当前位置:文档之家› 5 红外吸收光谱法

5 红外吸收光谱法

仪器分析

张威

主编

jsjkzw@https://www.doczj.com/doc/bd14660183.html,

第五章红外吸收

光谱法

学习目标

1.熟悉红外吸收光谱产生的条件;

2.掌握分子振动频率、振动方式、振动自由度与红外光谱的关系;

3.理解红外光谱与分子结构的关系以及环境因素的关系;

4.熟悉重要官能团和化合物的基团频率和特征吸收峰;

5.了解红外光谱仪基本部件、特点和样品处理方法;

6.掌握红外光谱图解析的基本方法。

引言:红外光与红外吸收光谱?

波数σ:单位cm -1

400

1333310

25000

50000

红外吸收光谱是由于分子内振动、转动能级跃迁而产生的。大多数有机化合物的红外吸收都出现在中红外区。

4000

主要内容

§5.1 概述

§5.2 基本原理

§5.3 基团频率和特征吸收峰

§5.4 傅立叶变换红外光谱仪(FT-IR)和样品处理方法

§5.5 红外吸收光谱法的应用

红外光谱图的特点:

例图:阿司匹林的红外吸收光谱

光谱图比较复杂,一般横坐标为波数,纵坐标为透光率。

红外光谱图的特点:

为方便观察,

将红外光谱分

为两个区域:

1,波数在

4000~2000

cm-1,较密集;

2,波数在2000~400cm-1,较稀疏;

§5.2 基本原理

基本原理产生红外吸收

两个必要条件

分子的振动和

红外光谱

红外吸收峰的

强弱

分子的振动方式

分子的振动自由

度和峰数

双原子

振动

多原子

振动

一、产生红外吸收的两个必要条件

(1)红外辐射的频率刚好等于分子内基团振动的频率时,分子吸收辐射

(2)在分子振动过程中,必须有偶极矩的改变

二、分子的振动和红外光谱(一)分子的振动方式

双原子分子只能进行伸缩振动,振动的形式可视为简谐振动。

(一)分子的振动方式对于简谐振动,其频率公式可通过推导得到:

μ

k

σ1302

)cm (1

=-k :化学键力常数

μ:两个原子的折合原子质量

2

121M M M M μ+?=

二、分子的振动和红外光谱

例:求C=O 键的伸缩振动频率

解:查得C=O 键的化学力常数k 为12.1 N ·cm -1

C=O 键两原子的折合原子质量:

C=O 键的伸缩振动频率为

86

.616

1216122121≈+?=+?=M M M M μ1

1

17296.86

12.113021302)(--===cm

μk cm σ二、分子的振动和红外光谱

(一)分子的振动方式

对于多原子分子,可分为如下几类:

伸缩振动ν弯曲振动对称伸缩振动νs

不对称伸缩振动νas

面外弯曲

振动γ

面内弯曲

振动β面内摇摆振动ρ

面内剪式振动δ

扭曲振动τ

面外摇摆振动ω

二、分子的振动和红外光谱

1.伸缩振动

伸缩振动是指化学键沿着键轴方向周期性伸长和缩短,键长发生周期性变化,键角不变的振动。

有对称伸缩和

不对称伸缩两

种,以亚甲基

-CH2-为例:

2.弯曲振动

弯曲振动是指基团键角发生周期性变化而键长不变的振动。可分为面内弯曲振动和面外弯曲振动

(1)面内弯曲振动β

(2)面外弯曲振动

γ

2.弯曲振动

二、分子的振动和红外光谱

(二)分子的振动自由度和峰数

在三维空间中,单个质点的位臵

可用x,y,z坐标描述,总自由度

(运动形式)为3;

在三维空间中,对于有N 个质点(原子)的物体(分子),总自由度为3N

二、分子的振动和红外光谱(二)分子的振动自由度和峰数

分子的总运动形式有振动,转动,平动三种,所以:

总自由度(3N)=分子的振动自由度+

平动自由度+ 转动自由度得到:

振动自由度=分子的总自由度(3N)-

平动自由度-转动自由度

(二)分子的振动自由度和峰数

分子的平动

自由度为

3

二、分子的振动和红外光谱

(二)分子的振动自由度和峰数

非线型分子的转动

对于线型分子,要少一个转动自动度,转动自由度为2

自由度为

3

二、分子的振动和红外光谱

(二)分子的振动自由度和峰数分子的振动自由度的数目为:

总自由度平动自

由度

转动自

由度

振动自

由度

线型分子(原

子数目N )

3N 323N-5

非线型分子(原子数目N)3N333N-6

二、分子的振动和红外光谱

红外吸收光谱法试题和答案解析

红外吸收光谱法 一、选择题 1. CH 3—CH 3的哪种振动形式是非红外活性的(1) (1)υC-C (2)υC-H (3)δasCH (4)δsCH 2. 化合物中只有一个羰基.却在1773cm -1和1736 cm -1 处出现两个吸收峰.这是因 为(3) (1)诱导效应 (2)共轭效应 (3)费米共振 (4)空间位阻 3. 一种能作为色散型红外光谱仪的色散元件材料为(4) (1)玻璃 (2)石英 (3)红宝石 (4)卤化物晶体 4. 预测H 2S 分子的基频峰数为(2) (1)4 (2)3 (3)2 (4)1 5. 下列官能团在红外光谱中吸收峰频率最高的是(4) (1) (2)—C ≡C — (3) (4)—O —H 二、解答及解析题 1. 把质量相同的球相连接到两个不同的弹簧上。弹簧B 的力常数是弹簧A 的力常数的两倍.每个球从静止位置伸长1cm.哪一个体系有较大的势能。 答:M h hv E k 2π= = ;所以B 体系有较大的势能。 2. 红外吸收光谱分析的基本原理、仪器.同紫外可见分光光度法有哪些相似和不同之处 答: 红外 紫外 基本原理 当物质分子吸收一定波长的光能.能引起分子振动和转动的能及跃迁.产生的吸收光谱一般在中红外区.称为红外光谱 当物质分子吸收一定波长的光能.分子外层电子或分子轨道电子由基态跃迁到激发态.产生的吸收光谱一般在紫外-可见光区。 仪器 傅立叶变换红外光谱仪 紫外可见光分光光度计 相同:红外光谱和紫外光谱都是分子吸收光谱。 不同:紫外光谱是由外层电子跃迁引起的。电子能级间隔一般约为1~20eV; 而红外光谱是分子的振动能级跃迁引起的.同时伴随转动能级跃迁.一般振动能级间隔约为~1eV 。

