当前位置:文档之家› 陶瓷材料答案

陶瓷材料答案

陶瓷材料答案
陶瓷材料答案

一、填空

1、热敏电阻陶瓷可分为正温度系数(PTC)热敏陶瓷、负温度系数(NTC)热敏陶瓷和临界温度系数(CTR)热敏陶瓷。

2、无机胶凝材料可分为气硬性无机胶凝材料和水硬性无机胶凝材料。

3、石灰硬化包括干燥、结晶和碳化三个过程。

4、石膏可分为二水石膏、半水石膏、可熔石膏和无水石膏四大类。

5、水硬性无机胶凝材料是指既能在空气中硬化又能在水中硬化的材料。

6、水泥按用途和性能可分为通用水泥、专用水泥、特性水泥三大类。

7、能产生激光的固体材料都是由(基质晶体)和(激活离子)两部分组成。实际上掺杂离子就是(激活离子)

8、铁氧体是作为(高频用磁性材料)而制备的金属氧化物烧结磁性体,它分为(软磁铁氧体)和(硬磁铁氧体)。

9、表征压电材料的参数是(机电耦合系数K)(K=通过压电效应转换的电能/输入的机械能),K值恒小于1,它是压电材料进行(机—电能量转换)的能力反映。

10、在三价稀土氧化物中掺入二价阳离子将产生(O2-空位),若掺入四价阳离子会产生(间隙氧离子),从而改变三价稀土氧化物的导电性。

11、判断材料是否具有超导性,有两个基本特征:一是(超导电性),二是(完全抗磁性)。

12、陶瓷材料的性能:具有(高熔点)、(高硬度)、高化学稳定性、耐高温、耐磨、耐氧化、耐腐蚀、(弹性模量大)等特点,但(塑性)、(韧性)、可加工性、抗热震性、使用可靠性不如金属材料。

13、普通陶瓷的主要原料是(黏土)(石英)(长石)。

14、陶瓷生产工艺过程比较复杂,但基本的工艺可分为(原料配制)、(坯料成型)、(制品烧结)等三大步骤。

15、黏土是一种含水的铝硅酸盐矿物,其主要成分为(SiO2)、(Al2O3)、H2O、Fe2O3、TiO3

16、陶瓷的质量取决于原料的(纯度)、细度、坯料的均匀性、(成形密度)、(烧结温度)和窑内气氛、冷却速度等。

17、硅酸盐的晶体结构很复杂,但构成它的基本单元都是([Si O4] )四面体,(四个氧离子)紧密排列成四面体,(硅离子)位于四面体心的间隙中。

18、根据Al2O3陶瓷瓷坯中主晶相的不同,可将Al2O3陶瓷分为(刚玉瓷)、(刚玉—莫来石瓷)、(莫来石瓷)等。

19、SiC陶瓷具有(高硬度)和(高温强度),莫氏硬度13,在1400℃高温下仍能保持相当高的抗弯强度,所以它主要用作高温结构材料。另外它有很高的(热传导能力),可作高温下的热交换器、核燃料包装材料等。

20、功能陶瓷性能的调节优化方法有非化学式计量、(离子置换)、(掺杂)等,另外还可通过改变工艺条件而改变陶瓷的(结构),从而改变陶瓷的性能。

21、生产硅酸盐水泥的主要原料是石灰质原料和粘土原料,石灰质原料提供CaO,粘土原料提供Al2O3、SiO2、Fe2O3。

二、判断题

1、对于软磁铁氧体,主要是利用它的高电阻、高频涡流损耗小的特点。(√)

2、硬磁铁氧体矫顽力Hc、剩磁Br、磁能积(BH)均很小。(×)

3、BaTiO3陶瓷具有多种功能,即具有压电效应、热释电效应、铁电效应和对外界条件敏感的特性,因此它可以制作振子、热—电转换器、电容器和温度传感器等。(√)

4、道路水泥要求硅酸盐水泥熟料中含较多的铁铝酸盐。(√)

5、陶瓷的物理、化学、力学性能主要取决于主晶相。(√)

6、莫来石是特种结构陶瓷的主晶相。(×)普通陶瓷

7、Al2O3的同素异构有十几种,但在自然界中只存在β—Al2O3。(×)

8、烧结微晶刚玉瓷产品时,最好的气氛是氩气和空气。(√)

9、在氧化物Al2O3、ZrO2、BeO陶瓷中,导热系数最大的是BeO陶瓷。(√)

10、在氧化物Al2O3、MgO、CaO、BeO陶瓷中,抵抗碳还原作用最强的BeO陶瓷。(√)

11、在热压烧结、热等静压烧结、自扩散高温合成三种烧结方法中,可得到性能最佳的陶瓷烧结方法是热压烧结。(×)

