当前位置:文档之家› Derivation of magnetic Coulomb's law for thin, semi-infinite solenoids

Derivation of magnetic Coulomb's law for thin, semi-infinite solenoids

Derivation of magnetic Coulomb's law for thin, semi-infinite solenoids
Derivation of magnetic Coulomb's law for thin, semi-infinite solenoids

a r X i v :p h y s i c s /0611099v 1 [p h y s i c s .c l a s s -p h ] 10 N o v 2006

Derivation of magnetic Coulomb’s law for thin,semi-in?nite solenoids

Masao Kitano ?

Department of Electronic Science and Engineering,Kyoto University,Katsura,Kyoto 615-8510,Japan and

CREST,Japan Science and Technology Agency,Tokyo 103-0028,Japan

(Dated:February 2,2008)

It is shown that the magnetic force between thin,semi-in?nite solenoids obeys a Coulomb-type law,which corresponds to that for magnetic monopoles placed at the end points of each solenoid.We derive the magnetic Coulomb law from the basic principles of electromagnetism,namely from the Maxwell equations and the Lorentz force.

I.

INTRODUCTION

A permanent magnet is an ensemble of microscopic magnetic moments which are oriented along the magne-tization direction.A magnetic moment can be modeled as a dipole,i.e.,as a slightly displaced pair of magnetic monopoles with opposite polarities.It is analogous to the electric dipole.Another way of modeling is to consider each magnetic moment as a circulating current loop.In terms of far ?elds,the dipole model and the loop-current model give exactly the same magnetic ?eld.The lat-ter model is more natural because there are no magnetic monopoles found so far and microscopic magnetic mo-ments are always associated with kinetic rotations such as orbital motions or spins of electrons.It also provides correct symmetries with respect to the time and space inversions.

Normally we are interested in macroscopic quantities,which are obtained by coarse-graining of microscopic ?elds and source distributions 1.When we coarse-grain the oriented ensemble of microscopic magnetic dipoles in a bar magnet,we have a magnetic north pole at one end and a south pole at the other end as shown in Fig.1(a).Contributions of the magnetic charges inside are canceled out through the spatial average.

On the other hand,when we coarse-grain the micro-scopic loop currents,we have macroscopic current which circulates around the bar along the surface as shown in Fig.1(c).By mimicking the macroscopic current distri-bution by a coil,we have an electromagnet that is equiv-alent to the permanent magnet.In this model,the poles,or the ends of bar magnet play no special roles.Again the current model is much more reasonable because of the similarity with the equivalent electromagnet.

The use of the notion of magnetic pole should be avoided as far as possible 2because of its absence in the framework of electromagnetic theory or in the Maxwell equations.Practically,however,magnetic poles are very convenient to describe the forces between permanent magnets or magnetized objects.The poles are consid-ered as an ensemble of monopoles and the forces be-tween poles are calculated with the magnetic Coulomb law,which is usually introduced just as an analog of the electric Coulomb law or as an empirical rule 5.For logical consistency,we have to derive the magnetic Coulomb law

from Maxwell’s equations and the Lorentz force,none of which contain the notion of magnetic monopoles.

The derivation of magnetic Coulomb’s law was given more than forty years ago by Chen 3and Nadeau 4.In this paper a more detailed analysis based directly on the fundamental laws will be provided.The ?eld singularity for in?nitesimal loop currents,which plays crucial roles but was not mentioned in the previous works,will be treated rigorously.

II.

CURRENT DENSITY FOR A THIN

SOLENOID

For brevity,we introduce a scalar function G 0and a vector function G 1of position r =(x,y,z ):

G 0(r )=

1

4π|r |3

.

(1)

We note that ?G 0=?G 1and ?·G 1=δ3(r )hold,where δ3(r )=δ(x )δ(y )δ(z )is the three dimensional delta function.With these,the scalar potential for a point charge q placed at the origin is φ(r )=(q/ε0)G 0(r ),and the force acting on a charge q 1at r 1from another charge q 2at r 2is F 1←2=(q 1q 2/ε0)G 1(r 1?r 2).The Biot-Savard law can be expressed as d H =d C ×G 1(r ),

where

The dimension of g a,

g a=μ0C a D~H

m

A m=V s=Wb(11)

correctly corresponds to that for the magnetic charge. The magnetic?ux g a con?ned along the solenoid fans out isotropically from the end point r1.As seen in Fig.2,a thin,semi-in?nite solenoid can be viewed as a magnetic monopole located at the end.

IV.MAGNETIC FORCE ACTING ON A

SEMI-INFINITE SOLENOID

From Eq.(2),we see that the Lorentz force acting on a tiny loop current m placed at r in a magnetic?eld B is

F m= d v′J m(r′)×B(r+r′)

=(m×?)×B(r).(12) Using Eq.(4)and the conditions for magnetic?eld:?·

B=0(divergence-free)and?×(μ?1

0B)=0(rotation-

free),the expression can be modi?ed as

F m=(m·?)B(r),(13) which is suitable for line-integral.Equation(12)can also be modi?ed as F m=?(m·B)with the divergence-free condition only.The rotation-free condition is satis?ed only when the right hand side of the Maxwell-Amp`e re equation,?×H=J+?D/?t,vanishes.

Thus the magnetic force acting on a line element d l b at r b is

d F=(C b d l b·?b)B(r b),(14) wher

e C b=κb m and?b=?/?r b.Integration along a curve L b yields the total force acting on the solenoid;

F= L b d F=C b L b(d l b·?b)B

=C b[B(r3)?B(r4)],(15) where r4and r3are the initial and end points of L b, respectively.For semi-in?nite cases[B(r4=∞)=0], we have

F=C b B(r3)=g b H(r3),(16)

with H=μ?10B.This is equal to the force for a point magnetic charge g b=μ0C b placed at r3.

It is surprising that the sum of the forces acting on each part of the solenoid can be represented in terms only of the magnetic?eld B(r3)at the end point r3.This is because the partial force is proportional to the(vector) gradient of the magnetic?eld.