仪器分析红外吸收光谱法习题及答案

红外吸收光谱法 一.填空题 1.一般将多原子分子的振动类型分为伸缩振动和变形振动,前者又可分为对称伸缩振动和反对称伸缩振动,后者可分为面内剪式振动(δ)、面内摇摆振动(ρ) 和面外摇摆振动(ω)、面外扭曲振动(τ) 。2.红外光区在可见光区和微波光区之间,习惯上又将其分为三个区: 远红外区,中红外区和近红外区 ,其中中红外区的应用最广。 3.红外光谱法主要研究振动中有偶极矩变化的化合物,因此,除了单原子和同核分子等外,几乎所有的化合物在红外光区均有吸收。 4.在红外光谱中,将基团在振动过程中有偶极矩变化的称为红外活性 ,相反则 称为红外非活性的。一般来说,前者在红外光谱图上出现吸收峰。5.红外分光光度计的光源主要有能斯特灯和硅碳棒。 6.基团一OH、一NH;==CH的一CH的伸缩振动频率范围分别出现在 3750—3000 cm-1, 3300—3000 cm-1, 3000—2700 cm-1。 7.基团一C≡C、一C≡N ;—C==O;一C=N,一C=C—的伸缩振动频率范围分别出现在 2400—2100 cm-1, 1900—1650 cm-1, 1650—1500 cm-1。 8.4000—1300 cm-1 区域的峰是由伸缩振动产生的,基团的特征吸收一般位于此范围,它是鉴最有价值的区域,称为官能团区;1300—600 cm-1 区域中,当分子结构稍有不同时,该区的吸收就有细微的不同,犹如人的指纹一样,故称为指纹区。 二、选择题 1.二氧化碳分子的平动、转动和振动自由度的数目分别(A) A. 3,2,4 B. 2,3,4 C. 3,4,2 D. 4,2,3 2.乙炔分子的平动、转动和振动自由度的数目分别为(C) A. 2,3,3 B. 3,2,8 C. 3,2,7 D. 2,3,7 4.下列数据中,哪一组数据所涉及的红外光谱区能够包括CH 3CH 2 COH的吸收 带?(D) A. 3000—2700cm-1,1675—1500cm-1,1475—1300cm一1。 B. 3300—3010cm-1,1675—1500cm-1, 1475—1300cm-1。 C. 3300—3010cm-1, 1900—1650cm-l,1000——650cm-1。 D. 3000—2700cm-1, 1900—1650cm-1, 1475——1300cm-1。 1900—1650cm-1为 C==O伸缩振动,3000—2700cm-1为饱和碳氢C—H伸缩振动(不饱和的其频率高于3000 cm-1),1475——1300cm-1为C—H变形振动(如—CH 3 约在1380—1460cm-1)。

第九章 红外光谱法习题[1]

第九章红外光谱法 基本要求:了解红外吸收光谱和吸收峰特征的表达, 掌握红外吸收光谱产生的条件,影响吸收峰位置、峰数和强度的因素, 掌握主要的IR谱区域以及在这些区域里引起吸收的键振动的类型, 掌握常见基团的特征吸收频率,利用IR谱鉴别构造异构体并能够解析简单化合物的结构,了解红外 吸收光谱的实验技术,了解拉曼光谱的原理及应用。 重点:IR光谱产生的条件,影响吸收峰位置,峰数和强度的因素,常见基团的特征吸收频率。 难点:键振动的类型,IR谱解析,FT-IR的原理和特点。 部分习题解答 1.产生红外吸收的条件是什么?是否所有的分子振动都会产生红外吸收光谱?为什么? 条件:(1)分子的振动或转动必须伴随偶极矩的变化;(2)红外辐射应具有能满足分子产生振动跃迁所需的能量(红外辐射频率等于振动量子数差值和振动频率的乘积) 不是所有的分子振动都会产生红外吸收光谱。只有满足上述两个条件的分子振动才会产生红外吸收光谱。例如,同核双原子分子(O2、N2、Cl2)等的振动没有红外活性。 5. 计算CO2和H2O的分子振动自由度,它们分别有几种振动形式,在红外吸收光谱中能看到几个吸收普带?数目是否相符?为什么? CO2:线性分子振动自由度3N-5=3*3-5=4 四种振动形式两个吸收带数目不符对称伸缩振动无偶极矩变化,无红外活性,无吸收峰;面内弯曲和面外弯曲振动简并,只显示一个吸收峰。 H2O:非线性分子振动自由度3N-6=3*3-6=3 三种振动形式三个吸收带数目相符 6.判断正误。 (1)对(2)错(3)错(4)对(5)错(6)错 7、下列同分异构体将出现哪些不同的特征吸收带? (1)CH3 CO2H CO2CH3 (2)C2H3COCH3CH3CH2CH2CHO (3) 解:(1)CH3——COH 在3300~2500cm-1处有v O—H, 其v C=O位于1746~1700cm-1 3 无v OH吸收,其v C=O位于1750~1735cm-1(2)C2H5CCH3其v C=O位于1720~1715cm-1 O O

