当前位置:文档之家› 流体力学_龙天渝_孔口、管嘴出流和有压管流

流体力学_龙天渝_孔口、管嘴出流和有压管流

流体力学_龙天渝_孔口、管嘴出流和有压管流
流体力学_龙天渝_孔口、管嘴出流和有压管流

第五章孔口、管嘴出流和有压管流

一、复习思考题

二、习题

1、选择题

2、计算题

一、复习思考题

1.孔口、管嘴出流和有压管流的水力特点有什么不同?

2.正常工作条件下,作用水头相同,面积也相同的孔口和圆柱形外管嘴,过流能力是否相同?原因何在?

3.怎样计算长管串联、并联管道及沿程均匀泄流管道的水头损失?4.有压管流,管道末端阀门瞬时关闭,水击波是怎样传播的?5.怎样选择离心泵?

返回顶部目录

二、习题

1、选择题

5-1比较在正常工作条件下,作用水头H、直径d相等时,小孔口的流量Q和圆柱形外管嘴的流量Q n():

(a) Q>Q n

(b) Q

(c) Q=Q n

(d) 不定

5-2圆柱形外管嘴的正常工作条件是():

(a) L=(3~4)d,H0>9m

(b) L=(3~4)d,H0<9m

(c) L>(3~4)d,H0>9m

(d)Ll<(3~4)d,H0<9m

5-3图示两根完全相同的长管道,只是安装高度不同,两管的流量关系为():

(a) Q1

(b) Q1>Q2

(c) Q1=Q2

(d) 不定

返回顶部目录

5-4并联管道1、2两管的直径相同,沿程阻力系数相同,长度L2=3L1,通过的流量为():

(a) Q1=Q2

(b) Q1=1.5Q2

(c) Q1=1.73Q2

(d) Q1=3Q2

5-5如图,并联管段1、2、3其中A、B之间的水头损失是():

(a) h fAB=h f1+h f2+h f3

(b) h fAB=h f1+h f2

(c) h fAB= h f2+h f3

(d) h fAB=h f1=h f2=h f3

5-6长管并联管道各并联支管的():

(a) 水头损失相等

(b) 水力坡度相等

(c) 总能量损失相等

(d) 通过的水量相等

5-7并联管道阀

门K全开时各

段流量为Q1、

Q2、Q3,现关闭

小阀门K,其他

条件不变,流量

变化为()

(a) Q1、Q2、Q3都减小

(b) Q1减小、Q2不变、Q3减小

(c) Q1减小、Q2增加、Q3减小

(d) Q1不变、Q2增加、Q3减小

返回顶部目录

2、计算题

5-8有一薄壁圆形孔口,直径d为10mm,水头H为2m,现测得射流收缩断面

的直径d c为

8mm,在32.8s

时间内,经孔

口流出的水量

为0.01m3,试

求该孔口的收

缩系数μ,流

速系数φ及孔

口局部损失系

数。

5-9薄壁孔口出流,直径d=2cm,水箱水位恒定为H=2m,试求:(1)孔口流量Q;

(2)此孔口外接圆柱形管嘴的流量Q n;

(3)管嘴收缩断面的真空。

5-10水箱用隔板分为A、B两室,隔板上开一孔口,其直径d1=4cm,在B室底部装有圆柱形外管嘴,其直径d2=3cm。已知H=3m,

h3=0.5m,试求:

, h2;

(1)h

(2)流出水箱

的流量Q。

返回顶部

目录

5-11有一平

底空船,其水

面面积Ω为

8m2,船舷高h为0.5m,船自重G为9.8kN。现船底破一直径10cm 的圆孔,水自圆孔漏入船中,试问经过多少时间后船将沉没

5-12游泳池长25m,宽10m,水深1.5m,池底设有直径10cM的放水孔直通排水地沟,试求放尽池水所需时间。

5-13油槽车的油槽长度为L,直径为D,油槽底部设有泄油孔,孔口面积为A,流量系数为μ,试求该车充满油后所需的泄空时间。

5-14虹吸管将A池中的水输入B池,已知长度L1=3m,L2=5m,直径d=75mm,两池水面高差H=2m,最大超高h=1.8m,沿程摩阻系数λ=0.02,局部损失系数:进口=0.5,转弯=0.2,出口=1。试求流量及管道最大超高断面的真空度。

5-15自然排烟锅炉,烟囱直径d=0.9m,烟气流量Q=7.0m3/s,烟气密度ρ=0.7kg/m3,外部空气密度ρa=1.2kg/m3,烟囱沿程摩阻系数λ=0.035,为使底部真空度不小于10mmH2O,试求烟囱的高度H。

5-16水从密闭容器A沿直径

d=25mm,长L=10m的管道流入容器

B,已知容器A水面的相对压强

p1=2at,水面高H1=1m,H2=5m,沿程

摩阻系数λ=0.025,局部损失系数:阀

门=4.0,弯头=0.3,试求流量。

5-17水车由一直径d=150mm,长

L=80m的管道供水,该管道中共有两

个闸阀和4个900弯头(λ=0.03,闸阀全开=0.12,弯头=0.48)。已知水车的有效体积V为25m3,水塔具有水头H=18m,试求水车充满水所需的最短时间。

