当前位置:文档之家› 空间力系及重心

空间力系及重心

空间力系及重心
空间力系及重心

第六章 空间力系及重心

一、内容提要

1、空间力对点之矩和对轴之矩

1)空间力对点之矩是矢量,且F r F m o ?=)(

2)空间力对轴之矩是一代数量,其正负号按右手螺旋规则确定,大小有两种计算方法:

(a )先将力投影到垂直于轴的平面上,然后按平面上力对点之矩计算,即

)()(yz o Z F m F m =

(b)若已知力在坐标轴上的投影F x 、F y 和F Z 及该力的作用点的坐标x 、y 、z ,则力对各坐标轴的矩可表示为

=)(F m x yF z -zF y

=)(F m y zF x -xF z =)(F m z xF y -yF x

3) 力对点之矩和力对轴之矩的关系(力矩关系定理):

x o x F m F m )]([)(=

y o y F m F m )]([)(= z o z F m F m )]([)(=

4)特殊情况 当力与轴平行或相交(即力与轴共面)时,力对轴之矩等于零。

2、空间任意力系的简化、合成

1)空间任意力系的简化、力系的主矢与主矩

主矢R /=∑F i , 主矢的大小和方向与简化中心的位置无关。 主矩M o =∑m o (F), 主矩的大小和转向一般与简化中心的位置有关。 2)空间任意力系的合成结果

空间任意力系的平衡方程的基本形式为

0=∑x F ,0=∑y F ,0=∑Z F

0)(=∑F m x ,0)(=∑F m y ,0)(=∑F m Z

2)几种特殊力系的平衡方程

(a )空间汇交力系的平衡方程的基本形式为

0=∑x F ,0=∑y F ,0=∑Z F

(b )空间平行力系,若力系中各力与轴平行,则0≡∑x F ,0≡∑y F ,

0)(≡∑F m Z ,其平衡方程的基本形式为:

0=∑Z F ,0)(=∑F m x ,0)(=∑F m y

(c )空间力偶系的平衡方程的基本形式为

0)(=∑F m x ,0)(=∑F m y ,0)(=∑F m Z

4、本章根据合力矩定理推导了重心坐标公式。对于简单形状的均质物体,其重心可用积分形式的重心坐标公式确定,或直接查表。至于复杂形状的均质物体的重心,可采用分割法或负面积(负体积)法求得。

二、基本要求

1、 会计算空间力对点之矩和力对轴之矩。

2、会分析空间任意力系的合成结果。

3、对空间单体的平衡问题,会选取合适的平衡方程形式及投影轴或取矩轴,尽量做到一个方程求解一个未知数。

4、正确建立物体重心、质心、形心等概念,掌握几个基本公式的来由。

5、在不同情况下能选择恰当的方法求物体的重心。

三、典型例题分析

例题1 长方形的长、宽、高分别为a=4m ,b=3m ,c=5m ,受力情形如图1(a )所示。设F 2=F 3=F ,F 1=2F ,试求(1)该力系向点O 简化的结果;(2)简化的最终结果。

解:

以简化中心O 为原点,建立如图所示空间直角坐标系Oxyz 。 从图中几何关系有

2

2

cos sin =

=αα,53sin =θ,54cos =θ

易得主矢与对点O 的主矩在坐标轴上的投影分别为

0sin sin cos 21/

=+-==∑θθαF F F F x Rx

F F F F F y Ry 5

8cos cos cos 21/-=--==∑θθα

图1

0sin 31/=-==∑F F F F Z RZ α

F c F a F M M x O x 8cos sin 21=?+?==∑θα 0sin sin 21=?+?-==∑c F b F M M y O y θα

F a F M M Z OZ 5

12

sin 2-

=?-==∑θ 即有 /R F Fj 6.1-=,

Fk Fi M O 4.28-=

可知:主矢/

R F 方向沿y 轴负向,对点O 的主矩O M 位于Oxz 平面内,故/

R F ┴O M 。由空间力系简化的理论,该力系可进一步合成为一个合力,设该合力的作用点为O /,则它距简化中心O 的距离为

m m F

M d OO R

O 22.5//==

=

例题2 边长为a 的正方形水平薄板ABCD 上作用有一力偶m ,设该薄板由六根直杆支持而处于平衡,如图2(a)所示。若不计板重及各杆自重,试求各杆的内力。

图2

解:

研究对象:取薄板ABCD 为研究对象。

受力分析:该薄板共受六个力与一个力偶的作用。为解题方便,不妨设各杆对板均为拉力。其受力图如图2b 。

【解法】建立如图2b 所示的空间直角坐标系Bxyz ,这样取坐标系的目的是使尽可能多的未知反力与坐标轴平行或相交,以使所列的力矩式平衡方程尽可能简单。

首先取z 轴为力矩轴,则有

0)(=∑F M

Z

,045cos 0

2=?-a F M 可解得 M a

F 2

2=

0)(=∑F M y

, 045sin 021=?-?-a F a F

解得a

M F F -

=-=0

2145sin 0=∑x

F , 045cos cos 03=-αF

解得 : 03=F

0=∑y

F

, 045sin cos 45cos 45cos 030205=++-αF F F

解得 M a

F F 225=

= 0)(=∑F M x

, 045sin 056=?-?-a F a F

解得 a

M F F -

=-=0

5645sin 0=∑Z

F

, 045sin sin 45sin 60543021=------F F F F F F α

解得 04=F

讨论 :本题解题过程中,采用了空间力系平衡方程的基本形式,即三投影三力矩形式。事实上,与平面一般力系一样,为简便计算也可以减少平衡方程中的投影方程式,而代以相同数目的力矩方程式。

如可用下列的三个力矩方程式代替上述三个投影方程。

0)(1

=∑F M D D ,045cos 0

5=?-αF M 0)(1

1=∑F M C D ,045cos 1054=?+?+?a F a F a F

0)(=∑F M

CD

,0sin 45sin 43021=?+?+?+?a F a F a F a F α

可以解得与上述相同的结果。

工程力学第三章空间力系与重心重点

课时授课计戈I 」 第三章空间力系与重心 掌握力在空间直角坐标系上的投影的计算 掌握力对轴的矩的计算 掌握空间力系的平衡条件 掌握重心的概念 空间力系的平衡条件 力对轴的矩的计算 第三章 空间力系与重心 第一节力在空间直角坐标系上的投影 第二节力对轴的矩 第三节 空间力系的平衡条件 第四节物体的重心 课本 教学方法 课堂教学 授课日期 2011.10.22 1044-3 目 的 要 求

教学过程: 复习:1、复习约束与约束反力概念。 2、复习物体受力图的绘制。 课: 第三章 空间力系与重心 第一节力在空间直角坐标系上的投影 1. 力在直角坐标轴上的投影和力沿直角坐标轴的分解 若已知力F 与正交坐标系Oxyz 三轴间的夹角分别为a 、p 、丫, 如图4-1 所示,则力在三个轴上的投影等于力F 的大小乘以与各轴夹角的余弦, 即 X=F cos a Y=W cos p Z=F cos 丫 当力F 与坐标轴Ox Oy 间的夹角不易确定时,可把力 F 先投影到坐 标平面Oxy 上,得到力F 砂,然后再把这个力投影到x 、y 轴上。在图4-2 中, 已知角丫和卩,则力F 在三个坐标轴上的投影分别为 (4-1) O 图4一 1 書