12、适用于冬季施工的水泥是纯度比较高的硅酸盐水泥。(√)

13、用于大坝浇注的水泥要求减少孰料中3Ca O·Al2O3、3Ca O·SiO2的质量分数来降低水泥水化热及提高耐蚀力。(√)

14、在氧化物最简单型(AB)陶瓷中,如MgO,尺寸较大的氧离子构成面心立方结构,而镁离子与之相间排列填满八面体间隙。(√)15、碳化物陶瓷材料是一种耐热高温材料,且许多碳化物的熔点都在3000℃以上,而且其硬度也很高。(√)

16、金属和陶瓷中的点缺陷均降低导电性。(×)

17、陶瓷材料的抗热振性均较差。(×)。但SiC好

18、陶瓷材料的导热性均不好,所以陶瓷材料均是绝热材料。(×)

19、ZrO2经稳定化处理后有氧空位存在,所以可作器敏元件。(√)

20、ZrO2固体电解质在一定条件下有传递氧离子的特性,所以可制成钢液氧探头等。(√)

21、Al2O3陶瓷是目前应用最多的电路基片材料。(√)

22、稳定化ZrO2和ThO2VO2陶瓷均可作熔炼Pt的坩锅。(√)

24、MgO陶瓷可作高温热电偶保护套及高温炉衬材料。(√)

25、目前常压烧结强度最高的材料是Si3N4中添加一定数量Al2O3构成的Si—Al—O—N系新型陶瓷材料。(√)

26、磁性陶瓷的分子式可表示为M O·Fe2O3,M代表一价、二价金属或三价稀土金属。(√)

27、能产生激光的固体材料都是由基质晶体和激活离子两部分组成的,其中激活离子实际上就是掺杂离子。(√)

28、在纯Al2O3中掺入铬就成为蓝宝石。(×)红宝石

29、压敏电阻是指电阻值对外加电压敏感,即电压提高,电阻率随之升高。(×)

30、气硬性无机胶凝材料只能在空气中硬化,水硬性无机胶凝材料只能在水中硬化。(×)

31、石灰水是石灰在水中的饱和溶液。(×)

32、生产硅酸盐水泥时必须加石膏,否则水泥凝结时间难以控制。(√)

浅析精密陶瓷

浅析精密陶瓷 摘要:系统地阐述了精密陶瓷的发展历史及研究状况,和碾压具体方式精密陶瓷的发展趋势和发水平及存在的问题,提出了未来精密陶瓷的发展趋势及产业化应重点解决的问题。 关键词:精密陶瓷、研磨加工、发展、趋势 A nalysis of Precision Ceramics SONGMeiXin (QiqiharUniversity161000) Abstract: Systematic exposition of the history and research status of fine ceramics, and rolling trends specific ways of fine ceramics and send levels and problems, put forward for the future development trend of fine ceramics and industrialization should be focused on solving problems. Keywords: Precision ceramic;grinding;development;trends 1 引言 传统的陶瓷制品,如日用瓷、陈设瓷、建筑卫生瓷等产品都是大家所熟悉的。然而,随着科学技术的飞速发展,而今的陶瓷已逐渐进入许多尖端科学技术领域,并越益显示出巨大的生命力。在所有重要产业部门中,陶瓷作为仅次于金属和塑料的第三种材料,日益获得人们的普遍关注。如果说微电子技术和生物工程技术是新技术革命的两大支柱,那么新材料则是建设和构筑未来高技术社会和信息社会的基础要素。从历史来看如果没有陶器的发明,人类的文明就不会发生从狩猎时代进入农耕时代的变革,同样没有精密陶瓷的发明,微电子技术,宇航技术和其它技术也不可能产生划时代的革新。许多科学家断言:精密陶瓷这种新材料的普遍开发和应用,将使人类由“重厚长大”的钢铁时代进入“轻薄短小”的新陶瓷时代。 精密陶瓷在廿一世纪科学技术的发展中,必定会占有十分重要的地位。同时,这种新型陶瓷材料对我国国民经济建设将发挥重要的作用。 陶瓷的工业应用出现于19世纪末,在20世纪中后期,随着科学技术快速发展对新型陶瓷材料的应用需求不断扩大而获得了非常迅速的发展。到2010年中国精密工业陶瓷产品产值约400亿元,全球精密工业陶 瓷市场销售额约1500亿美元。目前精密陶瓷己经广泛应用于电子信息、航天航空、新能源、生物医学、半导体、机械、工业设备、消费电子等领域。而精密陶瓷的定义是采用严格控制配料及特定工艺制成不经机械研磨加工,就具有表面光滑平整,公差尺寸合乎要求的陶瓷。主要用于制作电路基片、线圈骨架、电子管插座、高压绝缘瓷、火箭的前锥体等。也可制成用于浇制合金的高气孔率精密铸造型芯。还可用作抗震性好的高温材料。 2精密陶瓷制品种类 2.1结构陶瓷 包括高温结构陶瓷、耐磨陶瓷、高韧性陶瓷、高(超)硬陶瓷、纳米结构陶瓷、多孔陶瓷、陶瓷超滤膜等; 2.2功能陶瓷 包括磁性陶瓷、敏感陶瓷、光学陶瓷、生物陶瓷和超导陶瓷等;

