的比重较大,分值约为13%左右,呈一大一小趋势,对等差数列和等比数列都有考查,纵观近几年江苏省高考试题,我们会发现江苏考题与全国卷、其他省市卷数列题有很大区别,具有十分明显的特色,对数列的考查不与其他知识综合,同时也回避了递推数列和不等式,主要揭示等差数列和等比数列内在的本质性的知识,形成江苏卷的一大特色.因此复习中在递推数列方面,特别是利用递推数列求通项,要大胆取舍,不要深挖.(2)客观题主要考查了等差、等比数列的基本概念和性质,突出了“小、巧、活、新”的特点,属容易题或中档题.主观题年年都考,且以中等和难度较大的综合题出现,常放在压轴题的位置.回顾江苏省单独命题以来,对数列的考查可以称得上到了极致.如2007年、2008年在倒数第二题,2005年、2006年在最后一题,2009年数列题前移到第17题,以中等题形式出现,这一显著地变化似乎一种信号,具有一定的导向作用.

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

(完整版)高一数学函数试题及答案

(数学1必修)函数及其表示 一、选择题 1.判断下列各组中的两个函数是同一函数的为( ) ⑴3 ) 5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 3.已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且* ,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5 4.已知2 2(1)()(12)2(2)x x f x x x x x +≤-??=-<

高中数学-求函数解析式的六种常用方法

求函数解析式的六种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式.令g (x )= t ,求f (t )的解析式,再把t 换为x 即可. 例1 已知f (x x 1+)= x x x 1122++,求f (x )的解析式. 解: 设x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1)11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2-x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2 x ,求f (x )的解析式. 解: f (x +1)= 2)(x +2 x +1-1=2)1(+x -1, ∴ f (x +1)= 2)1(+x -1 (x +1≥1),将x +1视为自变量x , 则有 f (x )= x 2-1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ???==. 7,1b a 故f (x )= x 2+7x. 评注: 已知函数类型,常用待定系数法求函数解析式.

高中数学复习专题讲座(第42讲)应用性问题

题目高中数学复习专题讲座应用性问题 高考要求 数学应用题是指利用数学知识解决其他领域中的问题 高考对应用题的考查已逐步成熟,大体是三道左右的小题和一道大题,注重问题及方法的新颖性,提高了适应陌生情境的能力要求 重难点归纳 1 解应用题的一般思路可表示如下: 数学解答 数学问题结论 问题解决数学问题实际问题 2 解应用题的一般程序 (1)读 阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础 (2)建 将文字语言转化为数学语言,利用数学知识,建立相应的数学模型 熟悉基本数学模型,正确进行建“模”是关键的一关 (3)解 求解数学模型,得到数学结论 一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程 (4)答 将数学结论还原给实际问题的结果 3 中学数学中常见应用问题与数学模型 (1)优化问题 实际问题中的“优选”“控制”等问题,常需建立“不等式模型”和“线性规划”问题解决 (2)预测问题 经济计划、市场预测这类问题通常设计成“数列模型”来解决 (3)最(极)值问题 工农业生产、建设及实际生活中的极限问题常设计成“函数模型”,转化为求函数的最值 (4)等量关系问题 建立“方程模型”解决 (5)测量问题 可设计成“图形模型”利用几何知识解决 典型题例示范讲解 例1为处理含有某种杂质的污水,要制造一个底宽为2米的无盖长方体沉淀箱(如图),污水从A 孔流入,经 沉淀后从B 孔流出,设箱体的长度为a 米,高度为b 米, 已知流出的水中该杂质的质量分数与a 、b 的乘积ab 成反 比,现有制箱材料60平方米,问当a 、b 各为多少米时, 经沉淀后流出的水中该杂质的质量分数最小(A 、B 孔的 面积忽略不计)? B A