5-18自密闭容器经两段串联管道输水,已知压力表读数p M=1at,水头H=2m,L2=20m,直径d1=100mm,d2=200mm,沿程摩阻系数λ1=λ2=0.03,试求流量并绘制总水头线和测压管水头线。

5-19水从密闭水箱沿垂直管道送入高位水池中。已知管道直径

d=25mm,管长L=3m,水深h=0.5m,流量Q=1.5L/s,沿程摩阻系数λ=0.033,局部损失系数:阀门=9.3,入口=1,试求密闭容器上压力表读值p M,并绘制总水头线和测压管水头线。

5-20工厂供水系统,由水塔向A、B、C三处供水,管道均为铸铁管,已知流量Q C=10L/s,q B=510L/s,q A=10L/s,各管段长L1=350m,L2=450m,L3=100m,各段直径d1=200m,d2=150m,d3=100m,整个场地水平,试求水塔出水口压强。

5-21在长为2L,直径为d的管道上,并联一根直径相同,长为L

支管(图中虚线),若水头H不变,不计局部损

失,试求并联前后的流量比。

5-22有一循环管道,各支管

阀门全开时,支管流量分别为

Q1、Q2,若将阀门A关小,其他条件不变,试论证主管流量Q怎样变化,支管流量Q1、Q2怎样变化。

5-23电厂引水钢管直径d=180mm,壁厚δ=10mm,流速ν=2m/s,阀门关前压强为1ⅹ106Pa,当阀门突然关闭时,管壁中的应力比原来增加多少倍?

5-24输水钢管直径d=100mm,壁厚δ=7mm,流速ν=1.2m/s,试求阀门突然关闭时的水击压强。又若该管道改为铸铁管,水击压强有何变化?

5-25由一台水泵把进水池的水抽送到水塔中去,流量Q=70L/s,管路总长(包括吸、压水管)为1500m,管径d为250mm,沿程摩阻系数λ=0.025,水池水面距水塔水面的高差H g=20m,试求水泵的扬程及电机功率(水泵的效率η=55%)。

5-26某工地施工用水,由水泵把河水抽送至山上贮水池中,已知几何给水高度H g=85m,抽水量Q=12.5m3/h,压水管长l1=110m,吸水管长l2=10m,采用现有直径d=75mm铸铁管,试选用水泵。

附:国产2DA-8型离心水泵的性能曲线,图中系一级水泵的性能,级数(即叶轮数)增加时,流量不变,但扬程按比例增加。

返回顶部目录

流力实验实验十一孔口与管嘴出流实验

实验十一孔口与管嘴出流实验 一、实验目的 1.量测孔口与管嘴出流的流速系数、流量系数、侧收缩系数局部阻力系数及圆柱形管嘴内的局部真空度。 2.分析圆柱形管嘴的进口形状(圆角和直角)对出流能力的影响及孔口与管嘴过流能力不同的原因。 二、实验装置

图二孔口、管嘴结构剖面图三、实验原理

在恒压水头下发生自由出流时孔口管嘴的有关公式为: 实验测得上游恒压水位及各孔口、管嘴的过流量,利用以上5个公式,从而得出不同形状断面的孔口、管嘴在恒压、自由出流状态下的各水力系数。 根据理论分析,直角进口圆柱形外管嘴收缩断面处的真空度为 hv = Pv/ρg = 0.75H 本实验装置可实测出直角进口圆柱形外管嘴收缩断面处的真空度,打开直角进口管嘴射流,即可观测到,测管处水柱迅速降低,hv = 0.6 ~ 0.7H。。说明直角进口管嘴在进口处产生较大真空。但与经验值0.75H。相比,真空度偏小,其原因主要是有机玻璃材料的直角进口锐缘难以达到象金属材料那样的强度。 观察孔口及各管嘴出流水柱的流股形态: 打开各孔口管嘴,使其出流,观察各孔口及管嘴水流的流股形态,因各种孔口、管嘴的形状不同,过流阻力也不同,从而导致了各孔口管嘴出流的流股形态也不同:圆角管嘴出流水柱为光滑圆柱,直角管嘴为圆柱形麻花状扭变,圆锥管嘴为光滑圆柱,孔口则为具有侧收缩的光滑圆柱; 圆锥管嘴虽亦属直角进口,但因进口直径渐小,不易产生分离,其侧收缩断面面积接近出口面积(μ值以出口面积计),故侧收缩并不明显影响过流能力。另外,从流股形态看,横向脉动亦不明显,说明渐缩管对流态有稳定作用(工程或实验中,为了提高工作段水流的稳定性,往往在工作段前加一渐缩段,正是利用渐缩的这一水力特性)。能量损失小,因此其μ

孔口与管嘴出流实验

孔口与管嘴出流实验 一、实验目的要求 1.掌握孔口与管嘴出流的流速系数、流量系数、侧收缩系数、局部阻力系数的量测技能; 2.通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关水力要素对孔口出流能力的影响。 孔口管嘴实验装置简图 1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 孔口管嘴(1#喇叭进口管嘴2#直角进口管嘴3#锥形管嘴4#孔口) 8. 防溅旋板 9. 测量孔口射流收缩直径移动触头10. 上回水槽11. 标尺12. 测压管 二、实验原理