Z jr 乙Z

X=F sin 丫 COS 0 Y=F sin 丫 sin W Z=F cos 丫 若以人、人、人表示力F 沿直角坐标轴X 、y 、z 的正交分量,以i 、 j 、k 分别表示沿X 、y 、z 坐标轴方向的单位矢量,如图4-3所示,则 图4-2 戸=人+尸$+巧=为+Y +Zk 由此,力F 在坐标轴上的投影和力沿坐标轴的正交分矢 量间的关系可表示为 人=X ,人=Y ,人=zk (4-4) 如果己知力F 在正交轴系Oxyz 的三个投影,则力F 的大小和方向余弦为 F =J 护+尸+0 £ cos( F , i)= F (4-5) 例:图4-4所示的圆柱斜齿轮,其上受啮合力 E 的作用。已知斜齿 轮的齿倾角(螺旋角)P 和压力角a ,试求力E 沿x 、y 和z 轴的分力。 (4-2) (4-3)

空间力系

第三章 空间力系 一、空间汇交力系 (一)空间汇交力系的合成 1.空间力在坐标轴上的投影 (1)一次投影法 如图3-1所示,若已知力F 与三个坐标轴x,y,z 间的夹角分别为θ、β和γ,则 力F 在三个坐标轴上的投影分别为 ?? ? ?? ===γβθcos cos cos z y x F F F (3.1) 图3-1 相应的,若已知力F 的三个投影,可以求出力F 的大小和方向,即大小为 222z y x F F F F ++= (3.2) 方向 ?? ??? ???? === F F F F F F z y x γβθcos cos cos (3.3) (2)二次投影法

如图3-2所示,若已知力F 与坐标轴Oxy 的仰角γ以及力F 在Oxy 平面上的 投影xy F 与x 轴间的夹角?,则力F 在三个坐标轴上的投影分别为 γ?λ?γsin sin in cos in F F Fs F Fs F z y x ===,, 图3-2 2.合力投影定理 合力在某轴上的投影,等于各分力在同一坐标轴上投影的代数和。即 ∑=+++=xi xn x x Rx F F F F F 21 同理 ∑∑==zi Rz yi Ry F F F F , 3.空间共点力系的合成 空间共点力系可以合成为一个合力,该合力的作用线通过力系的公共作用 点,合力的大小和方向为 ()()() 2 2 2 ∑∑∑++= z y x R F F F F (3.4) ()()()? ? ? ? ? ????===∑∑∑R z R R y R R x R F F F F F F k F j F i F ,cos ,cos ,cos (3.5) (二)空间汇交力系的平衡 1.空间汇交力系的平衡条件 空间汇交力系平衡的充要条件是合力等于零,即 ()()() 02 2 2 =++= ∑∑ ∑z y x R F F F F

第6章 力系的平衡—思考题-解答

第6章力系的平衡——思考题——解答 6-1 空间一般力系向三个相互相交的坐标平面投影,得到三个平面一般力系,每个平面一般力系都有三个独立的平衡方程,这样力系就有九个平衡方程,那么能否求解九个未知量为什么 6-1 解答: (1) 空间一般平衡力系,有六个独立的平衡方程,能求解六个未知量。 (2) 空间一般力系向三个相互相交的坐标平面投影,得到三个平面一般力系,每个平面一般力系都有三个独立的平衡方程,这样力系就有九个平衡方程,但并非独立,因为三个相互相交的坐标平面满足一定的几何关系(每一个坐标平面之间的夹角是确定的,共有三个确定的夹角),这样得到的三个平面一般力系,每个平面一般力系都有三个独立的平衡方程,力系就有九个平衡方程,其实独立的还是六个平衡方程,能求解六个未知量。