自洁功能陶瓷浅谈

摘要:简要介绍了自洁功能陶瓷的概念、分类及国内外研究概况,分别阐述了三大自洁功能材料的自洁机理及其制作工艺,提出了目前自洁功能陶瓷存在的问题。 关键词:自洁功能材料自洁功能陶瓷自洁机理 随着工业的发展和人类的各种活动日益频繁,由此而滋生的疾病也越来越多。要解决这一问题,必须走可持续发展之路:一方面解决污染源,另一方面要提高家居环境的抗污染能力,即研制相应的抗污染材料及其制品。对于陶瓷行业而言,这一抗污染材料和制品就是自洁功能陶瓷[1]。 1、自洁功能陶瓷的概念和分类 1.1 概念 自洁功能陶瓷由陶瓷基体和自洁功能材料两大主要部分构成,它是指在陶瓷制品表面或釉层中加入一种或几种具有抗菌、杀菌、防污、除臭和具有净化大气功能的材料,这些功能材料必须以较强的结合力附着在陶瓷上或者与陶瓷本身结为一体,同时对人体不产生任何危害,这样制得的多功能陶瓷称为自洁陶瓷。 1.2 分类 主要分为两大类:一类是有机材料,另一类是无机材料。有机材料多用于塑料、橡胶、纺织行业等,无机材料则多用于无机非金属行业,尤以玻璃和陶瓷行业应用较广。现在所见报导的无机自洁功能材料分三类:一类是含金属离子的无机化合物,如AgNO3、CuO等,另一类是光催化半导体化合物,如TiO2、ZnO等,第三类是具有远红外辐射功能的自洁材料,如锰及其氧化物。另外,有人还提出用稀土复合磷酸盐无机抗菌材料按一定比例添加到陶瓷中制备抗菌功能陶瓷材料。 2、自洁原理 2.1 含金属离子的自洁功能材料 含金属离子的自洁功能材料其杀菌作用主要依赖金属离子中不稳定电子的迁移,这些电子在迁移的过程中阻碍微生物的呼吸和代谢,破坏其蛋白质。以Cu2+离子为例,Cu2+离子失去外围一至两个电子时,具有强烈的氧化性,这种氧化性阻碍了周围的微生物的呼吸。同时,还可氧化分解周围有机物。由此可见,金属离子的杀菌和抗污主要是由强氧化性来完成的。金属离子按其抗菌效果依次为:Ag>Co>Al>Cu>Zn>Fe>Mn>Sn>Ba>Mg>Ca。而其杀菌效果则有变化,为:Ag>Cu>Fe>Sn>Al>Zn>Co,这主要是因为抗菌作用与原子的电子云磁场有关,而杀菌作用则与其氧化作用的大小有关。一般情况下,常用的金属离子有Ag+、Zn2+和Cu2+,分别以其化合物的形式带入。 2.2 光催化半导体自洁功能材料 物质根据其电性可以分为导体、半导体和绝缘体。在半导体材料中,有这样一族材料,它们能够被光子激活,从而实现电子流动,这一族材料称为光催化半导体材料。[4]其中经常应用的光催化半导体材料有:TiO2、ZrO2、V2O3、ZnO、CaS、Se、GaP、SiC等,在自洁陶瓷的研究中应用较多的为:TiO2、ZrO2和ZnO。 2.3 远红外线自洁功能材料 远红外线自洁功能材料包括锆(Zr)、钴(Co)、镍(Ni)锰(Mn)其及氧化物,这类材料的杀菌自洁与其所放出的远红外线射线有关。但这类材料的杀菌效果是有限的,它必须和以上两类自洁功能材料配合使用才有更好的应用价值。 2.4 添加稀土复合磷酸盐抗菌功能陶瓷材料 将稀土复合磷酸盐无机抗菌材料按一定比例添加到陶瓷中制备抗菌功能陶瓷材料[2]。结果表明:在陶瓷中加入稀土复合磷酸盐无机抗菌材料不会降低陶瓷表面质量,且对金黄色葡萄球菌的6h杀抑率可达94.8%。[3]将复合磷酸盐无机抗菌材料、陶瓷熔块、粘土、添加物、