红外吸收光谱分析

第三章红外吸收光谱分析 3.1概述 3.1.1红外吸收光谱的基本原理 红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。 图3-1为正辛烷的红外吸收光谱。红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。图中的各个吸收谱带表示相应基团的振动频率。各种化合物分子结构不同,分子中各个基团的振动频率不同。其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。 图3-1 正辛烷的红外光谱图 几乎所有的有机和无机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

第七章 原子发射光谱分析 习题

第七章原子发射光谱分析(网上习题) 一、选择题 1. 原子发射光谱是由下列哪种跃迁产生的? ( ) (1) 辐射能使气态原子外层电子激发 (2) 辐射能使气态原子内层电子激发 (3) 电热能使气态原子内层电子激发 (4) 电热能使气态原子外层电子激发答案:(4) 2.发射光谱定量分析选用的“分析线对”应是这样的一对线() (1) 波长不一定接近,但激发电位要相近 (2) 波长要接近,激发电位可以不接近 (3) 波长和激发电位都应接近 (4) 波长和激发电位都不一定接近答案:(3) 3.发射光谱分析中, 具有低干扰、高精度、高灵敏度和宽线性范围的激发光源是( ) 答案:(4) (1) 直流电弧 (2) 低压交流电弧 (3) 电火花 (4) 高频电感耦合等离子体 4. 电子能级差愈小, 跃迁时发射光子的() (1) 能量越大 (2) 波长越长 (3) 波数越大 (4) 频率越高 答案:(2) 5.下面哪种光源, 不但能激发产生原子光谱和离子光谱, 而且许多元素的离子线强度大于原子线强度?()

(1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(4) 6.下面几种常用激发光源中, 分析灵敏度最高的是() (1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(4) 7.下面几种常用的激发光源中, 最稳定的是() (1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(4) 8.下面几种常用的激发光源中, 背景最小的是 ( ) (1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(1) 9.下面几种常用的激发光源中, 激发温度最高的是 ( ) (1)直流电弧 (2)交流电弧 (3)电火花 (4)高频电感耦合等离子体 答案:(3) 10.用原子发射光谱法直接分析海水中重金属元素时, 应采用的光源是 ( )

实验5红外光谱法结构分析初步

实验5红外吸收光谱法结构分析初步 一、实验目的 1.掌握一般固体固体试样的制样方法以及压片机的使用方法。 2.了解红外光谱仪的工作原理。 3.掌握红外光谱仪的一般操作。 二、实验原理 红外吸收光谱是由于分子中振动能级的跃迁(同时伴随着转动能级的跃迁)而产生的。由于不同物质或同一物质的不同聚集态中各基团固有的振动频率不同或结构的不同,导致所产生的吸收谱带的数目、位置、形状以及强度的不同,因此我们可根据物质的红外吸收光谱来判断该物质或其某个或某些官能团是否存在。 本实验是根据间硝基苯甲酸上几个官能团的特征吸收峰来鉴别该物质的。 三、仪器和试剂 1.仪器:MB104、FTIR2000或其他型号的红外光谱仪,压片机,模具和试样,玛瑙研钵,不锈钢药匙,不锈钢镊子,红外烘灯。 2.试剂:间硝基苯甲酸(AR),KBr(光谱纯),无水乙醇(AR),棉球。 四、实验内容 1.准备工作 (1)打开红外分光光度计开关,预热20min,打开电脑。 (2)用无水乙醇棉球擦洗玛瑙研钵,用红外烘灯烘干。 2.试样的制备 (1)试样处理取试样1-2mg,加大约100倍试样量的KBr于玛瑙研钵中研磨,在红外烘灯下边烘边研。一般试样用力研磨20min,高分子试样需要更长时间。 (2)装模取出模具,准确套上模膛,放好垫片,将制好的试样均匀的抖入模膛内,试样量以能压片为准,在能成片的基础上越薄越好。再放入另一个垫片,装上插杆。 (3)压片将模具置于压片机工作台中心,旋动压力丝杆将模具顶紧,顺时针关闭放油阀,摇动油泵把手,使压力上升至15MPa,保持5min。 (4)脱模逆时针拧开放油阀,旋松压力丝杆,轻轻地取出模具,与装模顺序相反取出试样。将试样放在固体试样池上。 3.吸收光谱 (1)打开灯电源 (2)点击GRAMS AI图标,红外分光光度计软件。 (3)背景扫描:点击Collect→Collect→Background.spc→进入自己的文件夹(或新建文件夹),并输入文件名保存→Background→Ok Collect 得到试样的红外光谱图。 (4)试样图谱扫描:将试样放在仪器的试样夹上,点击Collect→Collect→normal →%Trans→输入试样名→Ok Collect得到试样的红外光谱图。 (5)谱图后处理:点击Edit→Peak picker→Show peak marks for all traces→选择合适的参数,给图谱标峰。若需要打印点击File→Print (6)将盐片或研钵擦洗干净,收拾桌面。关闭主机上的灯电源。 4.结束工作 (1)关闭红外工作软件,电脑电源 (2)用水清洗玛瑙研钵、不锈钢镊子、药匙,然后用酒精棉球擦拭,在红外烘灯下烘干。 (3)清理台面,填写仪器使用记录。