6-2 试问在下述情况下,空间平衡力系最多能有几个独立的平衡方程为什么 (1)各力的作用线均与某直线垂直; (2)各力的作用线均与某直线相交; (3)各力的作用线均与某直线垂直且相交; (4)各力的作用线均与某一固定平面平行; (5)各力的作用线分别位于两个平行的平面内; (6)各力的作用线分别汇交于两个固定点; (7)各力的作用线分别通过不共线的三个点; (8)各力的作用线均平行于某一固定平面,且分别汇交于两个固定点; (9)各力的作用线均与某一直线相交,且分别汇交于此直线外的两个固定点; (10)由一组力螺旋构成,且各力螺旋的中心轴共面; (11)由一个平面任意力系与一个平行于此平面任意力系所在平面的空间平行力系组成; (12)由一个平面任意力系与一个力偶矩均平行于此平面任意力系所在平面的空间力偶系组成。 6-2 解答: 空间的一般平衡力系共有六个独立的平衡方程 0=∑x F ,0=∑y F ,0=∑z F ,0=∑x M ,0=∑y M ,0=∑z M (1) 各力的作用线均与某直线垂直 —— 最多有五个独立平衡方程。 假设各力的作用线均与z 轴垂直,则0=∑z F 自动满足,独立的平衡方程有5个。 (2) 各力的作用线均与某直线相交 —— 最多有五个独立平衡方程。

第六章 空间力系 重心 习题

第六章空间力系重心习题概念题: 4.1 4.2 4.3 4.4 4.5 4.6

4.7 4.8 4.9 4.10 4.11 4.12 计算题:

4.2 4.3 4.4

4.5 4.6 4.7

4.8 课后习题 6-1已知力P大小和方向如图所示,求里P对z轴的矩。(题6-1图a中的P位于其过轮缘上作用点的切平面内,且与轮平面成α=60度角;图b中的力P位于轮平面内与轮的法线成β=60度角)。 6-2作用于手柄端的力F=600KN,试求计算力在x,y,z轴上的投影及对x,y,z 轴之矩。 6-3图示三脚架的三只角AD,BD,CD各与水平面成60度角,且AB=BC=AC,绳索绕过D处的滑轮由卷扬机E牵引将重物G吊起,卷扬机位于∠ACB的等分线上,且DE与水平线成60度角。当G=30KN时 被等速地提升时,求各角所受的力。 6-4重物Q=10KN,由撑杆AD及链条BD和CD所支持。杆的A端以铰链固定,又A,B和C三点在同一铅垂墙上。尺寸如图所示,求撑杆AD和链条BD,CD 所受的力(注:OD垂直于墙面,OD=20cm)。 6-5固结在AB轴上的三个圆轮,半径各为r1,r2,r3;水平和铅垂作用力大大小F1=F1’,F2=F2’为已知,求平衡时F3和F3’两力的大小。

6-6平行力系由5个力组成,各力方向如图所示。已知:P1=150N,P2=100N,P3=200N,P4=150N,P5=100N。图中坐标的单位为cm。求平行力系的合力。 6-7有一齿轮传动轴如图所示,大齿轮的节圆直径D=100mm,小齿轮的节圆直径d=50mm。如两齿轮都是直齿,压力角均为α=20度,已知作用在大齿轮上的圆周力P1=1950N,试求转动轴作匀速转动时, 小齿轮所受的圆周力P2的大小及两轴承的反力。

空间力系习题

第四章 空间力系 4-1 力系中,F 1=100 N 、F 2=300 N 、F 3=200 N ,各力作用线的位置如图所示。试将力系向原点O 简化。 解:由题意得 N 3455 2200132300R -=? -?-=x F N 25013 3300R =? =y F N 6.105 1200100R =?-=z F m N 8.513.05 12001.013 3300?-=?? -?? -=x M m N 6.361.0132 20020.0100?-=?? +?-=y M m N 6.1033.05 22002.0133300?=??+??=z M 主矢 N 4262R 2R 2R R =++= x y z F F F F ,N )6.10250345(R k j i ++-=F 主矩 m N 122222?=++= z y x O M M M M ,m N )1046.368.51(?+--=k j i O M 4-3 图示力系的三力分别为N 3501=F 、N 4002=F 和N 6003=F ,其作用线的位置如图所示。试将此力系向原点O 简化。 解:由题意得 N 1442 1 60018100 60350'R -=? -?=x F N 1010866 .0600707.040018100 80350'R =?+?+?=y F N 517707.040018100 90350'R -=?--? =z F 主矢 N 114 42'R 2'R 2'R R =++= z y x F F F 'F , N )5171011144(R k j i F -+-='; m N 48mm N 48000120707.0400601810090 350?-=?-=??-?? -=x M m N 07.21mm N 21070901810090 350?=?=?? =y M 6021 60090866.06006018100 60350901810080350??+??-??-?? =z M m N 4.19mm N 19400?-=?-= 主矩 m N 55.9mm N 55900222?=?=++= z y x O M M M M m N )4.191.2148(?-+-=k j i M O