流量系数 收缩系数 流速系数 阻力系数 三、实验方法与步骤 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开调速器开关,使恒压水箱充水,至溢流后,再打开1#园角管嘴,待水面稳定后,测记水箱水面高程标尺读数H ,测定流量Q(要求重复测量三次,时间尽量长些,以求准确), 1 测量完毕,先旋转水箱内的旋板,将1#管嘴进口盖好,再塞紧橡皮塞。 及流量Q,观察和量测直角3.依照上法,打开2#管嘴,测记水箱水面高程标尺读数H 1 管嘴出流时的真空情况。 及Q。 4.依次打开3#园锥形管嘴,测定H 1 及Q,并按下述7(2)的方法测记孔口收缩5.打开4#孔口,观察孔口出流现象,测定H 1 断面的直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6.关闭调速器开关,清理实验桌面及场地。 7.注意事项: (1)实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开; (2)量测收缩断面直径,可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰; (3)进行以上实验时,注意观察各出流的流股形态,并作好记录。

流体力学_龙天渝_明渠流动

第六章明渠流动 一、复习思考题 二、习题 1、选择题 2、计算题 一、复习思考题 1.与有压管流相比较,明渠流动有哪些特点? 2.明渠均匀流的形成条件和特征是什么? 3.明渠均匀流的水深(正常水深)与哪些因素有关? 4.两渠道的流量相同,若下列参数不同(其它参数均相同):(1)粗糙系数n1与n2;(2)底坡i1与i2;试比较两渠道的正常水深和临界水深。 5.怎样从运动学的角度区分缓流与急流?有哪些判别方法? 6.缓流和急流同层流和紊流、渐变流和急变流在概念上有何区别?7.明渠水流从急流过渡到缓流或从缓流过渡到急流,发生什么局部水力现象? 8.缓流、急流和临界流是否一定和缓坡、急坡、临界坡渠道相对应?在什么条件下相对应? 9.各种底坡的渠道,N-N线(正常水深线)和c-c线(临界水深线)的相对位置如何? 10.怎样定性分析水面曲线的变化? 二、习题 1、选择题 6-1明渠均匀流可能发生在(): (a)平坡棱柱形渠道 (b)顺坡棱柱形渠道 (c)逆坡棱柱形渠道 (d)都有可能 6-2水力最优断面是(): (a)造价最低的渠道断面 (b)壁面粗糙系数最小的断面 (c)对一定的流量具有最大断面积的断面 (d)对一定的面积具有最小断湿周的断面 6-3水力最优矩形断面,宽深比是(): (a)0.5 (b)1.0

(c)2 (d)4 6-4明渠流动为急流时(): (a)Fr>1 (b)h>h c (c)v0 6-5明渠流动为缓流时(): (a)Fr<1 (b)hv c (d)<0 6-6明渠水流由急流过渡到缓流时发生(): (a)水跃 (b)水跌 (c)连续过渡 (d)都有可能 6-7在流量一定,渠道断面的形状、尺寸和壁面粗糙一定时,随底坡的增大,正常水深将(): (a)增大 (b)减小 (c)不变 (d)以上都有可能 6-8在流量一定,渠道断面的形状、尺寸一定时,随底坡的增大,临界水深将(): (a)增大 (b)减小 (c)不变 (d)以上都有可能 返回顶部目录 2、计算题 6-9梯形断面土渠,底宽b=3m,边坡系数m=2,水深h=1.2m,底坡i=0.0002,渠道收到中等养护,试求通过的流量。 6-10修建混凝土砌面(较粗糙)的矩形渠道,要求通过流量Q=9.7m3/s,底坡i=0.001,试按水力最优断面条件设计断面尺寸。

孔口与管嘴出流实验

实验八孔口与管嘴出流实验 一、实验目的 1、掌握测定薄壁孔口与管嘴出流的断面收缩系数ε、流量系数μ、流速系数φ、 局部阻力系数ξ的测量方法; 2、观察各种典型孔口及管嘴自由出流的水力现象,并通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对过流能力的影响,及相关水力要素对孔口出流能力的影响。 二、实验原理 在盛有液体的容器侧壁上开一小孔,液体质点在一定水头作用下,从各个方向流向孔口,并 以射流状态流出,由于水流惯性作用,在流经孔口后,断面发生收缩现象,在离孔口1/2直径的地方达到最小值,形成收缩断面。 若在孔口上装一段L=(3-4)d的短管,此时水流的出流现象便为典型的管嘴出流。当液流经过 管嘴时,在管嘴进口处,液流仍有收缩现象,使收缩断面的流速大于出口流速。因此管嘴收缩断面处的动水压强必小于大气压强,在管嘴内形成真空,其真空度约为h v=0.75H0,真空度的存在相当于提高了管嘴的作用水头。因此,管嘴的过水能力比相同尺寸和作用水头 的孔口大32%。 在恒定流条件下,应用能量方程可得孔口与管嘴自由出流方程: Q=φεA(2gH0)1/2 =μA(2gH0)1/2 流量系数μ=Q/[A(2gH0)1/2] 收缩系数ε=A c/A=d2c/d2 流速系数φ=V c/(2gH0)1/2=μ/ε=1/(1+ξ)1/2 阻力系数ξ=1/φ2-1 三、实验设备 图8-1 孔口与管嘴实验装置图 1、自循环供水器; 2、实验台; 3、可控硅无级调速器; 4、恒压水箱; 5、供水管; 6、回水管; 7、孔口管嘴: (A-A图内小字标号1#为喇叭进口管嘴,2#为直角进口管嘴,3#为锥形管嘴,4#为孔口);8、防溅旋板; 9、测量孔口射流收缩直径的移动触头;10、回水槽;11、标尺;12、测压管。