高一数学之抽象函数专题集锦-含详细解析

高一数学之抽象函数专题集锦 一、选择题(本大题共14小题,共70.0分) 1. 设f(x)为定义在R 上的偶函数,且f(x)在[0,+∞)上为增函数,则f(?2),f(?π),f(3)的大小顺序是( ) A. B. C. D. 2. 函数f(x)在(0,+∞)上单调递增,且f(x +2)关于x =?2对称,若f(?2)=1,则f(x ?2)≤1的x 的取值范围 是( ) A. [?2,2] B. (?∞,?2]∪[2,+∞) C. (?∞,0]∪[4,+∞) D. [0,4] 3. 已知函数y =f(x)定义域是[?2,3],则y =f(2x ?1)的定义域是( ) A. [0,5 2] B. [?1,4] C. [?1 2,2] D. [?5,5] 4. 函数f(x)在(?∞,+∞)上单调递减,且为奇函数.若f(1)=?1,则满足?1≤f(x ?2)≤1的x 的取值范围是 ( ) A. B. C. [0,4] D. [1,3] 5. 若定义在R 上的奇函数f(x)在(?∞,0)单调递减,且f(2)=0,则满足xf(x ?1)?0的x 的取值范围是( ) A. [?1,1]∪[3,+∞) B. [?3,?1]∪[0,1] C. [?1,0]∪[1,+∞) D. [?1,0]∪[1,3] 6. 已知f(x)={ x 2+4x x ≥0 , 4x ?x 2 , x <0 若f(2?a 2)>f(a),则实数a 的取值范围是( ) A. (?2 , 1) B. (?1 , 2) C. (?∞ , ?1)?(2 , +∞) D. (?∞ , ?2)?(1 , +∞) 7. 已知定义在R 上的函数f(x)满足f(2?x)=f(x),且在[1,+∞)上为增函数,则下列关系式正确的是 A. f(?1)0,则f (x 1)+ f (x 2)的值( ) A. 恒为负值 B. 恒等于零 C. 恒为正值 D. 无法确定正负

【精品】高中数学函数专题(理科)

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映. 这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。 因此,掌握函数的图像是学好函数性质的关键,这也正是“数形结合思想”的体现。复习函数图像要注意以下方面。 1.掌握描绘函数图象的两种基本方法——描点法和图象变换法. 2.会利用函数图象,进一步研究函数的性质,解决方程、不等式中的问题. 3.用数形结合的思想、分类讨论的思想和转化变换的思想分析解决数学问题. 4.掌握知识之间的联系,进一步培养观察、分析、归纳、概括和综合分析能力. 以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法,掌握这两种方法是本节的重点.运用描点法作图象应避免描点前的盲目性,也应避免盲目地连点成线.要把表列在关键处,要把线连在恰当处.这就要求对所要画图象的存在范围、大致特征、变化趋势等作一个大概的研究.而这个研究要借助于函数性质、方程、不等式等理论和手段,是一个难点.用图象变换法作函数图象要确定以哪一种函数的图象为基础进行变换,以及确定怎样的变换.这也是个难点. 例1设a>0,求函数 ) ln( ) (a x x x f+ - =(x∈(0,+∞))的单调区间. 分析:欲求函数的单调区间,则须解不等式 ()0 f x '≥ (递增)及 ()0 f x '< (递减)。

高中数学函数的解析式

课题:___函数的解析式___ 教学任务 教 学 目 标 知识与技能目标会求简单函数的解析式 过程与方法目标 学生通过“回顾-反思-巩固-小结”的过程中 总结简单函数的解析式三种类型及解法。理解掌握 换元法、待定系数法,体会建立数学模型。培养学 生分类讨论的数学思想。 情感,态度与价值 观目标 使学生认识到数学与生活紧密相连,数学活动充满着探索与创 造,让他们在学习活动中培养独立的分析和建模的能力。 重点理解掌握应用换元法、待定系数法求简单函数的解析式 难点能初步掌握用数学模型解决实际问题,并能注意实际问题中的定义域 教学过程设计 问题与情境 设计 意图 活动1课前热身(资源如下) 1、设 ? ? ? ? ? < = > + = )0 (0 )0 ( )0 (1 ) ( x x x x x fπ,则f{f[f(-1)]}=_______ ___ 2、若一次函数f(x),使f[f(x)]=9x+1,则() f x= 3、已知:) (x f=x2-x+3 ,则 f(x+1) = , f( x 1 )= 4、若 x x x f - = 1 ) 1 (求f(x) = 5、客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙 地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙 地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过 的路程s与时间t之间关系的图象中,正确的是(). A. B. C. D. . 从正 反两 种情 况出 发,让 学生 回忆 体会 函数 解析 式用 法和 求法。 活动2类型解法 函数的解析式的几种类型及解法: 1、已知所要求的函数类型(一次、二次、反比例、指对数等), 利用待定系数法来求; 2、已知复合函数一般用变量代换(换元)法; 3、涉及实际问题求解析式,需建立数学模型即:把实际问题转 化为数学问题。 培 养学 生用 自己 的语 言来 总结 类型 与解 法 活动3提高探究 资源1、求满足下列条件的函数() f x的解析式: ①已知一次函数() f x,满足3(1)2(1)217 f x f x x +--=+. ②若二次函数满足(0)0 f=,且(1)()1 f x f x x +=++ ③设二次函数f(x)满足f(x-2)=f(-x-2),且图象在y轴上的截距为1,在x轴上截得 的线段长为2 2. 掌 握利 用待 定系 数法 求解 析式。