材料学导论陶瓷材料

材料学导论陶瓷材料 《材料科学导论》课程学习报告 —关于陶瓷材料学习的体会 1. 陶瓷材料概论 说到陶瓷,在许多人的印象中,是一种坚硬易碎的物体,缺乏韧性,缺乏塑性。许多陶瓷学家把陶瓷看成是用无机非金属化合物粉体,经高温烧结而成,以多晶聚集体为主的固态物。这一定义虽然同时指出了材料的制备特征和结构特征,但却把玻璃、搪瓷、金属陶瓷等摒除在外。所以,陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。 2. 陶瓷材料的发展 陶瓷是人类最早利用自然界提供的原料制造而成的材料。旧石器时代,人们就发现经火煅烧过的粘土,其硬度和强度都大大提高,而且不再被水瓦解。于是,就有了利用粘土的可塑性,将其加工成所需的形状,然后用火烧制成的陶器。随着金属冶炼术的发展,人类掌握了通过鼓风机提高燃烧温度的技术,并且发现,有一些经高温烧制的陶器,由于局部熔化变得更加致密坚硬,完全改变了陶器多孔,透水的缺点。经过长期的摸索和经验积累,以粘土,石英,长石等矿物原料配制而成的瓷器出现了。 从陶器发展到瓷器,是陶瓷发展过程中的一次重大飞跃。这种传统的瓷器,从结构上来看,是由玻璃相结合在一起的、由许多微小的晶 粒构成的物体。 随着科学技术的高速发展,人们迫切需要大量强度很高,绝缘性能良好的陶瓷材料。此时,人们发现,尽管陶瓷中的玻璃相使陶瓷变得坚硬、致密,然而它却妨碍了

陶瓷强度的提高。同时,玻璃相也是陶瓷绝缘性能,特别是高频绝缘性能不好的根源。于是,玻璃相含量比传统陶瓷低的一些强度高,性能好的材料不断涌现。现在,许多科学与技术方面使用的高性能陶瓷(High performance Ceramics)都是几乎不含有玻璃相的结晶态陶瓷。为了有别于传统陶瓷,称之为先进陶瓷(Advanced Ceramics)或高技术陶瓷(High Tech Ceramics);有时也称为精细陶瓷(Fine Ceramics)或工程陶瓷(Engineering Ceramics)。 3. 陶瓷材料的定义 陶瓷的传统定义:陶器和瓷器的总称,包括玻璃,搪瓷,耐火材料,砖瓦,水泥,石膏等。 陶瓷的狭义定义:以粘土为主要原料,经高温烧制而成的制品。 陶瓷的广义定义:经高温烧制而成的无机非金属材料的总称。 陶瓷的精确定义:用天然原料或人工合成的粉状化合物,经过成型和高温烧结制成的,由无机化合物构成的多相固体材料。 4. 陶瓷材料的分类陶瓷材料按照性能可大致分为普通陶瓷和特种陶瓷。 1. 普通陶瓷:原料: 粘土、石英和长石。 特点:坚硬而脆性较大、绝缘性和耐腐蚀性极好;制造工艺简单,成本低廉,各种陶瓷中用量极大。 分类:普通陶瓷又分为普通日用陶瓷和普通工业陶瓷。 (1) 普通日用陶瓷:特点:作日用器皿和瓷器,具有良好的光泽度、透明度,热稳定性和机械强度较高。分类:长石质瓷(国内外常用的日用瓷,作一般工业瓷制品)、绢云母质瓷(我国的传统日用瓷)、骨质瓷(近些年得到广泛应用,主要作为高级日用瓷制品)和滑石质瓷(我国发展的综合性能好的新型高质瓷)。 (2) 普通工业陶瓷:特点:普通工业陶瓷有炻器和精陶。炻器是陶器和瓷器之间的一种瓷。分类:工业陶瓷按用途分为:建筑卫生瓷(用于装饰板,卫生间装置和器