V.COULOMB’S LA W BETWEEN TWO THIN, SEMI-INFINITE SOLENOIDS

Now we can calculate the force(16)on solenoid b by the?eld(9)generated by solenoid a;

F b←a=C b B(r3)=C bμ0H(r3)

=μ0C b C a G1(r3?r1).(17) This equation corresponds to Coulomb’s law for magnetic charges g a at r1and g b at r3:

F3←1=

g a g b

4πμ0

r3?r1

4

where we have utilized?′×r′=0with?′=?/?r′.. Finally,we have

N m=N(0)m+N(1)m=(m·?)[r×B(r)].(22) The torque on a line element d l b at r b is

d N=C b(d l b·?b)[r b×B(r b)],(23) and th

e integration along the semi-in?nite solenoid L b terminated at r3yields

N= L b d N=C b L b(d l b·?b)[r b×B(r b)] =C b r3×B(r3)=r3×F,(24) where F is the force(16)on the solenoid.Surprisingly, the torque exerted on a thin,semi-in?nite solenoid coin-cides with that for a point magnetic charge g b=μ0C b place at r3.

VII.DISCUSSION

In this paper we only deals with thin solenoids. Solenoids with?nite cross-section can be represented as a bundle of thin solenoids.Similarly a permanent magnet can naturally be modeled as a bundle of thin solenoids. The degree of magnetization of magnets or magnetized objects is characterized by the quantity called macro-scopic magnetization,M D~A/m,which is de?ned as volume density of magnetic moments,m D~A m2.The magnetization can also be represented as area-density of thin solenoids.We remember that a thin solenoid is char-acterized by the current moment,C D~A m.Bundlingνsolenoids per unit area(D~/m2),we can create the mag-netization M=νC.

In conclusion,we have shown that the force between thin,semi-in?nite solenoids obeys the Coulomb law that is for the equivalent magnetic point charges placed at each end of solenoid.We have also shown that the torque exerted on the solenoid in a magnetic?eld coincides with that for a corresponding magnetic point charge.It is convenient to introduce magnetic charges or poles be-cause the magnetic Coulomb law can easily be applied for forces between them.But we should remember that without the justi?cation given in this paper it is just a rough and ready method.

Acknowledgments

This work is supported by the21st Century COE program No.14213201.

APPENDIX:CURRENT DENSITY AND FIELD OF A TINY CURRENT LOOP

The current density(2)for a tiny current loop can be derived as follows.We consider a parallelogram de?ned by a pair of small vectors,a and b.The center is located at the origin and current I is circulating along the edge.

The current distribution on the four segments can be approximately represented as

J I(a×b)(r)=I aδ3(?b/2)+bδ3(a/2)

?aδ3(b/2)?bδ3(?a/2) (A.1) In the limit of|a|,|b|→0with m=I(a×b)being kept constant,it approaches

J m(r)=I ?a(b·?)δ3(r)+b(a·?)δ3(r)

=[?I(a×b)×?]δ3(r)

=(?m×?)δ3(r),(A.2) and Eq.(2)is obtained.The derivative of the delta func-tion?δ3(r)serves as a di?erential operator when it is

integrated together with other functions as in1D cases: d xf(x)(d/d x)δ(x)=?(d f/d x)(0).For example,the magnetic force on m can be calculated as follows;

F m= d v(?m×?)δ3(r)×B(r)

= d v ??δ3(m·B)+m(?δ3·B)

=[?(m·B)?m(?·B)]

r=0

=[(m×?)×B](0).(A.3) Next we derive Eq.(6)from Maxwell’s equations.The Amp`e re law for an in?nitesimal loop current,?×H= J m can be written as

?× H(r)?mδ3(r) =0.(A.4) We know that a rotation-free?eld can be represented as a gradient of some scalar?eldφm(r)as

H(r)?mδ3(r)=??φm(r).(A.5) Taking the divergence of each side,we have

(?·m)δ3(r)=?2φm(r),(A.6) where?·(μ0H)=0has been https://www.doczj.com/doc/b914543792.html,paring it with ?2(?·m)G0(r)=?(?·m)δ3(r),(A.7)

which is obtained from?2G0(r)=?δ3(r),we?nd the solution of(A.6)to be

φm(r)=?(?·m)G0(r).(A.8) With Eq.(A.5)and?G0=?G1we have Eq.(6): H(r)=?(m·?)G1(r)+mδ3(r),(A.9) which can be con?rmed to satisfy the Maxwell equations.

5

?Electronic address:kitano@kuee.kyoto-u.ac.jp

1J.D.Jackson,Classical Electrodynamics(Addison Wesley and Sons,New York,1998),3rd ed.

2F.W.Warburton,“The magnetic pole,A useless concept,”Am.Phys.Teacher2,1(1934).

3H.S.C.Chen,“Note on the magnetic pole,”Am.J.Phys. 33,563(1965).

4G.Nadeau:“Comment on Chen’s note on the magnetic pole,”Am.J.Phys.34,60(1966).

5J.Goldemberg,“An experimental veri?cation of the Coulomb law for magnetic poles,”Am.J.Phys.20,591–592

(1952).

6In practice,a solenoid is made as a helix of a conducting wire not as a stack of closed wire loops.The di?erence in current distribution,which can be represented as an addi-tional current along the solenoid,can be made arbitrarily small by reducing the wire current and increasing the num-ber of winding correspondingly.

7The relation A D~B means A and B are dimensionally equivalent and is normally written as[A]=[B].