流体力学龙天渝蔡增基版课后答案第五章孔口管嘴管路流动

第五章孔口管嘴管路流动 1.图中穿孔板上各孔眼的大小形状相同,问每个孔口的出流量是否相同? 解:由0 2gH A Q μ= 与深度无关,所以每个孔口的出流量相同 2.有一水箱水面保持恒定(5m ),箱壁上开一孔口,孔口直径10。(1)如果箱壁厚度δ=3,求通过孔口的流速和流量。(2)如果箱壁厚度δ=40,求通过孔口的流速和流量。 解:(1)视作薄壁小孔口,97.0=?,62.0=μ s m gh v /6.92==? 得:s m vA Q /1082.434-?==μ (2)视作管嘴,82.0==μ? s m gh v /12.82==? 得:s m vA Q /1038.634-?==μ 3.一隔板将水箱分为A 、B 两格,隔板上有直径为d 1=40的薄壁孔口,如题5-3 图,B 箱底部有

一直径为d 2=30的圆柱形管嘴,管嘴长0.1m ,A 箱水深H 1=3m 恒定不变。 (1)分析出流恒定性条件(H 2不变的条件)。 (2)在恒定出流时,B 箱中水深H 2等于多少? (3)水箱流量Q 1为何值? 解:(1)当Q 12时 出流恒定 (2)因为Q 12,=-)(2211 1H H g A μ) 1.0(2222+H g A μ 查表得6.01=μ,82.02=μ,解得:m H 85.12= (3)解得=1Q 3.58×10-3 m 3 4.证明容器壁上装一段短管(如图所示),经过短管出流时的流量系数 μ与流速系数为∑++= =11ζλ μ?d l 证:∵∑++=g v d l g v g v H 2222 220λ ζ ∴02gH v ?= 其中= ?∑++11ζλ d l 5.某诱导器的静压箱上装有圆柱形管嘴,管径为4,长度l =100, λ=0.02,从管嘴入口到出口的局部阻力系数5.0=ζ∑,求管嘴的 流速系数和流量系数(见上题图)。 解:由题得707.011=++= =∑ζλμ?d l

流体力学孔口管嘴出流实验报告

《流体力学》实验报告 开课实验室: 2013年5月17日

三、使用仪器、材料 实验仪器:孔口与管嘴出流实验仪 仪器元件:自循环供水器、实验台、无级调速器、水箱、溢流板、稳水孔板、孔口、管嘴、挡水旋板、移动触头、上回水槽、标尺、测压管、接水盒、回水管等。 流体介质:水、气,实验装置如图: T汞厦 1! ! ! ! 1 n b a ■ 四、实验步骤 1、记录参数d1=1.20cm,d2=1.20cm,d3=1.20cm,d4=1.20cm;z仁z2=19cm,z3=z4=12cm 。 2、通电充水逐一打开1-4#孔口管嘴,待液面稳定后分别测记H Q 3 、用游标卡尺测读孔口收缩断面处直径d。 4、关闭电源,将仪器恢复到实验前状态。 五、实验过程原始记录(数据、图表、计算 1. 记录计算有关参数 圆角形管嘴d仁1.20cm,直角形嘴d2=1.20cm,圆锥形嘴d3=1.20cm ; 出口高程读数Z1=Z2=19cm,出口高程读数Z3=Z4=12cm, 孔口d4=1.20cm。 分类项目1圆角形管嘴2直角形管嘴3圆锥形管嘴4孔口水面读数H1/cm 42.10 42.45 42.39 42.10 体积V/cm3 2880 2940 3166 3114 2946 3046 2832 2742 时间t/s 12.95 13.00 15.60 15.00 11.30 11.20 16.70 15.8C 流量Q/(cm3s)222.39 226.15 202.95 207.60 260.71 217.96 169.58 173.5 平均流量Q /(cmSs)224.27 205.28 266.34 171.56 作用水头H o/cm 23.10 23.45 30.39 30.10 面积A/ cm2 1.13 1.13 1.13 1.13 流量系数u 0.933 0.847 0.966 0.625

新版流体力学孔口管嘴出流实验报告-新版.pdf

《流体力学》实验报告 开课实验室:2013年5 月17日学院城环学院年级、专业、班11环工2班姓名成绩 课程名称流体力学实验 实验项目 名称 孔口管嘴出流实验指导教师 教师 评语教师签名: 年月日 一、实验目的 1.理解射流与孔口出流的特点。 2.掌握管嘴出流的水力现象。 3.灵活应用静力学的基本知识,由测压管读数推求作用水头。 4.掌握孔口、管嘴出流的流量计算公式与流量系数的大小。 二、实验原理

三、使用仪器、材料 实验仪器:孔口与管嘴出流实验仪 仪器元件:自循环供水器、实验台、无级调速器、水箱、溢流板、稳水孔板、孔口、管嘴、挡水旋板、移动触头、上回水槽、标尺、测压管、接水盒、回水管等。 流体介质:水、气,实验装置如图: 四、实验步骤 1、记录参数d1=1.20cm,d2=1.20cm,d3=1.20cm,d4=1.20cm;z1=z2=19cm,z3=z4=12cm。 2、通电充水逐一打开1-4#孔口管嘴,待液面稳定后分别测记H、Q。 3、用游标卡尺测读孔口收缩断面处直径d。 4、关闭电源,将仪器恢复到实验前状态。