浅析先进陶瓷材料的研究现状及发展趋势

龙源期刊网 https://www.doczj.com/doc/ba14995723.html, 浅析先进陶瓷材料的研究现状及发展趋势 作者:孙彬 来源:《科技资讯》2017年第27期 摘要:随着现阶段各种高新技术日新月异的发展,先进陶瓷材料已经成为了新材料领域 中的翘楚,也是很多技术创新领域需要用到的关键材料,受到了很多发达国家和工业化企业的极大关注,先进材料的发展以及应用也在很大程度上对于工业的发展和进步产生一定的影响。本文旨在探讨先进陶瓷材料的研究现状及发展趋势。 关键词:工业陶瓷材料先进研究环保发达国家 中图分类号:TQ174.7 文献标识码:A 文章编号:1672-3791(2017)09(c)-0217-02 随着先进陶瓷的各种优势越来越明显,很多自动化控制、人工智能、电子智能技术领域都需要先进陶瓷的入驻,可以说,先进陶瓷的市场产量和覆盖范围已经发展到了一个不可忽视的阶段。 1 先进陶瓷的具体应用以及性能优势对比 先进陶瓷,根据各自的优点以及应用范围,大体可以分为两大类,也就是功能陶瓷和结构陶瓷,具体的应用范围以及性能优势,如表1所示。 2 国内外对于先进陶瓷材料的研究现状 2.1 国外对于先进陶瓷材料的研究现状 现阶段,全球各个国家对于先进陶瓷材料进行研究应用的趋势越来越明显。 举例来说,以美国和日本为代表,在对于先进陶瓷材料的研究和应用方面远远领先于其他国家。美国的宇航局和航空局大规模的应用了先进陶瓷。比如说在航空发动机上用陶瓷来替代其他材料;提出了关于先进陶瓷的多个计划,在每年对于先进材料的研究和应用上,投入多达35亿美元。这些都是为了提高他们在国际上的综合竞争能力。而日本也提出了对于先进陶瓷 研究和开发的一项计划,名曰“月光计划”,另外,欧盟各国尤其是以工业闻名的德国,都对先进陶瓷进行了研究和开发,法国也紧随其后,主要集中在对新能源材料进行重点的研究和突破。 综合来说,这些发达国家,比如美国、日本、欧盟,它们在先进陶瓷领域每年的平均增长率高达12%,其中欧盟较为领先,多达15%~18%,美国则是9.29%,日本是7.2%。现阶 段,全球先进陶瓷的最大市场集中在美国和日本,其次就是欧盟国家,甚至可以说,先进陶瓷在发达国家更加受到重视和人们的欢迎。

陶瓷材料学教学大纲

《陶瓷材料学》教学大纲 英文名称:Science of Ceramic Material 课程编码:0933043 课程性质:限选课 学时:30 周学时:2 学分:1.5 适用专业:材料物理学专业 授课学期:2015-2016学年第二学期 【课程性质、目的和要求】 通过考试考查学生对《陶瓷材料学》课程理论教学和实践教学环节的掌握程度,促使学生系统掌握关于陶瓷材料合成的基本理论和基本工艺方法,掌握有关工艺设计和科研的基本知识和方法,了解陶瓷材料的性质和特点,对陶瓷材料的应用尤其是现代陶瓷材料在各方面的应用深入了解,使学生在学完课程之后,能够胜任陶瓷材料生产技术工作,并且能从事开发、研究和设计工作。 主要依据教学大纲的内容和要求考核。通过闭卷考试方式考查学生对该课程的基本概念、基本理论和基本技能掌握牢固程度,以及综合分析的能力,着重考查学生运用所学知识解决问题的能力。主要以教材内容为主,少量内容考查学生对参考书、文献等了解情况。 【教学内容、要点和课时安排】 绪论(2课时) 教学目的:了解本课程的性质和任务,了解陶瓷材料的发展史,掌握陶瓷材料的概念及其内涵,了解陶瓷材料的分类方特,对不同种类陶瓷材料的性质特点熟悉掌握。 教学重点和难点: 1、陶瓷材料概念 2、陶瓷材料分类 3、陶瓷材料特点 第一节陶瓷材料发展历史及其概念的内涵 第二节陶瓷材料的分类 第三节陶瓷材料的特点 思考题: 1、陶瓷材料的分类? 2、陶瓷材料具有哪些特点? 第一章陶瓷的晶体结构(2课时)

教学目的:了解化学键的形成和分子间的相互作用力,了解陶瓷材料的基本结构有哪些,掌握代表性晶体结构的特点,熟练掌握硅酸盐结构特性,区分离子型晶体和共价型晶体的结构和性质。 教学重点和难点: 1、陶瓷的晶体结构 2、代表性晶体结构 3、硅酸盐结构 4、离子型晶体与共价型晶体的区别 第一节原子间的结合力 第二节陶瓷的晶体结构 第三节代表性晶体结构 第四节硅酸盐晶体结构 第五节离子型晶体的结构与性质 第六节共价型晶体的结构与性质 思考题: 1、陶瓷的晶体结构有哪些? 2、离子型晶体与共价型晶体在结构和性质上的区别? 第二章非晶态与玻璃结构(2课时) 教学目的:了解晶体的形态,认识晶体与非晶态的区别,掌握玻璃结构的特点,了解非晶的晶化过程,对无机玻璃的种类有一定的认识。 教学重点和难点: 1、非晶态的形成 2、玻璃结构的特点 3、非晶的晶化过程 第一节非晶态 第二节玻璃结构 第三节非晶的晶化 第四节无机玻璃的种类 思考题: 1、玻璃结构的特点? 2、非晶的晶化过程? 第三章晶体缺陷(2课时) 教学目的:了解陶瓷材料中晶体的缺陷有哪些,对点缺陷、线缺陷和位错的概念深入了解,掌握不定比化合物的特点,掌握晶界概念。。 教学重点和难点: 1、点缺陷和位错概念理解 2、不定比化合物 第一节点缺陷 第二节不定比化合物