红外吸收光谱法习题集及答案

六、红外吸收光谱法(193题) 一、选择题( 共61题) 1. 2 分(1009) 在红外光谱分析中,用 KBr制作为试样池,这是因为: ( ) (1) KBr 晶体在 4000~400cm-1范围内不会散射红外光 (2) KBr 在 4000~400 cm-1范围内有良好的红外光吸收特性 (3) KBr 在 4000~400 cm-1范围内无红外光吸收 (4) 在 4000~400 cm-1范围内,KBr 对红外无反射 2. 2 分(1022) 下面给出的是某物质的红外光谱(如图),已知可能为结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构与光谱是一致的?为什么? ( ) 3. 2 分(1023) 下面给出某物质的部分红外光谱(如图),已知结构Ⅰ、Ⅱ或Ⅲ,试问哪一结构与光谱是一致的,为什么? 4. 2 分(1068) 一化合物出现下面的红外吸收谱图,可能具有结构Ⅰ、Ⅱ、Ⅲ或Ⅳ,哪一结构与光谱最近于一致? 5. 2 分(1072) 1072

羰基化合物中,C = O 伸缩振动 频率出现最低者为 ( ) (1) I (2) II (3) III (4) IV 6. 2 分(1075) 一种能作为色散型红外光谱仪色散元件的材料为 ( ) (1) 玻璃 (2) 石英 (3) 卤化物晶体 (4) 有机玻璃 7. 2 分(1088) 并不是所有的分子振动形式其相应的红外谱带都能被观察到,这是因为 ( ) (1) 分子既有振动运动,又有转动运动,太复杂 (2) 分子中有些振动能量是简并的 (3) 因为分子中有 C、H、O 以外的原子存在 (4) 分子某些振动能量相互抵消了 8. 2 分(1097) 下列四组数据中,哪一组数据所涉及的红外光谱区能够包括CH3- CH2-CH = O的吸收带( ) 9. 2 分(1104) 请回答下列化合物中哪个吸收峰的频率最高? ( ) 10. 2 分(1114) 在下列不同溶剂中,测定羧酸的红外光谱时,C=O 伸缩振动频率出现最高者为( ) (1) 气体 (2) 正构烷烃 (3) 乙醚 (4) 乙醇 11. 2 分(1179) 水分子有几个红外谱带,波数最高的谱带对应于何种振动 ? ( ) (1) 2 个,不对称伸缩 (2) 4 个,弯曲 (3) 3 个,不对称伸缩 (4) 2 个,对称伸缩 12. 2 分(1180) CO2的如下振动中,何种属于非红外活性振动 ? ( ) (1) ←→ (2) →←→ (3)↑↑ (4 ) O=C=O O = C =O O = C =O O = C = O ↓ 13. 2 分(1181) 苯分子的振动自由度为 ( ) (1) 18 (2) 12 (3) 30 (4) 31 14. 2 分(1182) 双原子分子在如下转动情况下 (如图),转动不形成转动自由度的是 ( )

第五章红外吸收光谱分析

第五章红外吸收光谱分析 §5-1概述 红外光谱分析是现代仪器分析中历史悠久并且还在不断发展的分析技术,对于未知物的定性、定量以及结构分析都是一种非常重要的手段,广泛应用于药物、染料、香料、农药、感光材料、橡胶、高分子合成材料、环境监测、法医鉴定等领域。近年来,由于红外光谱技术的不断发展,红外光谱仪的不断完善,红外光谱和色谱、核磁共振、质谱的连用使红外光谱的应用开辟了更为广阔的途径。 红外吸收光谱又称为分子振动光谱。这是因为分子振动、转动能级跃迁所吸收的电磁波谱正好处于红外区。 一、红外吸收光谱 红外吸收光谱:记录物质对红外光的吸收程度与波长或波数关系图。用T-λ曲线或T-σ曲线来表示。 波数(σ)每cm长光波中波的数目,用CM-1表示。红外光谱图的利用,可提供三方面信息: ①吸收峰的数目②吸收峰的位置(σ)③吸收峰强度(透光率) 红外光区中红外区远红外区波长/μm 0.78~2.5 2.5~50 50~300 波数/cm-112820~4000 4000~200 200~33 三、红外光谱的优点与缺点 1、优点 ①使用范围 g、s、l 无机、有机大分子 ②操作方便③样品用量少④不破坏样品⑤重现性好 2、缺点 ①定量时灵敏度低,准确性差②谱带复杂 §5-2 红外光谱分析基本原理 (同系物难区别,只可判断出属于哪种物质) 一、产生红外吸收的条件 1、能量相等条件:振动或转动能级跃迁的能量与红外辐射光子能量相等。 即△E=-△vhυ△E L =hυL△E=△E LυL=△vυ 2、偶合作用(能量传递条件) 二、双原子分子的振动 振动方程式:库克定律 式中:C-光速(2. 998×10cm·s-1) K-化学键力常数(N·cm-1) μ-折合质量(g)μ=m1m2/(m1+m2) σ=1300

第十二章-红外吸收光谱法

第十二章 红外吸收光谱法 一、选择题 1.中红外区的特征区是指( )cm -1范围内的波数。 A 、4000~200 B 、4000~1250 C 、1250~200 D 、10 000~10 2.已知CO 2的结构式为O=C=O ,请推测其红外光谱中,基本振动数为( )。 A 、4个 B 、3个 C 、2个 D 、1个 3.红外光谱中,不是分子的所有振动形式的相应红外谱带都能被观察到,这是因为( ) A 、分子中既有振动运动,又有转动运动 B 、分子中有些振动能量是简并的 C 、因为分子中有C 、H 、O 以外的原子存在 D 、分子中有些振动能量相互抵消 4.关于红外光谱的吸收峰,下列叙述不正确的是( ) A 、共轭效应使红外吸收峰向低波数方向移动 B 、诱导效应使红外吸收峰向高波数方向移动 C 、氢键使红外吸收峰向低波数方向移动 D 、氢键使红外吸收峰向高波数方向移动 5.若 O —H 键的键力常数 K = 7.12N /cm ,则它的振动波数( cm -1)为( ) A 、3584 B 、3370 C 、3474 D 、3500 6.欲获得红外活性振动,吸收红外线发生能级跃迁,必须满足( )条件。 A 、△μ>0或△μ<0 B 、△μ≠0并服从νL=v△V C 、△μ=0及vL=△Vv D 、△μ≠0 7.CO 2的下列振动中,属于红外非活性振动的是( )。 8.下列三种物质:甲R-CO-CH 2CH 3、乙R-CO-CH=C (CH 3)2、、丙R-COCl ,问其V C=O 波数大小次序为( )。 A 、甲>乙>丙 B 、乙>甲>丙 C 、丙>乙>甲 D 、丙>甲>乙 9.三种振动νc=o ,νc=N 及νc=C 的频率大小次序为( )。(电负性:C 为2.6,N 为3.0,O 为3.5) A 、νc=o >νc=N >νc=C B 、νc= C >νc=N >νc=o C 、νc=N >νc=C >νc=o D 、νc=N >νc=o >νc=C 10.同一分子中的某基团,其各振动形式的频率大小顺序为( )。 A 、γ>β>ν B 、 ν>β>γ