五、实验过程原始记录(数据、图表、计算 1.记录计算有关参数 圆角形管嘴d1=1.20cm,直角形嘴d2=1.20cm,圆锥形嘴d3=1.20cm; 出口高程读数Z1=Z2=19cm,出口高程读数Z3=Z4=12cm, 孔口d4=1.20cm。 2.实验记录与计算 分类项目1圆角形管嘴2直角形管嘴3圆锥形管嘴4孔口水面读数H1/cm 42.10 42.45 42.39 42.10 体积V/cm32880 2940 3166 3114 2946 3046 2832 2742 时间t/s 12.95 13.00 15.60 15.00 11.30 11.20 16.70 15.80 流量Q/(cm3/s)222.39 226.15 202.95 207.60 260.71 217.96 169.58 173.54 平均流量Q‘/(cm3/s)224.27 205.28 266.34 171.56 作用水头H o/cm 23.10 23.45 30.39 30.10 面积A/ cm2 1.13 1.13 1.13 1.13 流量系数u 0.933 0.847 0.966 0.625 测管读数H2/cm / 1.82 // 真空度H v/cm /17.18 // 收缩直径d c/cm ///0.972 收缩断面A c/cm2///0.742 收缩系数 1.0 1.0 1.0 0.66 流速系数0.93 0.85 0.97 0.95 阻力系数0.16 0.38 0.06 0.11 流股形态光滑水柱、无收 缩不光滑、紊乱水 柱 光滑水柱扭变光滑水柱、 侧收缩

孔口管嘴管路流动..

孔口管嘴管路流动 1.图中穿孔板上各孔眼的大小形状相同,问每个孔口的出流量是否相同? 解:由0 2gH A Q μ= 与深度无关,所以每个孔口的出流量相同 2.有一水箱水面保持恒定(5m ),箱壁上开一孔口,孔口直径d=10mm 。(1)如果箱壁厚度δ=3mm ,求通过孔口的流速和流量。(2)如果箱壁厚度δ=40mm ,求通过孔口的流速和流量。 解:(1)视作薄壁小孔口,97.0=?,62.0=μ s m gh v /6.92==? 得:s m vA Q /1082.434-?==μ (2)视作管嘴,82.0==μ? s m gh v /12.82==? 得:s m vA Q /1038.634-?==μ

3.一隔板将水箱分为A 、B 两格,隔板上有直径为d 1=40mm 的薄壁孔口,如题5-3 图,B 箱底部有一直径为d 2=30mm 的圆柱形管嘴,管嘴长l =0.1m ,A 箱水深H 1=3m 恒定不变。 (1)分析出流恒定性条件(H 2不变的条件)。 (2)在恒定出流时,B 箱中水深H 2等于多少? (3)水箱流量Q 1为何值? 解:(1)当Q 1=Q 2时 出流恒定 (2)因为Q 1=Q 2,=-)(2211 1H H g A μ) 1.0(2222+H g A μ 查表得6.01=μ,82.02=μ,解得:m H 85.12= (3)解得=1Q 3.58×10-3 m 3/s 4.证明容器壁上装一段短管(如图所示),经过短管出流时的流量系数μ与流速系数为 ∑++= =11ζλ μ?d l 证:∵∑++=g v d l g v g v H 2222 220λ ζ ∴0 2gH v ?= 其中= ?∑++11 ζλd l 5.某诱导器的静压箱上装有圆柱形管嘴,管径为4mm ,长度 l =100mm ,λ=0.02,从管嘴入口到出口的局部阻力系数5.0=ζ∑, 求管嘴的流速系数和流量系数(见上题图)。

流体力学龙天渝蔡增基版课后答案第五章孔口管嘴管路流动

第五章孔口管嘴管路流动 1.图中穿孔板上各孔眼的大小形状相同,问每个孔口的出流量是否相同? 解:由02gH A Q μ= 与深度无关,所以每个孔口的出流量相同 2.有一水箱水面保持恒定(5m ),箱壁上开一孔口,孔口直径d=10mm 。(1)如果箱壁厚度δ=3mm ,求通过孔口的流速和流量。(2)如果箱壁厚度δ=40mm ,求通过孔口的流速和流量。 解:(1)视作薄壁小孔口,97.0=?,62.0=μ s m gh v /6.92==? 得:s m vA Q /1082.434-?==μ (2)视作管嘴,82.0==μ? s m gh v /12.82==? 得:s m vA Q /1038.634-?==μ 3.一隔板将水箱分为A 、B 两格,隔板上有直径为d 1=40mm 的薄壁孔口,如题5-3 图,B 箱底部有一直径为d 2=30mm 的圆柱形管嘴,管嘴长l =0.1m ,A 箱水深H 1=3m 恒定不变。 (1)分析出流恒定性条件(H 2不变的条件)。 (2)在恒定出流时,B 箱中水深H 2等于多少? (3)水箱流量Q 1为何值? 解:(1)当Q 1=Q 2时 出流恒定 (2)因为Q 1=Q 2,=-)(22111H H g A μ) 1.0(2222+H g A μ 查表得6.01=μ,82.02=μ,解得:m H 85.12= (3)解得=1Q 3.58×10-3 m 3/s 4.证明容器壁上装一段短管(如图所示),经过短管出 流时的流量系数μ与流速系数为