小学奥数之容斥原理

五.容斥原理问题 1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( ) A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种 2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是 解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+ a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。 故只解出第二题的学生人数a2=6人。 3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。 假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)

公路电动栏杆机控制模块维修简述

公路电动栏杆机控制模块维修简述 目前,公路自动栏杆机控制模块主要是Magnetic的自动栏杆机控制模块,这种控制模块采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足公路环境下的应用。 下面简单介绍栏杆机控制模块面板的功能与接线,栏杆机控制模块中的数字代表意义和接法如下: “1”表示接电源L(火线)220V AC; “2”表示接电源N(零线); “3”表示电源线地线; “4”表示电机接地线PE; “5”表示电机公共绕组U,接电机公共绕组U; “6”表示电机落杆绕组V,接电机绕组V; “7”表示电机升杆绕组W,接电机绕组W; “8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联); “10、11”表示电机运行电容(4uF/AC450V); “17”表示电源输出24VDC接地线; “18”表示电源输出 24VDC正极; “19”表示控制信号共用线(+24VDC); “20”表示开脉冲,和控制信号共用线(+24VDC)短接有效; “21”表示环路感应器2输入(用于车辆到时自动抬杆,用于6、8模式); “22”表示关脉冲,和控制信号共用线(+24VDC)短接有效; “23”表示抬杆、落杆限位开关输入信号; “24”表示安全开关,接常闭触点;断开时,系统不会执行落杆动作; “25”表示控制信号共用线(+24VDC),同“19”功能一样; “26”表示档杆状态输出公共触点; “27、28”完全等同于“20、22”,常开触点(300ms); “29”表示抬杆状态输出触点; “30”表示落杆状态输出触点; “31、32”表示报警输出,为常开触点。 栏杆机控制模块长期处于工作状态,每天控制栏杆上下达几千次以上,是栏杆机易损元件之一,下面简单介绍几点常见的故障和维修方法,供大家参考: 首先,在维修栏杆机控制模块之前,务必将故障设备的灰尘清除干净,养成这个习惯可以让你检查和维修故障更快速、准确。 故障一控制模块无电现象 控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件(如变压器、电容、电阻等)有无出现变形、断裂、松动、磨损、冒烟、腐蚀等情况。 其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动,以确定设备运行状况以及发生故障的性质和程度。 如某站01#车道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。在更换前

2015国家公务员考试行测:数学运算-容斥原理和抽屉原理

【导读】国家公务员考试网为您提供:2015国家公务员考试行测:数学运算-容斥原理和抽屉原理,欢迎加入国家公务员考试QQ群:242808680。更多信息请关注安徽人事考试网https://www.doczj.com/doc/b914543792.html, 【推荐阅读】 2015国家公务员笔试辅导课程【面授+网校】 容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠 的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数 目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是 A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、 数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一 门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现 两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1 次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩ C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯 常用功率铁氧体材料牌号技术参数 EI型磁芯规格及参数

PQ型磁芯规格及参数 EE型磁芯规格及参数 EC、EER型磁芯规格及参数

1,磁芯向有效截面积:Ae 2,磁芯向有效磁路长度:le 3,相对幅值磁导率:μa 4,饱和磁通密度:Bs 1磁芯损耗:正弦波与矩形波比较 一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。材料中存在高的涡流损耗(如大 一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。但在元件存在铜损的情况下,这是不正确的。在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。举个例子,在 20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激

励磁芯损耗的两倍。例如,对于许多开关电源来说,具有矩形波激励磁芯的 5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。 2Q值曲线 所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。这些测试参数通常是用置于磁芯上的最适用的绕组完成的。对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。 对于钼坡莫合金磁粉芯同样是正确的。用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。3电感量、AL系数和磁导率 在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。这些AL的极限值建立在初始磁导率范围或者低磁通密度的基础上。对于测试AL系数,这是很重要的,测试AL系数是在低磁通密度下实施的。 某些质量管理引入检验部门,希望由他们用几匝绕组检查磁芯,并用不能控制频率或激励电压的数字电桥测试磁芯。几乎毫不例外,以几百高斯、若干

栏杆机说明书

MAGSTOP MIB 2O/3O/40 栏杆机 及MAGTRONIC MLC 控制器 操作指导 @1999年马格内梯克控制系统(上海)有限公司 地址:上海浦东新区宁桥路999号二幢底西层邮编:201206 电话:(21)58341717 传真:(21)58991233

目录 1. 系统概述 2 1.1 停车场系统的布局 2 1. 2 系统组件概述 2 2 安全 3 2.1一般安全信息3 2.2 建议用途 3 2.3 本手册中使用的安全标志3 2.4 操作安全 4 2.5 技术发展 4 2.6 质量保证 4 3. 装配及安装 5 3.1 构筑安装地基 5 3.2 安装感应线圈 6 3.3 安装机箱 8 3.4 安装栏杆机臂 8 3.5 基本机械结构 9 3.6 设置及校准弹簧 9 3.7 校准栏杆机臂位置 10 4. 电源连接 10 5. MLC控制器 11 5.1 命令发生器:在不同操作模式下的连接及功能 12 5.2 MLC控制器的操作 14 5.3 MLC控制器显示信息的解释 14 5.4 MLC控制器的复位 14 5.5 栏杆机的操作 15 5.6 编制及读取操作数据 16 5.7 校准感应线圈 18 6. 初始化操作 19 6.1 委托程序 19 6.2 在启动过程中显示的信息 19 7. 技术数据 21 7.1 栏杆机 21 7.2 控制器 21 8. 附录 22 8.1校准角度传感器及优化栏杆机的动作22 8.2 校准安全设备的角度 24 8.3 读取时间计数器 25 8.4 读取操作循环计数器 25 8.5 读取制动设置 25 8.6 复位情况的说明 26 8.7 测试模式 27 8.8 校准传感器 28 9. 技术支持 28 10. 备用零部件 29