浅谈多孔陶瓷

浅谈多孔陶瓷 08化本黄振蕾080900029 摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节 能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学科的高度关注。 关键词:多孔陶瓷制备应用发展 0.引言 多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料和传感器材料等方面得到广泛的应用[ 2]。因此, 多孔陶瓷材料及其制备技术受到广泛关注。 1多孔陶瓷材料的制备方法 1. 1 挤压成型法 挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400 孔/ 2. 54 cm ×2. 54 cm 的规格。美国与日本已研制出了600 孔/ 2. 54 cm ×2. 54 cm、900 孔/ 2.54 cm ×2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。我国亦开始了600 孔/ 2. 54 cm ×2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型的多孔陶瓷。其工艺流程为: 原料合成+ 水+ 有机添加剂→混合练混→挤出成型→干燥→烧成→制品。这种工艺的优点在于, 可根据实际需要对孔形状和大小进行精确设计; 缺点是不能成型复杂孔道结构和孔尺寸较小的材料, 同时对挤出物料的塑性有较高要求[ 4] 。 1. 2 颗粒堆积成孔工艺法 颗粒堆积工艺是在骨料中加入相同组分的微细颗粒, 利用微细颗粒易于烧结的特点, 在高温下液化, 从而使骨料连接起来。骨料粒径越大, 形成的多孔陶瓷平均孔径就越大, 并呈线性关系。骨料颗粒尺寸越均匀, 产生的气孔分布也越均匀, 孔径分布也越小。另外, 添加剂的含量和种类, 以及烧成温度对微孔体的分布和孔径大小也有直接关系。如Yang 等[ 5]用Yb2O3 作为助剂制备了多孔氮化硅陶瓷, 通过加入Yb2O3 后, 使氮化硅微孔陶瓷孔的分布更加均匀, 经烧结后使孔隙率达到很好的要求。另外, 孔隙率可通过调整颗粒级配对孔结构进行控制, 制品的孔隙率一般为20% ~ 30% 。若在原料中加入碳粉、木屑、淀粉、塑料等成孔剂, 高温下使其挥发可将整体孔隙率提高至75% 左右[ 6]。主要优点在于工艺简单, 制备强度高; 不足之处在于气孔率低。

材料概论(陶瓷材料)

We live in a world of material possessions,that largely define our social relationships and economic quality of life .we distinguish six categories that encompass the materials available to practicing engineers:metals,ceramics,glasses,polymers,composites,and semiconductors. Ceramics is the most ancient material that widely used as the engineering material since about 8000 years ago.and it also be developed for the airspace and electronics industries.Ceramics can be divided into two categories:structual ceramic and fuctional ceramic . the raw materials of trantional ceramic contains clay,kaolinite,montmorillonite and other materials that can improve and change the property of ceramics.there materials are abundent and economical,many of the traditional ceramics that we use are made of these materials called silicates.With the development of the ceramic,it has been more and more advanced . When we first discuss a material,we often talk about it’s structual and property and then application.The structure of ceramic cotains three phases:crystal phase,glass phase and gaseous phase(i.e.pore)Because it’s crystal structual,ceramics often called crystalline ceramics by looking at the SiO2-based silicates.It’s network of the structure contribute to the property of it’s s pecial hardness and excellent temperature resistance and other phsical and chemical properties.The role of glass phase is to fill the crystalline gap,improve the density,lower the sintering temperature and