∑++==11ζλμ?d l 证:∵∑++=g v d l g v g v H 2222 220λζ ∴02gH v ?= 其中=?∑++11 ζλd l 5.某诱导器的静压箱上装有圆柱形管嘴,管径为4mm ,长度l =100mm ,λ=0.02,从管嘴入口到出口的局部阻力系数5.0=ζ∑,求管嘴的流速系数和流量系数(见上题图)。 解:由题得707.011 =++==∑ζλμ?d l 6.如上题,当管嘴外空气压强为当地大气压强时,要求管嘴出流流速为30m/s 。此时静压箱内应保持多少压强?空气密度为ρ=1.2kg/m 3。 解:ρ?p v ?=2,得2/08.1m kN p =? 7.某恒温室采用多孔板送风,风道中的静压为200Pa ,孔口直径为20mm ,空气温度为20℃,μ=0.8。要求通过风量为1m 3/s 。问需要布置多少孔口? 解:Q =ρ ??p A n 2,得4.218=n ,所以需要219个 8.水从A 水箱通过直径为10cm 的孔口流入B 水箱,流量系数为0.62。设上游水箱的水面高程1H =3m 保持不变。 (1)B 水箱中无水时,求通过孔口的流量。 (2)B 水箱水面高程2H =2m 时,求通过孔口的流量。 (3)A 箱水面压力为2000Pa ,1H =3m 时,而B 水箱水面 压力为0,2H =2m 时,求通过孔口的流量。 解:(1)属孔口自由出流 02gH A Q μ=,10H H = 得:s m Q /037.03= (2)属孔口淹没出流, 02gH A Q μ=,210H H H -=

孔口与管嘴出流实验

孔口与管嘴出流实验 Revised as of 23 November 2020

孔口与管嘴出流实验 一、实验目的要求 1.掌握孔口与管嘴出流的流速系数、流量系数、侧收缩系数、局部阻力系数的量测技能; 2.通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关 水力要素对孔口出流能力的影响。 孔口管嘴实验装置简图

1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 孔口管嘴(1#喇叭进口管嘴 2#直角进口管嘴 3#锥形管嘴 4#孔口) 8. 防溅旋板 9. 测量孔口射流收缩直径移动触头 10. 上回水槽 11. 标尺 12. 测压管 二、 流量系数 收缩系数 流速系数

阻力系数 三、实验方法与步骤 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开调速器开关,使恒压水箱充水,至溢流后,再打开1#园角管嘴,待水面稳定 ,测定流量Q(要求重复测量三次,时间尽量长些,以求后,测记水箱水面高程标尺读数H 1 准确),测量完毕,先旋转水箱内的旋板,将1#管嘴进口盖好,再塞紧橡皮塞。 及流量Q,观察和量测直角3.依照上法,打开2#管嘴,测记水箱水面高程标尺读数H 1 管嘴出流时的真空情况。 及Q。 4.依次打开3#园锥形管嘴,测定H 1 及Q,并按下述7(2)的方法测记孔口收缩5.打开4#孔口,观察孔口出流现象,测定H 1 断面的直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6.关闭调速器开关,清理实验桌面及场地。 7.注意事项: (1)实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开; (2)量测收缩断面直径,可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰; (3)进行以上实验时,注意观察各出流的流股形态,并作好记录。 四、 .结合观测不同类型管嘴与孔口出流的流股特征,分析流量系数不同的原因及增大过流能力的途径。 参考答案: 据实验报告解答的实际实验结果可知,流股形态及流量系数如下: 园角管嘴出流的流股呈光滑园柱形,u = 0. 935;

【精品】流力实验实验十一孔口与管嘴出流实验

实验十一孔口与管嘴出流实验 实验目的 1.量测孔口与管嘴出流的流速系数、流量系数、侧收缩系数局部阻力系数及圆柱形管嘴内的局部真空度。 二、2.分析圆柱形管嘴的进口形状(圆角和直角)对出流能力的影响及孔口与管嘴过流能力不同的原因。 三、实验装置

三、图二孔口、管嘴结构剖面图 四、实验原理 在恒压水头下发生自由出流时孔口管嘴的有关公式为: 实验测得上游恒压水位及各孔口、管嘴的过流量,利用以上5个公式,从而得出不同形状断面的孔口、管嘴在恒压、自由出流状态下的各水力系数。 根据理论分析,直角进口圆柱形外管嘴收缩断面处的真空度为 hv=Pv/ρg=0。75H 本实验装置可实测出直角进口圆柱形外管嘴收缩断面处的真空度,打开直角进口管嘴射流,即可观测到,测管处水柱迅速降低,hv=0。6~0.7H。。说明直角进口管嘴在进口处产生较大真空.但与经验值0。75H。相比,真空度偏小,其原因主要是有机玻璃材料的直角进口锐缘难以达到象金属材料那样的强度。