电源磁芯尺寸功率参数.doc

电源磁芯尺寸功率参数

常用电源磁芯参数 MnZn 功率铁氧体 EPC 功率磁芯 特点:具有热阻小、衰耗小、功率大、工作频率宽、重量 轻、结构合理、易表面贴装、屏蔽效果好等优点,但散热 性能稍差。 用途:广泛应用于体积小而功率大且有屏蔽和电磁兼容要 求的变压器,如精密仪器、程控交换机模块电源、导航设 备等。 EPC型功率磁芯尺寸规格 磁芯型号Type 尺寸Dimensions(mm) A B C D Emin F G Hmin EPC10/8 10.20±0.20 4.05±0.30 3.40±0.20 5.00±0.20 7.60 2.65±0.20 1.90±0.20 5.30 EPC13/13 13.30±0.30 6.60±0.30 4.60±0.20 5.60±0.20 10.50 4.50±0.30 2.05±0.20 8.30 EPC17/17 17.60±0.50 8.55±0.30 6.00±0.30 7.70±0.30 14.30 6.05±0.30 2.80±0.20 11.50 EPC19/20 19.60±0.50 9.75±0.30 6.00±0.30 8.50±0.30 15.80 7.25±0.30 2.50±0.20 13.10 EPC25/25 25.10±0.50 12.50±0.30 8.00±0.30 11.50±0.30 20.65 9.00±0.30 4.00±0.20 17.00 EPC27/32 27.10±0.50 16.00±0.30 8.00±0.30 13.00±0.30 21.60 12.00±0.30 4.00±0.20 18.50 EPC30/35 30.10±0.50 17.50±0.30 8.00±0.30 15.00±0.30 23.60 13.00±0.30 4.00±0.20 19.50 EPC39/39 39.00±0.50 19.60±0.30 15.60±0.30 18.00±0.30 30.70 14.00±0.30 10.00±0.30 24.50 EPC42/44 42.40±1.00 22.00±0.30 15.00±0.40 17.00±0.30 33.50 16.00±0.30 7.40±0.30 26.50

单端反激式开关电源磁芯尺寸和类型的选择

单端反激式开关电源磁芯尺寸和类型的选择字体大小:大|中|小2008-08-28 12:53 - 阅读:1655 - 评论:1 单端反激式开关电源磁芯尺寸和类型的选择徐丽红王佰营wbymcs51.blog.bokee .net A、InternationalRectifier 公司--56KHz 输出功率推荐磁芯型号 0---10WEFD15 SEF16 EF16 EPC17 EE19 EF(D)20 EPC25 EF(D)25 10-20WEE19 EPC19 EF(D)20 EE,EI22 EF(D)25 EPC25 20-30WEI25 EF(D)25

EPC25 EPC30 EF(D)30 ETD29 EER28(L) 30-50WEI28 EER28(L) ETD29 EF(D)30 EER35 50-70WEER28L ETD34 EER35 ETD39 70-100WETD34 EER35 ETD39 EER40 E21 摘自 InternationalRectifier,AN1018- “应用 IRIS40xx 系列单片集成开关 IC 开关电源的反激式变压器设计” B、ELYTON公司https://www.doczj.com/doc/b914543792.html, 型号输出功率( W) <5 5-10 10-20 20-50 50-100 100-200 200-500 500-1K

EI EI12.5 EI16 EI19 EI25 EI40 -- EI50 EI60 EE EE13 EE16 EE19 EE25 EE40 EE42 EE55 EE65 EF EF12.6 EF16 EF20 EF25 EF30 EF32 EFD -- EFD12 EFD15 EFD20 EFD25 EFD30 EPC -- EPC13 EPC17 EPC19 EPC25 EPC30 EER EER9.5 EER11 EER14.5 EER28 EER35 EER42 EER49 -- ETD ETD29 ETD34 ETD44 ETD49 ETD54 -- EP EP10 EP13 EP17 EP20 -- RM RM4 RM5 RM6 RM10 RM12 POT POT1107 POT1408 POT1811 POT2213POT3019 POT3622 POT4229 -- PQ -- -- -- PQ2016 PQ2625 PQ3230 PQ3535 PQ4040 EC ---------------------------- -- EC35 EC41 EC70 摘自 PowerTransformers OFF-LINE Switch Mode APPLICATION NOTES

高速公路自动栏杆机控制模块维修

高速公路自动栏杆机控制模块维修实例【转贴】 本人在成绵高速公路长期的维护工作中收集、总结的一些关于自动栏杆机控制模块的维护心得,供大家参考。成绵高速公路自动栏杆机控制模块主要是恒富威和magnetic专业设计的自动栏杆机控制模块,主要用于栏杆机的控制。采用了先进的微处理器技术和可靠的开关控制技术,系统集成度高,逻辑功能强,满足高速公路环境下的应用。下面我介绍下栏杆机控制模块面板的功能与接线栏杆机控制模块中的数字代表意义货接法如 下:“1”表示接电源L(火线)220V。“2”表示接电源N (零线)。“3”表示电源线地线。“4”表示电机接地线PE。“5”表示电机公共绕组U;接电机公共绕组U。“6”表示电机落杆绕组V;接电机绕组V。“7”表示电机升杆绕组W;接电机绕组W。“8、9”表示降压减速阻容(R=5Ω/25W C=2uF/AC450V,电阻和电容串联)。“10、11”表示电机运行电容 (4uF/AC450V)。“17”表示24V接地线。“18”表示表示电源+24V。“19”表示控制信号共用线(+24V)。“20”表示开脉冲,和控制信号共用线(+24V)短接有效。“21”表示环路感应器2输入(用于车辆到时自动提杆,用于6、8模式)。“22”表示关脉冲,和控制信号共用线(+24V)短接有效。“23”表示抬杆、落杆限位开关输入信号。“24”示安全开关,接常闭触点;断开时,系统不会执行落杆动作。“25”表示控制信号共用线(+24V),同“19”功能一样。“26”表示档杆状态输出公共触点。“27、28”完全等同于“20、22”表示计数输出,常开触点 (300ms)。“29”表示抬杆状态输出触点。“30”表示落杆状态输出触点。“30、31”表示报警输出,常开触点。栏杆机控制模块长期处于工作状态,每天控制栏杆上下达千次以上;是栏杆机易坏元件之一,下面我介绍常见几点常见的故障和实用的维修方法,供大家参 考。首先,维修设备之前,务必将故障设备的灰尘清除掉,养成这个习惯可以让你维修和检查故障起来轻松、准确许多。 故障一控制模块无电现象控制模块电源长期处于带电中,供电系统元件容易老化,容易出现无供电现象。这种情况一般先观察,所谓观察就是用眼睛看。注意观察栏杆机控制模块的外观、形状上有无什么异常,电器元件,如变压器,电容,电阻等有无出现变形,断裂,松动,磨损,冒烟,腐蚀等情况。其次是鼻子闻,一般轻微的气昧是正常的,如果有刺鼻的焦味,说明某个元器件被烧坏或击穿,应替换相应的元器件。最后用手试,当然是触摸绝缘的部分,有无发热或过热,用手去试接头有无松动;以确定设备运行状况以及发生故障的性质和程度。如某站一道出现控制模块无电,经测试是电源保险管(250V 4A)烧毁。我在更换前观察其他元件外表是否变形断裂,用手触摸电容、电感等接头有无松动。其次我就用万用表跑线,看是否有短路现象。经我检查后初步判定为保险丝被击穿,准备替换。替换前应认清被替换元器件的型号和规格。(同时替换某些元件时还应该注意方向。)最后我将同一型号的保险丝替换上并加电,控制模块工作灯亮起,用外用表测试控制模块,修复。有时,无电现象还由变压器(PIN9 0-115V PIN16 115V-0)损坏造成的。控制模块