红外光谱

红外光谱(IR)在沸石分子筛中的应用 摘要:本文阐述了红外光谱(IR)在沸石分子筛研究中的作用,指出了红外光谱在分子筛研究中主要应用于骨架振动、硅铝比和杂原子取代、表面羟基以及酸性、阳离子振动等方面。 关键词:红外光谱;沸石分子 红外光谱(IR)可以表征化学键进而表征分子结构。IR光谱可以用来识别化合物和结构中的官能团。红外光谱方法具有样品用量少、样品处理简单、测量手段快、操作方便等优点。在分子筛的结构研究中,红外光谱也是一种不可缺少的重要工具。在分子筛研究中的应用主要有:分子筛骨架构型的判别、骨架元素的主成分析、阳离子分布情况、表面羟基结构、表面酸性、催化性能以及分子筛的客体的结构等方面[1]。 研究沸石骨架振动多采用溴化钾压片法(或简单地与溴化钾粉末混合)或矿物油涂膜法制备样品[2-4],有时则需要纯沸石样品进行脱水、酸性或催化反应等的原位表征[5]。测定区域一般为200~4000cm-1,晶格水及羟基谱带分布在3700 cm-1及1600 cm-1附近,200~1300 cm-1区域的谱峰主要是分子筛骨架振动谱带。 1 骨架振动 沸石骨架振动引起的谱带多在中远红外区。内部振动的谱带位置对骨架结构变化不敏感,而外部连接振动对骨架结构比较敏感。图一,为中孔分子筛MCM-41型沸石的红外谱图。由图可以看出,合成样品的红外图谱在1640cm-1左右出现了较弱的吸收峰,它是分子筛所吸附的水羟基振动所致,在1095 cm-1出现了很强的吸收峰,它是Si-O-Si键反对称伸缩振动所致,在800 cm-1左右的吸收峰是Si-O-Si键的对称伸缩振动吸收峰,在460 cm-1左右出现的吸收峰是Si-O键的弯曲振动所致,这些都是中孔分子筛的特征吸收谱带。960 cm-1处出现的吸收峰是Al取代Si后骨架局部不对称所致,有的认为是Si-O键伸缩振动而引起的特征吸收,有的认为是由于缺陷位

《仪器分析》教案7红外吸收光谱法

第十章红外吸收光谱法 10.1教学建议 一、从应用实例入手,介绍红外吸收光谱法的基本原理和红外光谱仪结构特征。 二、依据红外谱图确定有机化合物结构,推断未知物的结构为目的,介绍红外光谱分析方法在定性及定量分析的方面的应用。 10.2主要概念 一、教学要求: (一)、掌握红外吸收光谱法的基本原理; (二)、掌握依据红外谱图确定有机化合物结构,推断未知物的结构方法; (三)、了解红外光谱仪的结构组成与应用。 二、内容要点精讲 (一)基本概念 红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。 红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。 振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。 转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。 伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。 弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。 红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。 诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。 共轭效应——分子中形成大 键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。 氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。 溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。 基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。 振动偶合——两个相邻基团的振动之间的相互作用称为振动偶合。

红外吸收光谱法

第五节 红外吸收光谱法(IR ) 一、概述 优点:①每种化合物均有红外吸收(除了单原子分子&同核双原子),因此应用范围广 ②分析快速、灵敏度高、检测样品量少 ③是一种无损检测方法,可检测各种状态的试样 ④对光谱的吸收符合朗伯比尔定律,由于谱带宽,干扰峰多,应用于定量分析较少 ⑤分子的振动能级与许多结构特征因素相关,因此能提供丰富的组成和结构信息 二 红外光区光谱表示方法: T %~ σ曲线or T %~ λ曲线 波长λ与 波数σ之间的关系为: σ ( cm-1) =104 / λ ( μm ) 例: λ =5 μm 的红外线,它的波长为 σ= 104 / 5=2000 cm-1 三、红外光谱的产生机理 1、条件:①吸收应刚好满足分子跃迁时所需的能量 ②红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现) 偶极距(dipole moment )μ= q · d 只有偶极距不为零的分子才能对吸收了红外光后引起偶极距的共振吸收,在特征波长处产生吸收峰,构成了红外吸收光谱图。 红外光谱图:可以用峰数,峰位,峰形,峰强来描述。 应用:有机化合物的结构解析。 定性:基团的特征吸收频率; 定量:特征峰的强度 k 化学键的力常数,与键能和键长有关 μ为双原子的折合质量 : μ =M1M2/(M1+M2) 发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数,即取决于分子的结构特征 化学键键强越强(即键的力常数K 越大)原子折合质量越小,化学键的振动频率越大,吸收峰将出现在高波数区。 例题: 由表中查知C=C 键的k =9.5 ~ 9.9 ,令其为9.6, 计算波数值。 1cm 16502 /126.913071307211 -=====μμπλk k c v 分子中基团的基本振动形式 两类基本振动形式 (以亚甲基为例) 伸缩振动(对称伸缩、反对称伸缩) 变形振动 面内变形(剪式、摇摆) 面外变形(面外摇摆、扭曲变形) .影响峰数减少的原因 实际上,绝大多数化合物在红外光谱图上出现的峰数远小于理论上计算的振动数,这是