观察孔口及各管嘴出流水柱的流股形态: 打开各孔口管嘴,使其出流,观察各孔口及管嘴水流的流股形态,因各种孔口、管嘴的形状不同,过流阻力也不同,从而导致了各孔口管嘴出流的流股形态也不同:圆角管嘴出流水柱为光滑圆柱,直角管嘴为圆柱形麻花状扭变,圆锥管嘴为光滑圆柱,孔口则为具有侧收缩的光滑圆柱; 圆锥管嘴虽亦属直角进口,但因进口直径渐小,不易产生分离,其侧收缩断面 面积接近出口面积(μ值以出口面积计),故侧收缩并不明显影响过流能力。 另外,从流股形态看,横向脉动亦不明显,说明渐缩管对流态有稳定作用(工程 或实验中,为了提高工作段水流的稳定性,往往在工作段前加一渐缩段,正是 利用渐缩的这一水力特性)。能量损失小,因此其μ值与圆角管嘴相近. 观察孔口出流在d/H〉0.1时与在d/H〈0。1时侧收缩情况: 开大流量,使上游水位升高,使d/H〈0。1,测量相应状况下收缩断面直径dc; 再关小流量,上游水头降低,使d/H〉0。1,测量此时的收缩断面直径d c’的值,可发现当d/H〉0。1时d c’增大,并接近于孔径d,这叫作不完全收缩,此 时由实验测知,μ也增大,可达0。7左右. 四、实验步骤与方法 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开水泵开关,使恒压水箱充水,至溢流后,再打开圆柱形管嘴(先旋转旋板挡住管嘴,然后拔掉橡皮塞,最后旋开旋板),待水面稳定后,测定水箱水面高程标尺读数,用体积 法或数显流量计(两种方法皆可)测定流量,测量完毕,先旋转水箱内的旋板,将管嘴进 口盖好,再塞紧橡皮塞。 3。打开圆锥形管嘴,测记恒压水箱水面高程标尺读数及流量,观察和量测圆柱形管嘴出流 时的真空情况。 4。打开孔口,观察孔口出流现象,测量水面高程标尺读数及孔口出流流量,测记孔口收 缩断面的直径(重复测量3次)。改变孔口出流的作用水头(可减少进口流量),观察孔 口收缩断面的直径随水头变化的情况.

孔口管嘴出流试验

实验八 孔口与管嘴出流实验 一、 实验目的 1、掌握测定薄壁孔口与管嘴出流的断面收缩系数ε、流量系数μ、流速系数φ、局部阻力系数ξ的测量方法; 2、观察各种典型孔口及管嘴自由出流的水力现象,并通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对过流能力的影响,及相关水力要素对孔口出流能力的影响。 二、实验设备 图8-1 孔口与管嘴实验装置图 1、 自循环供水器; 2、实验台; 3、可控硅无级调速器; 4、恒压水箱; 5、供水管; 6、回水管; 7、孔口管嘴: 8、防溅旋板; 9、测量孔口射流收缩直径的移动触头; 10、回水槽;11、标尺;12、测压管。 (A-A 图内小字标号1#为喇叭进口管嘴,2#为直角进口管嘴,3#为锥形管嘴,4#为孔口); 三、实验原理 在盛有液体的容器侧壁上开一小孔,液体质点在一定水头作用下,从各个方向流向孔口,并以射流状态流出,由于水流惯性作用,在流经孔口后,断面发生收缩现象,在离孔口1/2直径的地方达到最小值,形成收缩断面。 若在孔口上装一段L=(3-4)d 的短管,此时水流的出流现象便为典型的管嘴出流。当液流经过 管嘴时,在管嘴进口处,液流仍有收缩现象,使收缩断面的流速大于出口流速。因此管嘴收缩断面处的动水压强必小于大气压强,在管嘴内形成真空,其真空度约为h v =0.75H 0,真空度的存在相当于提高了管嘴的作用水头。因此,管嘴的过水能力比相同尺寸和作用水头 的孔口大32%。 在恒定流条件下,应用能量方程可得孔口与管嘴自由出流方程: 0022gH A gH A Q μ?ε==

流量系数 02gH A Q =μ 收缩系数 22d d A A c c ==ε 流速系数 ξεμ?+===1120 gH V c 阻力系数 112-=? ξ 四、实验步骤 1、记录实验常数,各孔口管嘴用橡皮塞塞紧。 2、打开调速器开关,使恒压水箱充水,至溢流后,再打开1#圆角管嘴,待水面稳定后,测定水箱水面高程标尺读数H1,用体积法(或重量法)测定流量Q(要求重复测量三次,时间尽量长些,要在15秒以上,以求准确),测量完毕,先旋转水箱内的旋板,将1#管嘴进口 盖好,再塞紧橡皮塞。 3、依照上法,打开2#管嘴,测记水箱水面高程标尺读数H1及流量Q ,观察和量测直角管嘴出流时的真空情况。 4、依次打开3#圆锥形管嘴,测量H1及Q 。 5、打开4#孔口。观察孔口出流现象,测量H1及Q ,并按下述注意事项b 的方法测记孔口收缩断面的直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6、关闭开关3,清理实验桌面及场地。 五、注意事项 1、实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开。 2、量测收缩断面直径:可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将 其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰。 3、以上实验时,注意观察各出流的流股形态,并作好记录。 六、实验成果及要求 1.有关常数: 直角管嘴d1= cm, 喇叭进口管嘴d2= cm,出口高程读数Z1=Z2= cm ; 锥形管嘴d3= cm , 孔口d4= cm,出口高程读数Z3=Z4= cm 。 2.整理记录及计算表格(附表)。 七、思考题 1、结合观测不同类型管嘴与孔口出流的流股特征,分析流量系数不同的原因及增大过流能力的途径。 2、观察d/H >0.1时,孔口出流的侧收缩率较d/H <0.1时有何不同? 3、为什么要求圆柱形外管嘴长度L=(3~4)d ,当圆柱形外管嘴长度大于或小于(3~4)d 时将会出现什么情况?