雷达原理复习

第一章绪论 1、雷达的任务:测量目标的距离、方位、仰角、速度、形状、表面粗糙度、介电特性。 雷达是利用目标对电磁波的反射现象来发现目标并测定其位置。 当目标尺寸小于雷达分辨单元时,则可将其视为“点”目标,可对目标的距离和空间位置角度定位。目标不是一个点,可视为由多个散射点组成的,从而获得目标的尺寸和形状。采用不同的极化可以测定目标的对称性。 β任一目标P所在的位置在球坐标系中可用三个目标确定:目标斜距R,方位角α,仰角 在圆柱坐标系中表示为:水平距离D,方位角α,高度H 目标斜距的测量:测距的精度和分辨力力与发射信号的带宽有关,脉冲越窄,性能越好。目标角位置的测量:天线尺寸增加,波束变窄,测角精度和角分辨力会提高。 相对速度的测量:观测时间越长,速度测量精度越高。 目标尺寸和形状:比较目标对不同极化波的散射场,就可以提供目标形状不对称性的量度。 2、雷达的基本组成:发射机、天线、接收机、信号处理机、终端设备 3、雷达的工作频率:220MHZ-35GHZ。L波段代表以22cm为中心,1-2GHZ;S波段代表10cm,2-4GHZ;C波段代表5cm,4-8GHZ;X波段代表3cm,8-12GHZ;Ku代表2.2cm,12-18GHZ;Ka代表8mm,18-27GHZ。 第二章雷达发射机 1、雷达发射机的认为是为雷达系统提供一种满足特定要求的大功率发射信号,经过馈线和收发开关并由天线辐射到空间。 雷达发射机可分为脉冲调制发射机:单级振荡发射机、主振放大式发射机;连续波发射机。 2、单级振荡式发射机组成:大功率射频振荡器、脉冲调制器、电源 触发脉冲 脉冲调制器大功率射频振荡器收发开关 电源高压电源接收机 主要优点:结构简单,比较轻便,效率较高,成本低;缺点:频率稳定性差,难以产生复杂的波形,脉冲信号之间的相位不相等 3、主振放大式发射机:射频放大链、脉冲调制器、固态频率源、高压电源。射频放大链是发射机的核心,主要有前级放大器、中间射频功率放大器、输出射频功率放大器 射频输入前级放大器中间射频放大器输出射级放大器射频输出固态频率源脉冲调制器脉冲调制器 高压电源高压电源电源 脉冲调制器:软性开关调制器、刚性开关调制器、浮动板调制器 4、现代雷达对发射机的主要要求:发射全相参信号;具有很高的频域稳定度;能够产生复杂信号波形;适用于宽带的频率捷变雷达;全固态有源相控阵发射机 5、发射机的主要性能指标:

Magnetic TOLL栏杆机中文说明书

9 电气连接 9.1 安全 请参照18页,第2.6节“专业安全和特殊危险”中的安全注意事项。 电压 危险 一般 警告

热的表面 小心 电磁干扰 个人保护装备

在施工过程中,必须穿戴以下几种保护装备: ■工作服 ■保护手套 ■安全鞋 ■保护头盔。 9.2安装电保护设备 根据地区或当地的规定,安全设备需要提供给客户。通常有以下几种:■漏电保护器 ■断路器 ■ EN 60947-3的可锁定的2极开关。 9.3连接电源线 电压 危险 注意! 电源线的导线截面在1.5到4mm2 之间。要遵守国家关于 导线长度和相关电缆截面积的规定.

危险! 电压有致命的危险! 1.断开栏杆机系统电源。确保系统断电。确保机器不会再启动。 接线的准备—剥电缆外皮和铁芯绝缘 2.照下图剥开电源线和磁芯 图37:剥电源供应线。 1 电位 2 零线 3 地线 安置电源线 3.照下图,把电源线正确安装在相应的终端线夹上。也可参照,163页,第17.1节的“接线图”。 ■在机箱中正确安装电源线。此电源线不可连接移动部件。 ■用两个束线带固定电源线。 图38 安置电源线 1 电源线

2 束线带 3 束线带的金属突出物 连接电源线 图39:连接电源线 1 电源线的终端线夹 2 电位L 3 零线 N 4 地线 PE 9.4连接控制线路(信号设备) 以下连接对控制和反馈端有效: ■控制栏杆机的8个数码输入 ■反馈信息的4个数码输出 ■反馈信息的6个继电器输出。3个常开,3个转换触点。 危险! 电压有致命危险! 1.断开栏杆机系统电源。确保系统断电并不会重启。 连接控制线 2.将控制线穿过穿线孔。 ■在机箱中合理的放置控制线。控制线不可进入可移动部件。 ■安装控制线夹和绑线。通过轻微按压或移动,线夹可以在轨道上移动到预期的位置。绑线可以绑扎在金属突出物上。 3. 根据接线图连接控制线。请参照163页,第17.1节的“接线图”。

国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲

2015国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲 容斥原理和抽屉原理是国家公务员测试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末测试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C -A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

磁芯参数表

常用磁芯参数表 【EER磁芯】 ■ 用途:高频开关电源变压器、匹配变压器、扼流变压器等。 【EE磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器、电感器及扼流圈、脉冲变压器等。