空间力系及重心

第六章 空间力系及重心 一、内容提要 1、空间力对点之矩和对轴之矩 1)空间力对点之矩是矢量,且F r F m o ?=)( 2)空间力对轴之矩是一代数量,其正负号按右手螺旋规则确定,大小有两种计算方法: (a )先将力投影到垂直于轴的平面上,然后按平面上力对点之矩计算,即 )()(yz o Z F m F m = (b)若已知力在坐标轴上的投影F x 、F y 和F Z 及该力的作用点的坐标x 、y 、z ,则力对各坐标轴的矩可表示为 =)(F m x yF z -zF y =)(F m y zF x -xF z =)(F m z xF y -yF x 3) 力对点之矩和力对轴之矩的关系(力矩关系定理): x o x F m F m )]([)(= y o y F m F m )]([)(= z o z F m F m )]([)(= 4)特殊情况 当力与轴平行或相交(即力与轴共面)时,力对轴之矩等于零。 2、空间任意力系的简化、合成 1)空间任意力系的简化、力系的主矢与主矩 主矢R /=∑F i , 主矢的大小和方向与简化中心的位置无关。 主矩M o =∑m o (F), 主矩的大小和转向一般与简化中心的位置有关。 2)空间任意力系的合成结果

空间任意力系的平衡方程的基本形式为 0=∑x F ,0=∑y F ,0=∑Z F 0)(=∑F m x ,0)(=∑F m y ,0)(=∑F m Z 2)几种特殊力系的平衡方程 (a )空间汇交力系的平衡方程的基本形式为 0=∑x F ,0=∑y F ,0=∑Z F (b )空间平行力系,若力系中各力与轴平行,则0≡∑x F ,0≡∑y F , 0)(≡∑F m Z ,其平衡方程的基本形式为: 0=∑Z F ,0)(=∑F m x ,0)(=∑F m y (c )空间力偶系的平衡方程的基本形式为 0)(=∑F m x ,0)(=∑F m y ,0)(=∑F m Z 4、本章根据合力矩定理推导了重心坐标公式。对于简单形状的均质物体,其重心可用积分形式的重心坐标公式确定,或直接查表。至于复杂形状的均质物体的重心,可采用分割法或负面积(负体积)法求得。

空间力系和重心

第六章空间力系和重心 教学目标 1 能熟练地计算力在空间直角坐标轴上的投影和力对轴之矩。 2 了解空间力系向一点简化的方法和结果。 3 能应用平衡条件求解空间汇交力系、空间任意力系、空间平行力系的平衡问题。 4 能正确地画出各种常见空间约束的约束力。 5 对重心应有清晰的概念,能熟练地应用组合法求物体的重心。 本章重点 1 力在空间直角坐标轴上的投影和力对轴之矩。 2 空间汇交力系、空间任意力系、空间平行力系平衡方程的应用。 3 各种常见空间约束的约束力。 4 重心的坐标公式。 本章难点 空间矢量的运算,空间结构的几何关系和立体图。 教学过程(下页)