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

高中数学求函数解析式的各种方法

函数解析式 1、已知2(21)42f x x x +=-,求()f x 表达式。 2、已知1()2()23f x f x x +=+,求()f x 表达式。 3、已知2(1)21f x x +=+,求(1)f x -,()f x 。 4、已知23()2()23f x f x x --=-,不求()f x 的解析式,直接求(0)f ,(2)f 。 5、已知2 211()11x x f x x --=++,求()f x 解析式。 6、设()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x,y 都有()()(21)f x y f x y x y -=--+,求()f x 。 7、若函数2 2()1x f x x =+,求111(1)(2)()(3)()(4)()234f f f f f f f ++++++。 8、已知函数()x f x ax b =+,(2)1f =且方程()0f x x -=有唯一解,求()f x 表达式。 9、设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 。 10、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 11、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式。 12、已知函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式。 13、设,)1(2)()(x x f x f x f =-满足求)(x f 。 14、设)(x f 为偶函数,)(x g 为奇函数,又,1 1)()(-=+x x g x f 试求)()(x g x f 和的解析式。 15、设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f 。 16、已知f (x +1)=x +2x ,求()f x 的解析式。 17、已知f (x + x 1)=x 3+31x ,求()f x 的解析式。 18、已知函数()f x 是一次函数,且满足关系式3(1)2(1)217f x f x x +--=+,求()f x 的解析式。 19、已知2(1)lg f x x +=,求()f x 。 20、已知()f x 满足1 2()()3f x f x x +=,求()f x 。

高中数学复习专题讲座---综合运用.docx

高中数学复习专题讲座 综合运用等价转化、分类讨论、数形结合等思想解决函数综合问题 高考要求* 函数综合问题是历年高考的热点和重点内容么一,一般难度较大,考查内容和形式灵活多样》木节课主要帮助考生在掌握有关函数知识的基础上进-步深化综合运用知识的能力,掌握基木解题技巧和方法,并培养考生的思维和创新能力? 重难点归纳? 在解决函数综合问题时,耍认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用,综合问题的求解往往需要应川多种知识和技能,因此,必须全而掌握有关的函数知识,并且严谨审题,弄清题口的已知条件,尤其要挖掘题目中的隐含条件,学法指导*怎样学好函数学习函数要重点解决好四个问题*准确深刻地理解函数的有关概念;揭示并认识函数与其他数学知识的内在联系;把握数形结合的特征和方法;认识函数思想的实质,强化应用意识(一)准确、深刻理解函数的有关概念 概念是数学的慕础,而函数是数学中最主要的概念之一,苗数概念贯穿在中学代数的始终.数、式、方程、函数、排列组合、数列极限等是以函数为中心的代数,近十年來,高考试题中始终贯穿着函数及其性质这条主线, (二)揭示并认识函数与其他数学知识的内在联系.函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容,在利用函数和方程的思想进行思维中,动与静、变量与常量如此牛动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式, 所谓函数观点,实质是将问题放到动态背景上去加以考虑,高考试题涉及5个方血* (1)原始意义上的函数问题;(2)方程、不等式作为函数性质解决;(3)数列作为特殊的函数成为高考热点:(4)辅助函数法;(5)集合与映射,作为基本语言和工具出现在试题中,(三)把握数形结合的特征和方法 函数图象的儿何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方而精确地观察图形、绘制图形,乂要熟练地掌握函数图象的平移变换、对称变换, (四)认识函数思想的实质,强化应用意识 函数思想的实质就是用联系与变化的观点捉出数学对象,抽象数量特征,建立函数关系,求得问题的解决,纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识, 典型题例示范讲解 例1设几r)是定义在R上的偶函数,其图象关于直线*1对称,对任意[0,1], 都有f(x}+X2)=fi X[)? /(兀2),且几1)=0>0? (1)求/(*)、几扌); ⑵证明/⑴是周期函数;

高中数学抽象函数专题含答案-教师版

抽象函数周期性的探究(教师版) 抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题:命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期. (2)函数y=f(x)满足f(x+a)= 1 () f x ,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. : 命题2:若a、b(a b )是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 【 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期

(新)高一数学函数专题训练(一)