【ETD磁芯】 ■ 用途:电源转换用变压器及扼流圈、通讯及其他电子设备变压器、滤波器。 【EI 磁芯】 ■ 用途:高频开关电源变压器、功率变压器、整流变压器、电压互感器等。 【ET 磁芯】 ■ 用途:滤波变压器 【EFD 磁芯】 ■ 用途:高频开关电源变压器器、整流变压器、开关变压器等。

【UF 磁芯】 ■ 用途:整流变压器、脉冲变压器、扼流变压器、电源变压器等。 【PQ 磁芯】 ■ 用途高频开关电源变压器、整流变压器等。 【RM 磁芯】 ■ 用途:高频开关电源变压器、整流变压器、屏蔽变压器、脉冲变压器、脉冲功率变压器、扼流变压器、滤波变压器。 【EP 磁芯】 ■ 用途:功率变压器、宽频变压器、屏蔽变压器、脉冲变压器等。

【H 磁芯】 ■ 用途:宽带变压器、脉冲变压器、脉冲功率变压器、隔离变压器、滤波变压器、扼流变压器、匹配变压器等。 软磁铁氧体磁芯形状与尺寸标准(一) 软磁铁氧体磁芯形状 软磁铁氧体是软磁铁氧体材料和软磁铁氧体磁芯的总称。软磁铁氧体磁芯是用软磁铁氧体材料制成的元件或零件,或是由软磁铁氧体材料根据不同形式组成的磁路。磁芯的形状基本上由成型(形)模具决定,而成型(形)模具又根据磁芯的形状进行设计与制造。 磁芯按磁力线的路径大致可分两大类;磁芯按具体形状分,有各种各样: 磁芯按磁力线路径分类 磁芯按使用时磁化过程所产生磁力线的路径可分为开路磁芯和闭路磁芯两类。 第一类为开路磁芯。这类磁芯的磁路是开启的(open magnetic circuits),通过磁芯的磁通同时要通过周围空间(气隙)才能形成闭合磁路。开路磁芯的气隙占磁路总长度的相当部分,磁阻很大,磁路中的部分磁通在达到气隙以前就已离开磁芯形成漏磁通。因而,开路磁芯在磁路各个截面上的磁通不相等,这是开路磁芯的特点。由于开路磁芯存在大的气隙,磁路受到退磁场作用,使磁芯的有效磁导率μe比材料的磁导率μi有所降低,降低的程度决定于磁芯的几何形状及尺寸。 开路磁芯有棒形、螺纹形、管形、片形、轴向引线磁芯等等。IEC 1332《软磁铁氧体材料分类》标准中称开路磁芯为OP类磁芯。 第二类磁芯为闭路磁芯。这类磁芯的磁路是闭合的(closed magnetic circuits),或基本上是闭合的。IEC 1332称闭路磁芯为CL类磁芯。磁路完全闭合的磁芯最典型的是环形磁芯。此外,还有双孔磁芯、多孔磁芯等等。

栏杆机控制器

MLC 580C N ,5131/04.02Phone:+49 7622/695-5Fax:+49 7622/695-602 e-mail:info@ac-magnetic.de https://www.doczj.com/doc/b914543792.html,

Magnetic Control Systems Sdn.Bhd.No.16, Jalan Kartunis U1/47Temasya Ind.Park, Section U140150 Shah Alam, Selangor Darul Ehsan, Malaysia Phone:(+60) 3 / 55691718eMail: info@https://www.doczj.com/doc/b914543792.html,.my Magnetic Control Systems (Shanghai) Co. Ltd.999 Ning-qiao Road, Bldg. 2W/1F Pudong New Area Shanghai 201206, China Phone:(+86) 21/ 58 341717eMail: magnetic@https://www.doczj.com/doc/b914543792.html, Magnetic Automation Pty. Ltd.19 Beverage Drive Tullamarine, Victoria 3043, Australia Phone:(+61) 3 / 93 30 10 33eMail: info@https://www.doczj.com/doc/b914543792.html, Magnetic Automation Corp.3160 Murrell Road Rockledge, FL 32955, USA Phone:(+1) 321/ 635 85 85eMail: info@https://www.doczj.com/doc/b914543792.html, Magnetic Autocontrol Pvt.Ltd.Calve Chateau, 2B, IInd Floor Kilpauk 322 Poonamallee High Road IND Chennai, 600010 / India Phone:(+91) 44 6400 443eMail: magneticsales@https://www.doczj.com/doc/b914543792.html,

集合与容斥原理

第一讲集合与容斥原理 数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。它的概念与方法已经有效地渗透到所有的现代数学。可以认为,数学的所有内容都是在“集合”中讨论、生长的。 集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。 1.集合的概念 集合是一个不定义的概念,集合中的元素有三个特征: (1)确定性设A是一个给定的集合,a是某一具体对象,则a或者是A的元素,或者不是A的元素,两者必居其一,即a∈A与a?A仅有一种情况成立。 (2)互异性一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素. (3)无序性 2.集合的表示方法 主要有列举法、描述法、区间法、语言叙述法。常用数集如:R , ,应熟记。 N, Z Q 3.实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。对于方程、不等式的解集,要注意它们的几何意义。 4.子集、真子集及相等集 (1)A?? B A?B或A=B; (2)A?B?A?B且A≠B; (3)A=B?A?B且A?B。 5.一个n阶集合(即由个元素组成的集合)有n2个不同的子集,其中有n2-1个非空子集,也有n2-1个真子集。 6.集合的交、并、补运算 x∈} A B={A |且B x∈ x x∈} A B={A |或B x x∈ x?} A∈ {且A =| I x x 要掌握有关集合的几个运算律: (1)交换律A B=B A,A B=B A; (2)结合律A (B C)=(A B) C, A ( B C)=(A B) C;