浅谈多孔陶瓷

浅谈多孔陶瓷 08 化本黄振蕾080900029 摘要:随着控制材料的细孔结构水平的不断提高以及各种新材质高性能多孔陶瓷材料的不断出现,多孔陶瓷的应用领域与应用范围也在不断扩大,目前其应用已遍及环保、节能、化工、石油、冶炼、食品、制药、生物医学等多个科学领域,引起了全球材料学 关键词:多孔陶瓷制备应用发展 0. 引言 多孔陶瓷是一种经高温烧成、内部具有大量彼此相通, 并与材料表面也相贯通的孔道结构的陶瓷材料。多孔陶瓷的种类很多, 可以分为三类: 粒状陶瓷烧结体、泡沫陶瓷和蜂窝陶瓷[ 1]。多孔陶瓷由于均匀分布的微孔和孔洞、孔隙率较高、体积密度小, 还具有发达的 比表面, 陶瓷材料特有的耐高温、耐腐蚀、高的化学和尺寸稳定性, 使多孔材料可以在气体液体过滤、净化分离、化工催化载体、吸声减震、保温材料、生物殖入材料, 特种墙体材料 和传感器材料等方面得到广泛的应用[ 2]。因此, 多孔陶瓷材料及其制备技术受到广泛关注。 1 多孔陶瓷材料的制备方法 1. 1 挤压成型法 挤压是一种塑性变形工艺, 可分为热挤压和冷挤压。一般是在压力机上完成, 使工件产生塑性变形, 达到所需形状的一种工艺方法。其过程是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成形, 经过烧结后就可以得到典型的多孔陶瓷。目前, 我国已研制出并生产使用蜂窝陶瓷挤出成型模具达到了400孔/ 2. 54 cm X 2. 54 cm 的规格。 美国与日本已研制出了600孔/ 2. 54 cm X 2. 54 cm、900孔/ 2.54 cm X 2. 54 cm 的高孔密度、超薄壁型蜂窝陶瓷。我国亦开始了600 孔/ 2. 54 cm X2. 54 cm 挤出成型模具的研究, 并取得了初步成功[ 3]。例如, 现在用于汽车尾气净化的蜂窝状陶瓷, 它是将制备好的泥条通过一种预先设计好的具有蜂窝网格结构的模具挤出成型, 经过烧结后得到典型 的多孔陶瓷。其工艺流程为:原料合成+水+有机添加剂T混合练混T挤出成型T干燥T 烧成T制品。这种工艺的优点在于,可根据实际需要对孔形状和大小进行精确设计;缺点 是不能成型复杂孔道结构和孔尺寸较小的材料, 同时对挤出物料的塑性有较高要求[ 4]。 1. 2 颗粒堆积成孔工艺法颗粒堆积工艺是在骨料中加入相同组分的微细颗粒,利用微细颗粒易于烧结的特点,在高温下液化,从而使骨料连接起来。骨料粒径越大,形成的多孔陶瓷平均孔径就越大,并呈线性关系。骨料颗粒尺寸越均匀,产生的气孔分布也越均匀,孔径分布也越小。另外,添加剂的含量和种类,以及烧成温度对微孔体的分布和孔径大小也有直接关系。如 Yang 等[ 5] 用Yb2O3作为助剂制备了多孔氮化硅陶瓷,通过加入Yb2O3后,使氮化硅微孔陶瓷孔的分布更加均匀,经烧结后使孔隙率达到很好的要求。另外,孔隙率可通过调整颗粒级配对孔结构进行控制,制品的孔隙率一般为20%~ 30% 。若在原料中加入碳粉、木屑、淀粉、塑料等成孔剂,高温下使其挥发可将整体孔隙率提高至75% 左右[ 6]。主要优点在于工艺简单,制备强度高;不足之处在于气孔率低。

2019华中科技大学复试《陶瓷材料学》考试大纲

2019华中科技大学复试《陶瓷材料学》考试大纲 1. 绪论 1.1 陶瓷材料的定义 1.2 陶瓷材料的发展史 1.3 陶瓷材料的键特性与基本性能 1.4 典型陶瓷材料及其应用 1.5 陶瓷材料未来发展及关键问题 2. 陶瓷材料的晶体结构 2.1 离子晶体的结构规则—鲍林规则 2.2 几种典型的晶体结构 ●MX结构 ●MX2结构 ●M2X结构 ●M2X3结构 2.3 硅酸盐陶瓷的晶体结构 ●硅酸盐陶瓷的晶体结构特点及分类 ●岛状硅酸盐陶瓷晶体结构 ●组群状硅酸盐陶瓷晶体结构 ●链状硅酸盐陶瓷晶体结构 ●层状硅酸盐陶瓷晶体结构 ●架状硅酸盐陶瓷晶体结构 3. 非晶态与玻璃结构 3.1 非晶态原子结构 ●非晶态原子结构特点 ●非晶态物质的结构表征方法 ●非晶态物质的热学参数表征 ●非晶态结构的制备方法 3.2 氧化物玻璃 ●硅酸盐玻璃 ●硼酸盐玻璃 ●磷酸盐玻璃 4. 陶瓷材料的平衡相图

4.1陶瓷系统相平衡特点 4.2单元系统相图 ●SiO2系统相图 ●ZrO2系统相图 4.3 二元系统相图 ●具有低共熔点的二元系统 ●生成一致熔融化合物的二元系统 ●生成不一致熔融化合物的二元系统 ●固相中有化合物形成或分解的系统 ●具有多晶转变的系统 ●具有液相分层的系统 ●形成连续固溶体的系统 ●形成不连续固溶体的系统 4.4 三元系统相图 ●具有三元最低共熔点的系统 ●生成一个一致熔融二元化合物的三元系统相图 ●生成一个不一致熔融二元化合物的三元系统 ●生成一个固相分解的二元化合物的三元系统 ●具有低温稳定的二元化合物的三元系统 ●具有同组成熔融三元化合物的系统 ●具有异组成熔融三元化合物的系统 ●具有两种液相分层的三化合物的系统 5. 陶瓷材料的烧结 5.1概述 5.2 烧结动力学 5.3 固相烧结及机理 5.4 液相烧结及机理 5.5 陶瓷烧结的影响因素 5.6 特色烧结方法及装备 6. 陶瓷材料的脆性与增韧 6.1 陶瓷材料的脆性机理 6.2 陶瓷材料的增韧 ●相变增韧 ●微裂纹增韧