现代仪器分析 第五章

第五章红外吸收光谱分析 5.1红外光谱法概述 5.11红外光谱与红外光谱分析法 红外吸收光谱:又称分子振动-转动光谱,是物质的分子在吸收了红外辐射后引起分子的振动-转动能级跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。 红外吸收光谱分析法:是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法,即利用红外光谱进行定性、定量分析的方法。 5.12红外光区的划分 红外辐射(即红外光)是波长接近于可见光但能量比可见光低的电磁辐射,其波长范围约为0.75μm?1000μm。 根据所采用的实验技术和获得信息的不同,可将红外光按波长分为三个区(表),其中大多数有机物和无机物的基频吸收带都出现在中红外区,因此中红

5.13红外光谱的表示方法 当用一定波长的红外光作用于物质时,物质分子将吸收一定频率的红外辐射。将分子吸收红外辐射的情况用仪器纪录下来,即得到红外光谱图。 红外光谱图一般用T-σ或T-λ曲线来表示,其中横坐标为波长λ(μm) 及波数 σ(cm-1) ,表示吸收峰所在的位置;纵坐标一般为透射比T(%)。 波数σ和波长λ的关系为: 5.14红外光谱法的特点 ①. 红外光谱是分子振动-转动光谱,主要研究在分子振动中伴随有偶极矩变化的化合物。因此,除单原子分子和同核分子(如Ne、He、O2、N2、Cl2等少数

分子)外,几乎所有的化合物均可用红外光谱法进行研究。 ②.气态、液态和固态样品均可进行红外光谱测定。 ③.分析速度快、灵敏度高、样品用量少(可减少到微克级)且不破坏样品。 ④.常规红外光谱仪价格低廉,易于购置。 ⑤. 针对特殊样品的测试要求,发展了多种测量新技术,如光声光谱(PAS)、衰减反射光谱(ATR)、漫反射、红外显微镜等。 5.15红外光谱的应用 红外光谱法还广泛应用于化学、化工、催化、石油、地矿、材料、生物、医药和环境保护等许多领域。 红外光谱的应用大体上可分为两个方面: 用于分子结构的技术研究:如应用红外光谱可以测定分子的键长、键角,以此推断出分子的立体结构;根据所得的力学常数可以知道化学键的强弱;由简正振动的频率来计算热力学函数等。 用于化学组成的分析:根据光谱中吸收峰的位置和形状来推断未知物结构;依照特征吸收峰的强度来测定混合物中各组分的含量。 5.16红外光谱发展 红外辐射是在1800年由英国的威廉.赫谢尔发现的。一直到1903年,才有人研究了纯物质的红外吸收光谱。 二次世界大战期间,由于对合成橡胶的迫切需求,红外光谱才引起了化学家的重视和研究,并因此而迅速发展。 随着计算机的发展,以及红外光谱仪与其它大型仪器的联用,使得红外光谱在结构分析、化学反应机理研究以及化学组成分析中发挥着极其重要的作用,是“四大波谱”中应用最多、理论最为成熟的一种方法。 5.2红外光谱分析基本原理 5.21红外吸收光谱的产生 1.红外光谱的产生条件 物质分子吸收红外辐射而发生振动-转动能级跃迁必须满足两个条件:一是辐射光子的能量必须与发生振动和转动能级间的跃迁所需的能量相等;二是分子振动必须伴随有偶极矩的变化,辐射与物质之间必须有相互作用。

红外吸收光谱法教案.doc

第六章红外吸收光谱法 基本要点: 1. 红外光谱分析基本原理; 2. 红外光谱与有机化合物结构; 3.各类化合物的特征基团频率; 4.红外光谱的应用 ; 5.红外光谱仪 . 学时安排: 3 学时 第一节概述 分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动 - 转动光谱,这种光谱称为红外吸收光谱。 红外吸收光谱也是一种分子吸收光谱。 当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁 ,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。 一、红外光区的划分 红外光谱在可见光区和微波光区之间,波长范围约为 0. 75 ~ 1000μm,根据仪器技术和应用不同,习惯上又将红外光区分为三个

区:近红外光区( 0. 75 ~ 2.5 μm),中红外光区( 2.5 ~ 25μm),远红外光区( 25 ~ 1 000μm)。 近红外光区( 0.7 5 ~ 2. 5μm) 近红外光区的吸收带主要是由低能电子跃迁、含氢原子团(如O — H 、 N — H 、 C — H )伸缩振动的倍频吸收等产生的。该区的光谱可用来研究稀土和其它过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析。中红外光区( 2.5 ~ 2 5μm) 绝大多数有机化合物和无机离子的基频吸收带出现在该光区。由于基频振动是红外光谱中吸收最强的振动,所以该区最适于进行红外光谱的定性和定量分析。同时,由于中红外光谱仪最为成熟、简单,而且目前已积累了该区大量的数据资料,因此它是应用极为广泛的光谱区。通常,中红外光谱法又简称为红外光谱法。 远红外光区( 25 ~ 10 00μm)该区的吸收带主要是由气体分子 中的纯转动跃迁、 振动- 转动跃迁、液体和固体中重原子的伸缩振动、某些变角振动、骨架振动以及晶体中的晶格振动所引起的。由于低频骨架振动能很灵敏地反映出结构变化,所以对异构体的研究特别方便。此外,还能用于金属有机化合物(包括络合物)、氢键、吸附现象的研究。但由于该光区能量弱,除非其它波长区间内没有合适的分 析谱带,一般不在此范围内进行分析。 红外吸收光谱一般用 T~ 曲线或 T~ 波数曲线表示。纵坐标为百分透射比 T% ,因而吸收峰向下,向上则为谷;横坐标是波长(单位为μm),或波数(单位为 cm - 1)。 波长与波数之间的关系为: 波数 / cm - 1 =1 04 / (/ μm) 中红外区的波数范围是 40 00 ~ 4 00 cm - 1。