孔口与管嘴出流实验

孔口与管嘴出流实验 摘要: 本实验通过通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关水力要素对孔口出流能力的影响,并且掌握孔口与管嘴出流的流速系数?、流量系数μ、侧收缩系数ε、局部阻力系数ζ的量测技能。 前言: 管嘴和孔口的出流流体的形态,一直引起有关研究者的兴趣,文献[1~5]综述了这方面的工作。早在17世纪就有人开始研究,包括Bernouli,Reynolds,Barres等等许多人均在此领域有所建树,涉及流体形态特征、孔口与出流形态的影响,出流形态的显示方法等。到本世纪90年代,李文平等人[6]考察了垂直矩形薄壁孔射流轮廓的变化,指出射流的断面形状在流体的不同位置呈现不同的形态。射流轮廓由孔口处的规则矩形,随出流距离的增加发生有规律的收缩,到一定程度转换为一个近似的十字架形态,其长短轴分别为垂直取向和水平取向。在研究范围内,除了非完全收缩区外其它水面线均与孔口宽高比、模型尺寸无关。Hager[1]用摄像法记录扁矩形孔射流的出流形态,发现矩形长边垂直设置的孔口出流,流体上缘首先收缩,向侧面扩展,最后包覆流体的下部,呈现美丽的伞形;而水平设置的孔口出流的边缘,随出流距离的增加,持续发生横向收缩,其边缘增厚。槐文信等人[7]研究了双孔平面射流的吸附现象。根据两股流体间存在的相互吸附效应(Coanda效应),两股流体之间被卷吸的流体得不到补充或补充不足,则相互吸引汇成一股射流。研究指出,在两孔平面射流之间的补充流体小于其卷吸量,其内缘因此效应发生相互吸附,从而汇成一股射流。 实验装置 本实验装置如图9.1所示。 图9—1孔口管嘴实验装置图 1.自循环供水器; 2.实验台; 3.可控硅无级调速器;4恒压水箱;5. 溢流板;6.稳水孔板;7.孔口管嘴;8.防溅旋板;9.测量孔口射流收缩直 径的移动触头;10.上回水槽;11.标尺;12.测压管;

9-孔口与管嘴出流实验

9-孔口与管嘴出流实验

孔口与管嘴出流实验 一、实验目的要求 1.掌握孔口与管嘴出流的流速系数、流量系数、侧收缩系数、局部阻力系数的量测技能; 2.通过对不同管嘴与孔口的流量系数测量分析,了解进口形状对出流能力的影响及相关水力要素对孔口出流能力的影响。 孔口管嘴实验装置简图

1. 自循环供水器 2. 实验台 3. 可控硅无级调速器 4. 恒压水箱 5. 溢流板 6. 稳水孔板 7. 孔口管嘴(1#喇叭进口管嘴2#直角进口管嘴3#锥形管嘴4#孔口) 8. 防溅旋板 9. 测量孔口射流收缩直径移动触头10. 上回水槽11. 标尺12. 测压管二、实验原理 流量系数

收缩系数 流速系数 阻力系数 三、实验方法与步骤 1.记录实验常数,各孔口管嘴用橡皮塞塞紧。 2.打开调速器开关,使恒压水箱充水,至溢流后,再打开1#园角管嘴,待水面稳定后,测 ,测定流量Q(要求记水箱水面高程标尺读数H 1 重复测量三次,时间尽量长些,以求准确),测量完毕,先旋转水箱内的旋板,将1#管嘴进口盖好,再塞紧橡皮塞。 3.依照上法,打开2#管嘴,测记水箱水面 及流量Q,观察和量测直角管嘴高程标尺读数H 1 出流时的真空情况。 4.依次打开3#园锥形管嘴,测定H1及Q。 5.打开4#孔口,观察孔口出流现象,测定及Q,并按下述7(2)的方法测记孔口收缩断面的H 1

直径(重复测量三次)。然后改变孔口出流的作用水头(可减少进口流量),观察孔口收缩断面直径随水头变化的情况。 6.关闭调速器开关,清理实验桌面及场地。 7.注意事项: (1)实验次序先管嘴后孔口,每次塞橡皮塞前,先用旋板将进口盖掉,以免水花溅开; (2)量测收缩断面直径,可用孔口两边的移动触头。首先松动螺丝,先移动一边触头将其与水股切向接触,并旋紧螺丝,再移动另一边触头,使之切向接触,并旋紧螺丝,再将旋板开关顺时针方向关上孔口,用卡尺测量触头间距,即为射流直径。实验时将旋板置于不工作的孔口(或管嘴)上,尽量减少旋板对工作孔口、管嘴的干扰; (3)进行以上实验时,注意观察各出流的流股形态,并作好记录。 四、实验分析与讨论 问题一.结合观测不同类型管嘴与孔口出流的流股特征,分析流量系数不同的原因及增大过流

相关主题
文本预览
相关文档 最新文档