德国magnetic栏杆机常见故障分析

德国Magnetic栏杆机的常见故障分析德国Magnetic自动栏杆机的核心部分是MLC控制器,控制器设置的正确与否直接影响栏杆机的正常工作。当栏杆机工作不正常时,请先确认是否是栏杆机的问题,是栏杆机哪个部分出现问题(如机械部分或控制部分),建议先将其他车道工作正常栏杆机控制器换到本车道,以确认是否是控制器出现问题;如果互换控制器后栏杆机工作正常,那么就确认本车道控制器有问题,请参照工作正常的控制器设置即可;如控制器重新设置后仍不能解决问题,请将控制器返回厂家维修。 以下是德国Magnetic自动栏杆机控制器的几种常见设置,可供参考。 1、控制器黑色按键和白色按键的作用: ?黑键:1)、手动控制抬杆; 2)、控制器编程时改变数值; 3)、控制器编程完毕后保存 ?白键:1)、手动控制落杆; 2)、控制器编程时确认数值; 3)、控制器编程完毕后不保存。 ?编程时,同时按下黑键和白键后数值下边出现光标。 ?同时按下黑键和白键持续四秒钟,控制器重启。 2、MLC控制器复位: ?同时按下黑键和白键持续四秒钟; ?将圆盘转至F,确认后可恢复到出厂设置; ?详见中文说明书第14页。 3、控制器圆盘开关各位置的功能 位置0:普通操作模式 位置1:程序代码 1—8

位置2:转矩时间 1—30秒 位置3:栏杆机开启时间 1—255秒 位置4:感应线圈A灵敏度 O一9 (0最小,9最大) 位置5:感应线圈B灵敏度 0—9(0最小,9最大) 位置6:检测器模式A0—8(见功能说明表) 位置7:检测器模式B0—8(见功能说明表) 位置8:感应线圈A/B频率 1 0,000Hz一90,000Hz 位置9:备用 位置A:计数模式 位置B:备用 位置C:备用 位置D:硬件错误控制器 16进制错误代码 位置E:语种选择德、英、法、西 位置F:出厂设置重设所有操作数据 4、模式设置: 将圆盘转至1,控制器有8种操作模式可供选择;详见中文说明书第16页。 5、控制器编程过程: (1)将圆盘开关转到所需位置; (2)同时按下黑色按键和白色按键; (3)使用黑色按键将数字滚动显示为所需的数值(光标位于正在变化的数字下方); (4)按下白色按键存储选中的数值或者将光标移到右边的一格; (5)按下黑色按键确认最终的数值或者按下白色按键取消输入的数值。 注意:完成编程后,请将圆盘开关转回到“0”位置(即普通操作模式) 6、感应线圈灵敏度设置: 将圆盘转至4或5(设置线圈A转至4,线圈B转至5);一般情况下灵敏度选择4-6,不宜太高或太低。详见中文说明书第16页。 7、检测器A、B的开启和关闭 将圆盘开关转至6和7分别设置检测器A、B的状态,如果A、B线圈都没有使用或只使用了一个检测器,那么就要关闭没有使用的检测器(将检测器A、B的数值设置为0,是关闭状态;检测器开启时数值是应该是1或2,一般用2。) 8、校准传感器/优化栏杆机动作

抽屉原理

网易新闻 微博 邮箱 闪电邮 相册 有道 手机邮 印像派 梦幻人生 更多博客博客首页 博客话题 热点专题 博客油菜地 找朋友 博客圈子 博客风格 手机博客 短信写博 邮件写博 博客复制摄影摄影展区 每日专题搜博文搜博客随便看看关注此博客选风格不再艰难搬家送Lomo卡片注册登录显示下一条| 关闭86012747lktd的博客andrsw@https://www.doczj.com/doc/b914543792.html, QQ:86012747 导航 首页日志相册音乐收藏博友关于我日志86012747 加博友关注他 最新日志 倒推法解题数的整除奇数、偶数质数、合数小学数学思维训练5-5.组合图小学数学思维训练5-6.公约数博主推荐 相关日志 随机阅读 7大细节破译男人是否来电?破解《黎明之前》口碑形成之谜收租婆的忧伤谁人知?禁看湖南卫视引发的大哭与大笑独家:超闪亮水晶配饰BlingBling惹人爱Selina剃头俞灏明植皮偶像明星也难做首页推荐 毛利:烂人完美标本游资为什么炒作农产品?美国人忙着捡便宜兽兽亮相车展遭围攻洗澡时发现婆婆是双性恋为何有些物种要变性更多>> 抽屉原理抽屉原理习题(初一) 抽屉原理习题默认分类2008-04-17 16:03:44 阅读217 评论0 字号:大中小订阅

简单 1.在一米长的线段上任意点六个点。试证明:这六个点中至少有两个点的距离不大于20厘米。 2.在今年入学的一年级新生中有370多人是在同一年出生的。请你证明:他们中至少有两个人是在同一天出生的。 3.夏令营有400个小朋友参加,问:在这些小朋友中, (1)至少有多少人在同一天过生日? (2)至少有多少人单独过生日? (3)至少有多少人不单独过生日? 4.学校举行开学典礼,要沿操场的400米跑道插40面彩旗。试证明:不管怎样插,至少有两面彩旗之间的距离不大于10米。 5.在100米的路段上植树,问:至少要植多少棵树,才能保证至少有两棵之间的距离小于10米? 6.在一付扑克牌中,最少要拿多少张,才能保证四种花色都有? 7.在一个口袋中有10个黑球、6个白球、4个红球。问:至少从中取出多少个球,才能保证其中有白球? 8.口袋中有三种颜色的筷子各10根,问: (1)至少取多少根才能保证三种颜色都取到? (2)至少取多少根才能保证有两双颜色不同的筷子? (3)至少取多少根才能保证有两双颜色相同的筷子? 9.据科学家测算,人类的头发每人不超过20万根。试证明:在一个人口超过20万的城市中,至少有两人的头发根数相同。 10.第四次人口普查表明,我国50岁以下的人口已经超过8亿。试证明:在我国至少有两人的出生时间相差不超过2秒钟。 11.证明:在任意的37人中,至少有四人的属相相同。