第七章 红外光谱法

第七章 红外吸收光谱法 1. 试计算下列红外辐射的波数所对应的红外吸收峰的波长为多少μm 。 (1)1.59×103 cm -1 (2)9.52×102 cm -1 (3)7.94×102 cm -1 (4)7.25×102 cm -1 解: 44 1010σλλσ = =由得 (1)6.29;(2)10.50;(3)12.59;(4)13.79 2. 已知近红外区、中红外区、远红外区的波长范围分别为0.75~2.5 μm 、2.5~25 μm 、25~200 μm ,试求它们的波数和频率范围各为多少? 波数范围 频率范围 0.75~2.5 μm 1.3×104~4×103 4×108~1.2×108 2.5~25 μm 4000~400 1.2×108~1.2×107 25~200 μm 400~50 1.2×107~1.5×106 8. 下列振动中哪些不会产生红外吸收峰? 解:若振动前后能引起偶极矩变化者为红外活性。 (B ), (C ), 不会产生红外吸收峰 9. 指出下列化合物的红外特征吸收带,并试写出它们的吸收波数范围。 A B

C D 10. CS 2是线性分子,试画出它的基本振动类型,并指出那些振动是红外活性的。 参照课本中CO 2的振动类型(解略)。 11. 下面两个化合物中,哪一个化合物的C=O ν吸收带出现在较低频率?为什么? 解: (b )在较低的频率。由于氮原子上的孤对电子与苯环产生n-π共轭,使共轭体系中电子云的密度趋于平均化,使C=O 之间电子云密度降低,键力常数减小,因此振动吸收转向低波数方向。 12. 一个化合物的分子式是C 8H 7N ,其红外光谱图如图1所示,试确定其结构式。 图1 C 8H 7N 的红外光谱图 解:不饱和度171862 -Ω=++= 可能有一个苯环(其不饱和度为4),3030,1607及1508cm -1处的吸收印证了苯环的存在。 2217 cm -1处的强吸收,说明可能有-C N ≡。 817 cm -1处的单吸收峰说明苯环上产生对位取代,因而,可能结构为 CH 3 CN 经与红外谱图对照,没有发现矛盾。

红外吸收光谱

第十章红外吸收光谱 Infrared Spectrometry 基本要点: 1. 红外光谱分析基本原理; 2. 红外光谱与有机化合物结构; 3. 各类化合物的特征基团频率; 4. 红外光谱的应用; 5. 红外光谱仪. 红外吸收光谱是物质的分子吸收了红外辐射后,引起分子的振动-转动能级的跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。利用红外光谱进行定性定量分析的方法称之为红外吸收光谱法。 红外辐射是在 1800年由英国的威廉.赫谢(Willian Hersher) 尔发现的。一直到了1903年,才有人研究了纯物质的红外吸收光谱。二次世界大战期间,由于对合成橡胶的迫切需求,红外光谱才引起了化学家的重视和研究,并因此而迅速发展。随着计算机的发展,以及红外光谱仪与其它大型仪器的联用,使得红外光谱在结构分析、化学反应机理研究以及生产实践中发挥着极其重要的作用,是“四大波谱”中应用最多、理论最为成熟的一种方法。 红外光谱法的特点: 1?气态、液态和固态样品均可进行红外光谱测定; 2?每种化合物均有红外吸收,并显示了丰富的结构信息; 3?常规红外光谱仪价格低廉,易于购置; 4?样品用量少:可减少到微克级; 5. 针对特殊样品的测试要求,发展了多种测量新技术,如:光声光谱( PAS)、衰减反射光谱(ATR),漫反射,红外显微镜等。 §10-1 红外光谱分析基本原理 Principle of Infrared Spectrometry 一. 红外吸收与振动 - 转动光谱 1. 光谱的产生: 分子中基团的振动和转动能级跃迁产生振-转光谱,称红外光谱。

2. 所需能量: 3. 研究对象: 具有红外活性的化合物,即含有共价键、并在振动过程中伴随有偶极矩变化的化合物。 4. 用途: 结构鉴定、定量分析和化学动力学研究等。 二、分子振动方程式 1. 振动频率 对于双原子分子,可认为分子中的原子以平衡点为中心,以非常小的振幅作周期性的振动即化学键的振动类似于连接两个小球的弹簧(图 10.2),可按简谐振动模式处理, 由经典力学导出振动频率: 图10.2 双原子分子振动模拟图

第七章原子发射光谱分析习题

第七章原子发射光谱分析(网上习题) 一、选择题 1.原子发射光谱是由下列哪种跃迁产生的? ( ) (1)辐射能使气态原子外层电子激发 (2)辐射能使气态原子内层电子激发 (3)电热能使气态原子内层电子激发 (4)电热能使气态原子外层电子激发答案:(4) 2.发射光谱定量分析选用的“分析线对”应是这样的一对线 ( ) (1)波长不一定接近,但激发电位要相近 (2)波长要接近,激发电位可以不接近 (3)波长和激发电位都应接近 (4)波长和激发电位都不一定接近答案:(3) 3.发射光谱分析中 , 具有低干扰、高精度、高灵敏度和宽线性范围的激发光源是 ( ) 答案:( 4) (1)直流电弧(2)低压交流电弧 (3)电火花(4)高频电感耦合等离子体 4.电子能级差愈小 , 跃迁时发射光子的 ( ) (1)能量越大 (2) 波长越长 (3) 波数越大 (4) 频率越高答案:(2) 5.下面哪种光源 , 不但能激发产生原子光谱和离子光谱 , 而且许多元素的离子线强度大于原子线强度? ( ) (1)直流电弧 (2)交流电弧