函数专题训练(一) 一、选择题 1.(文)若函数f(x)的定义域是[0,4],则函数g(x)=f (2x )x 的定义域是( ) A .[0,2] B .(0,2) C .(0,2] D .[0,2) (理)(2013·湖北荆门期末)函数f(x)=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( ) A .(-∞,-4]∪(2,+∞) B .(-4,0)∪(0,1) C .[-4,0)∪(0,1] D .[-4,0)∪(0,1) 2.(文)(2012·江西文,3)设函数f(x)=????? x 2+1,x ≤1,2x ,x>1.则f(f(3))=( ) A.15 B .3 C.23 D.139 (理)已知函数f(x)=??? 2x +1,x ≤0,f (x -3),x>0, 则f(2014)等于( ) A .-1 B .1 C .-3 D .3 3.已知函数f(x)=??? 2x +1,x<1,x 2+ax ,x ≥1, 若f[f(0)]=4a ,则实数a 等于( ) A.12 B.45 C .2 D .9 4.(2013·银川模拟)设函数f(x)=??? x 2-4x +6,x ≥0,x +6,x<0, 则不等式f(x)>f(1)的解集是( A .(-3,1)∪(3,+∞) B .(-3,1)∪(2,+∞) C .(-1,1)∪(3,+∞) D .(-∞,-3)∪(1,3) 5.(文)函数f(x)=22x -2 的值域是( ) A .(-∞,-1) B .(-1,0)∪(0,+∞)C .(-1,+∞) D .(-∞,-1)∪(0,+∞) (理)若函数y =f(x)的值域是[12,3],则函数F(x)=f(x)+1f (x ) 的值域是( ) A .[12,3] B .[2,103] C .[52,103] D .[3,103] 6.a 、b 为实数,集合M ={b a ,1},N ={a,0},f 是M 到N 的映射,f(x)=x ,则a +b

人教版高中数学必修一函数解析式的求法大盘点

函数解析式的求法大盘点 函数解析式的求解方法较多,在此,我归纳了几类供大家学习,希望对大家有所帮助。 一. 方程组法 型型和此法主要适用(x) )()()()()(c tx bf x af x c x t bf x af =+=+。 。即函数的解析式为得:替换为解析:把。 联立方程组,即可解出替换为分析:把的解析式。 ,求满足函数例3)(3)(-)(2)-()(2)(,)(,)()(2)()(.1x x f x x f x x f x f x x f x f x x x f x x x f x x f x f x f ==????=-=----=-- 。即函数的解析式为得:替换为解析:把。联立方程组,即可解出替换为分析:把的解析式。,求满足函数例)2(31)()2(31)(1 )(2)1()1(2)(,1)(,1)()1(2)()(.2x x x f x x x f x x f x f x x f x f x x x f x x x f x x f x f x f +--=+--=???? ????-=--=----=-- 点评:方程组法求函数解析式关键是根据所给表达式列出方程组。 )()()()()()()()()()(x f x t c x bf x t af x c x t bf x af x t x x c x t bf x af 即可解出,即替换为型需把???????=+=+=+, ).()()()()()()((x) )()(x f tx c x bf tx af x c tx bf x af tx x c tx bf x af 即可解出,即替换为型需把???=+=+=+

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

函数解析式的几种基本方法及例题

求函数解析式的几种基本方法及例题: 1、凑配法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。 此法较适合简单题目。 例1、(1)已知f(x+1)=x 2+2x,求f(x)及f(x-2). (2) 已知2 2 1)1(x x x x f + =+ )0(>x ,求 ()f x 的解析式 解:(1)f(x+1)=(x+1)2-1,∴f (x )=x 2-1.f(x-2)=(x-2)2-1=x 2-4x+3. (2) 2)1()1(2 -+ =+ x x x x f , 21≥+ x x 2)(2-=∴x x f )2(≥x 2、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。与配凑法一样,要注意所换元的定义域的变化。 例2 (1) 已知x x x f 2)1(+=+,求)1(+x f (2)如果).(,,)(x f x x x x f 时,求则当1011≠-= 解:(1)令1+= x t ,则1≥t ,2)1(-=t x x x x f 2)1(+=+ ∴,1)1(2)1()(2 2 -=-+-=t t t t f 1)(2 -=∴x x f )1(≥x x x x x f 21)1()1(2 2 +=-+=+∴ )0(≥x

(2)设 .)(,,,1 11 1111 11-= ∴-= - = = =x x f t t t f t x t x t )(代入已知得则 3、待定系数法:当已知函数的模式求解析式时适合此法。应用此法解题时往往需要解恒等式。 例3、已知f(x)是二次函数,且满足f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:设f(x)=ax 2+bx+c(a ≠0),∴f(x+1)+f(x-1)=a(x+1)2+b(x+1)+c +a(x-1)2+b(x-1)+c=2ax 2+2bx+2a+2c=2x 2-4x, 则应有.)(12121 0224 2222 --=∴?? ???-=-==∴?????=+-==x x x f c b a c a b a 四、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。 例4 设,)1 (2)()(x x f x f x f =-满足求)(x f 解 x x f x f =-)1 (2)( ① 显然,0≠x 将x 换成 x 1,得: x x f x f 1 )(2)1(=- ② 解① ②联立的方程组,得: x x x f 323)(-- = 五、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例5 已知:1)0(=f ,对于任意实数x 、y ,等式

相关主题
文本预览
相关文档 最新文档