开关电源参数计算

(1)输入电压:185V AC~240V AC (2)输出电压1:+5VDC ,额定电流1A ,最小电流750mA ; (3)输出电压2:+12VDC ,额定电流1A ,最小电流100mA ; (4)输出电压3:-12VDC ,额定电流1A ,最小电流100mA ; (5)输出电压4:+24VDC ,额定电流1.5A ,最小电流250mA ; (6)输出电压纹波:+5V ,±12V :最大100mV (峰峰值);+24V :最大250mV (峰峰值) (7)输出精度:+5V ,±12V :最大± 5%;+24V :最大± 10%; (8)效率:大于80% 3. 参数计算 (1)输出功率: 5V 112V 1224V 1.565 out P A A A W =?+??+?= (3-1) (2)输入功率: 6581.2580%0.8 out in P W P W = == (3-2) (3)直流输入电压: 采用单相桥式不可控整流电路 (max)240VAC 1.414=340VDC in V =? (3-3) (min)185VAC 1.414=262VDC in V =? (3-4) (4)最大平均电流: (m a x ) (m i n )81.25 0.31262in in in P W I A V V == = (3-5) (5)最小平均电流: (min)(max) 81.250.24340 in in in P W I A V = = = (3-6) (6)峰值电流: 可以采用下面两种方法计算,本文采用式(3-8)的方法。

(min)max (min)(min)225581.25 1.550.4262out out out Pk C in in in P P P W I I A V D V V V ?== ====? (3-7) min 5.5 5.581.25 1.71262out Pk C in P W I I A V V ?== == (3-8) (7)散热: 基于MOSFET 的反激式开关电源的经验方法:损耗的35%是由MOSFET 产生,60%是由整流部分产生的。 开关电源的损耗为: (180%)81.25 20%16.25D in P P W W =?-=?= (3-9) MOSFET 损耗为: 35%16.2535% 5.69D MOSFET D P P W W -=?=?= (3-10) 整流部分损耗: (5)55( )60%()16.2560%0.756565D V D W W P P W W W W +=??=??= (3-11) (12)12122()60%2()16.2560% 3.66565D V D W W P P W W W W ±=???=???= (3-12) (242)3636()60%()16.2560% 5.46565D V D W W P P W W W W +=??=??= (3-13) (8)变压器磁芯: 采用天通的EER40/45,饱和磁通密度Bs 在25℃时大于500mT ,在100℃时大于390mT 。窗口有效截面积Ae=152.42mm 2。 所以,取 max 11 0.390.222 s B B T T = =?≈ (3-14) Ae=152.42mm 2 (3-15) (9)开关电源频率: 40f khz = (3-16) (10)开关电源最大占空比: max 0.4D = (3-17)

雷达的工作原理及相控阵雷达

问:有源相阵控雷达和无源相阵控雷达的区别是什么? h t p:/b s.t i e x u e.n e t/] [ 转自铁 血社区 答:区别就是无源是只有单个或者几个发射机子阵原只能接收,而有源是每个阵原都有完整的发射和接收单元! 机载雷达经历了从机械扫描形式到相控阵电子扫描,再到最新的保形"智能蒙皮"天线的发展过程,电子扫描雷达在作战使用中的优势在哪里?未来的综合式射频(RF)传感器系统的总体特点和关键技术是哪些?您将从本文中得到启发 近50多年来,机载雷达不断采用新的技术成果,性能不断提高,其中重要的有全向多脉冲射频(MPRF)模式和高分辨率多普勒波束锐化(DBS)技术在雷达中的实际应用。目前,由于在信号处理和砷化镓微波集成电路领域技术的进步,雷达作为战术飞机主传感器的地位仍然会继续保持下去。 电子扫描技术的发展 雷达波束天线电子扫描应用的第一步是无源电子扫描阵列(ESA),其主要优点是实现了波束的无惯性扫描,在作战中有助于对辐射能量的控制。现役的此种类型的雷达有美国空军的B1-B和俄罗斯的米格-31装备的雷达,在研的有法国装备其"阵风"战斗机的RBE-2雷达。 有源ESA的出现是技术上的又一进步。它的每一个阵元中都有一个RF发射机和灵敏的RF接收机,在各个发射/接收(T/R)模块内都有一个功率放大器、一个低噪声放大器和用砷化镓技术制造的相位振幅控制装置。有源ESA雷达技术放弃了传统的中心式高功率发射机,除了具有无源相控阵雷达的优点外,还提高了能量的使用效率并具有自适应波束控制、强抗干扰能力和高可靠性等优点。 h t p:/b s.t i e x u e.n e t/] 血社区 [ 转自铁 西方国家第一代有源相控阵雷达系统接近定型的有美国装备F-22和日本装备 FS-X的雷达。英、法和德国共同研制的AMSAR项目也确定使用先进的有源相控阵雷达技术,为其后续的欧洲战斗机雷达的升级改装做准备。从今天的角度来看,雷达技术未来的下一个发展方向是保形"智能蒙皮"阵列,它把有源ESA技术和多功能共用RF孔径结合了起来,在天线阵元的安排上,与飞机机身的结构巧妙地配合,实现宽波段和多功能。保形天线阵列有高性能的处理器并使用空-时自适应处理技术有效地抑制了外部的噪声、干扰和杂波并能以最优化的方式来探测所感兴趣的目标。虽然有许多相关的技术问题需要解决,但保形"智能蒙皮"技术并非是个不切实际的解决方案,预计在20~25年的时间内就可以达到实用阶段。 在10~15年内,对战术飞机射频传感器(包括雷达)未来所执行的任务来说,最迫切的需要是增加功能、提高性能,并且还要注重经济性和可维护性。美国的"宝石路"计划已经证明,航空电子系统通过采用通用模块、资源共享和传感器的空间重构(重构的设备包括雷达、电子战及通信-导航-识别等射频传感器)可以做到系统的造价和重量减小一半,而可靠性提高三倍。它所确立的综合模块化航空电子的设计原则已用于JSF战斗机的综合传感器系统(ISS)和多重综合式射频传感器工程的设计中,欧洲类似的用于未来战术飞机的综

相关主题
文本预览
相关文档 最新文档