(3)电火花 (4)高频电感耦合等离子体 答案:(4) 6.下面几种常用激发光源中 , 分析灵敏度最高的是( ) (1)直流电弧(3)电火花(2)交流电弧 (4)高频电感耦合等离子体 答案:(4) 7. 下面几种常用的激发光源中 , 最稳定的是 ( ) (1)直流电弧(3)电火花 (2)交流电弧 (4)高频电感耦合等离子体 答案:(4) 8. 下面几种常用的激发光源中 , 背景最小的是( ) (1)直流电弧(3)电火花 (2)交流电弧 (4)高频电感耦合等离子体 答案:(1) 9. 下面几种常用的激发光源中 , 激发温度最高的是 ( ) (1)直流电弧(3)电火花(2)交流电弧 (4)高频电感耦合等离子体 答案:(3) 10.用原子发射光谱法直接分析海水中重金属元素时 , 应采用的光源是( ) (1)低压交流电弧光源(2)直流电弧光源(3)高压火花光源(4)ICP光源 答案:(4)

红外光谱峰值分析的方法

傅里叶红外光谱分析 第一节一般原理 电子能级跃迁所产生的吸收光谱,主要在近紫外区和可见区,称为可见-紫外光谱;键振动能级跃迁所产生的吸收光谱,主要在中红外区,称为红外光谱;自旋的原子核在外加磁场中可吸收无线电波而引起能级的跃迁,所产生的吸收光谱称为核磁共振谱。 第二节紫外光谱 一、紫外光谱的基本原理 用波长围200 nm~800 nm的光照射含有共轭体系的的不饱和化合物的稀溶液时,部分波长的光被吸收,被吸收光的波长和强度取决于不饱和化合物的结构。以波长l为横座标,吸收度A为纵座标作图,得紫外光谱,或称电子光谱。 是化合物紫外光谱的特征常数。 紫外光谱中化合物的最大吸收波长λ max 可见-紫外光谱适用于分析分子中具有π键不饱和结构的化合物。 二、紫外光谱在有机结构分析中的应用 随着共轭体系的延长,紫外吸收向长波方向移动,且强度增大(π→π*),因此可判断分子中共轭的程度。 利用紫外光谱可以测定化合物的纯度或含量。 第三节红外光谱 一、红外光谱的基本原理 用不断改变波长的红外光照射样品,当某一波长的频率刚好与分子中某一化学键的振动频率相同时,分子就会吸收红外光,产生吸收峰。用波长(λ)或波长的倒数—波数(cm-1)为横坐标,百分透光率(T%)或吸收度(A)为纵坐标做图,得到红外吸收光谱图(IR)。分子振动所需能量对应波数围在400 cm-1~4000 cm-1。

二、红外吸收峰的位置和强度 分子中的一个化学键可有几种不同的振动形式,而产生不同的红外吸收峰,键的振动分为两大类。 伸缩振动,用n表示,原子间沿键轴方向伸长或缩短。 弯曲振动用δ表示,形成化学键的两个原子之一与键轴垂直方向作上下或左右弯曲。 组成化学键的原子的质量越小,键能越高,键长越短,振动所需能量越大,吸收峰所在的波数就越高。 红外光谱的吸收峰分为两大区域: 4000 cm-1~1330 cm-1区域:特征谱带区,是红外光谱分析的主要依据。 1330 cm-1~650 cm-1区域:指纹区。每一化合物在指纹区都有它自己的特征光谱,对分子结构的鉴定能提供重要信息。 (很强);s(强);m(中强);w(弱);红外吸收峰的强弱用下列符号表示:v s v (很弱);b(宽峰)。 w 凡能使键增强的因素,引起峰位向高波数方向移动,反之,则向低波数方向移动。 三、各类化合物的红外光谱举例 (一)烃类化合物 注:烷烃,即饱和烃,是只有碳碳单键和碳氢键的链烃。烷烃的通式为CnH2n+2。 烯烃是指含有C=C键(碳-碳双键)(烯键)的碳氢化合物,单链烯烃分子通式为CnH2n 炔烃,为分子中含有碳碳三键的碳氢化合物的总称,其官能团为碳-碳三键(C≡C),分子通式为CnH2n-2

红外光谱分析

红外光谱分析 红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。 红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。 由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。 分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库,人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。 下面将对红外光谱分析的基本原理做一个简单的介绍。 红外吸收光谱是物质的分子吸收了红外辐射后,引起分子的振动-转动能级的跃迁而形成的光谱,因为出现在红外区,所以称之为红外光谱。利用红外光谱进行定性定量分析的方法称之为红外吸收光谱法。 红外辐射是在 1800年由英国的威廉.赫谢(Willian Hersher) 尔发现的。一直到了1903年,才有人研究了纯物质的红外吸收光谱。二次世界大战期间,由于对合成橡胶的迫切需求,红外光谱才引起了化学家的重视和研究,并因此而迅速发展。随着计算机的发展,以及红外光谱仪与其它大型仪器的联用,使得红外光谱在结构分析、化学反应机理研究以及生产实践中发挥着极其重要的作用,是“四大波谱”中应用最多、理论最为成熟的一种方法。 红外光谱法的特点: 1?气态、液态和固态样品均可进行红外光谱测定;

相关主题
文本预览
相关文档 最新文档