一、空间力系的简化 1.空间力系向一点简化 刚体上作用空间力系),,(21n F F F ,将力系中各力向任选的简化中心O 简化。 主矢:∑∑='=C i F F F ,与O 点选择无关。 (6-1) 主矩:∑∑∑?===)()(00i i i i F r F M M M ,与O 点的选择有关。 (6-2) 主矢F 和主矩0M 的解析表达式 222)()()(∑∑∑++=iz iy ix F F F F (6-3) F F x F ix ∑= ),cos( ,F F y F iy ∑= ),cos( ,F F z F iz ∑= ),cos( 2 220))(())(())((i z i y i x F M F M F M M ∑∑∑++= (6-4) 0) (),cos(M F M x M i x ∑= ,0 0) (),cos(M F M y M i y ∑= ,0 0) (),cos(M F M z M i z ∑= 结论:空间力系向任一点简化,一般可得到一力和一力偶,该力通过简化中心,其大小和方向等于力系的主矢,该力偶的力偶矩矢等于力系对简化中心的主矩。 2.空间力系简化的最后结果 (1)空间力系平衡 0=F ,00=M ,此空间力系为平衡力系。 (2)空间力系简化为一合力偶 0=F ,00≠M ,此空间力系简化为一合力偶,合力偶矩矢等于力系主矩0M 与简 化中心的位置无关。

第5章空间力系与重心

第5章空间力系与重心 教学提示:本章介绍空间力系和重心、包括空间力的投影与分解、力对轴之 矩、空间力系的平衡、物体的重心.是静力学重要内容之一。 教学要求:本章是学生掌握以下内容,并学会实际应用。 (1) 空间汇交力系的概念 (2) 力对轴之矩和力对点之矩概念和计算 (3) 空间力偶系 (4) 空间力系的简化 (5) 空间力系的平衡条件和平衡方程 (6) 物体的重心 5.1力在直角坐标轴上的投影 已知力F与x轴如图5.1(a)所示,过力F的两端点A、B分别作垂直于x轴的平面M及N ,与x轴交于a、b,则线段ab冠以正号或负号称为力F在x轴上的投影,即 F x=±ab 符号规定:若从a到b的方向与x轴的正向一致取正号,反之取负号。 已知力F与平面Q,如图5.1(b)所示。过力的两端点A、B分别作平面Q的 '称为力F在平面Q上的投影。应注意的是力在垂直线AA′、BB′,则矢量B A' 平面上的投影是矢量,而力在轴上的投影是代数量。 (a) (b) 图5.1 图5.2

现在讨论力F 在空间直角坐标系Oxy 中的情况。如图5.2(a)所示,过力F 的端点A 、B 分别作x 、y 、z 三轴的垂直平面,则由力在轴上的投影的定义知,OA 、OB 、O C 就是力F 在x 、y 、z 轴上的投影。设力F 与x 、y 、z 所夹的角分别是α、β、γ,则力F 在空间直角坐标轴上的投影为: ??? ??±=±=±=γβα c o s c o s c o s F F F F F F z y x (5-1) 用这种方法计算力在轴上的投影的方法称为直接投影法。 一般情况下,不易全部找到力与三个轴的夹角,设已知力F 与z 轴夹角为γ ,可先将力投影到坐标平面Oxy 上,然后再投影到坐标轴x 、y 上,如图5.2(b )所示。设力F 在Oxy 平面上的投影为F xy 与x 轴间的夹角为θ,则 ??? ??±=±=±=γθγθγc o s s i n s i n c o s s i n F F F F F F z y x (5-2) 用这种方法计算力在轴上的投影称为二次投影法。 若已知力F 在坐标轴上的投影,则该力的大小及方向余弦为 ? ? ? ??===++=F Z F Y F X Z Y X F γβαcos ,cos ,cos 2 22 (5-3) 如果把一个力沿空间直角坐标轴分解,则沿三个坐标轴分力的大小等于力在这三个坐标轴上投影的绝对值。 例5.1 如图5.3所示,已知力F 1=2kN ,F 2=1kN ,F 3=3kN ,试分别计算三力在x 、y 、z 轴上的投影。 图5.3 解:

相关主题
文本预览
相关文档 最新文档