浅谈陶瓷工业的现状与发展趋势

2013届毕业论文 浅谈陶瓷工业的现状与发展趋势 系部:材料与化学工程系 学生姓名:唐前锋 指导教师:谢和平 职称:副教授 专业:材料工程技术 班级:材料1001班 学号: 10700930115 2013年5月

摘要 本文介绍了陶瓷材料的发展历史,并根据陶瓷材料的不同特性及用途对其进行了较为准确的分类,并对各类陶瓷的应用进行了概述。并从陶瓷的晶体结构、陶瓷的成型与烧结、陶瓷的韧化等几个方面详细的介绍了陶瓷材料。通过对陶瓷特性及应用领域的总结,对陶瓷材料未来的发展作出了新的展望,揭示了陶瓷材料的应用方向及发展趋势。 This paper introduces the history and development of ceramic materials, and according to the different characteristics and application of ceramic materials were more accurate classifications of its, and application of various kinds of ceramics were summarized. And from several forming crystal structure, ceramic and ceramic sintering, toughening, detailed introduction of the ceramic materials. The ceramic characteristics and application of summary, made a new prospect for the development of ceramic materials in the future, reveals the application direction of ceramic materials and the development trend. 关键字:陶瓷材料结构成型烧结前景

几种功能陶瓷材料的研究与发展现状

几种功能陶瓷材料的研究与发展现状 摘要 功能陶瓷作为一种新型的无机非金属材料,以其优越的性能正越来越多地应用到社会生活中来,同时对于它的研究也仍在不断的深入与发展。由于功能陶瓷材料的种类繁多,本文主要介绍了目前涉及比较广泛的铁电压电陶瓷材料,半导体陶瓷材料以及微波介质陶瓷材料的研究概况与进展。 关键词:铁电陶瓷压电陶瓷半导体陶瓷微波介质陶瓷 前言 功能陶瓷主要是指那些利用电磁、声、光、热、力等直接效应及其耦合效应所提供的先进陶瓷(现代陶瓷)。功能陶瓷的发展经历了电介质陶瓷、压电铁电陶瓷、半导体陶瓷、快离子导体陶瓷、高温超导陶瓷等等一系列的过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。功能陶瓷的不断开发,对科学技术的发展起了巨大的促进作用,其应用领域也随之更为广泛。[1]目前主要用于电、磁、光、声、热和化学等信息的检测、转换、传输、处理和存储等,并已在电子信息、集成电路、计算机、能源工程、超声换能人工智能、生物工程等众多近代科技领域显示出广阔的应用前景。当前功能陶瓷正朝着复合化,多功能化,低维化,智能化和设计、材料、工艺一体化的方向进一步的发展。 一、铁电压电陶瓷材料的研究进展 [2]近年来,随着电子器件微型化、智能化的发展,各种性能优良、能满足制备体积更小电子器件的新型材料成为材料科学界的研究热点之一。铁电压电材料因其具有独特的电学、光学和光电子学性能,在现代微电子、信息存储等方面有着广泛的应用前景,已经成为当前新型功能材料研究的热点之一,其主要可以分为以下几大类。 1、弛豫铁电体 弛豫铁电体是指顺电—铁电转变,属弥散相变的铁电材料,一般为复合型化和物或固溶体。由于弛豫型铁电体具有很高的介电常数,相对低的烧结温度和“弥散相变”得到的较低容温变化率、大的电致伸缩系数和几乎无滞后的特点,使其在多层陶瓷电容器及新型电致伸缩器件方面有着巨大的应用前景。 近年来,弛豫铁电陶瓷的研究一直是人们关注的热点。[3]铌镁酸铅—钛酸铅单晶可

浅谈陶瓷材料的性能及其应用2

浅谈特种陶瓷材料的性能、应用及其展望 摘要 陶瓷是无机非金属材料,它以其特殊的性能被广泛应用。特种陶瓷是陶瓷材料不断发展的产物,随着人们需求的增长,特种陶瓷材料的类型越来越多。特种陶瓷性能好、应用广、发展快,在各个领域均被广泛应用,在现代工业中有着重要地位。 Summary Abstract ceramic inorganic non-metallic materials, with special performance was widely used. Special ceramics is the continued development of ceramic products, as demand growth, special types of ceramic materials is increasing. Good special ceramics, wide application, fast development, has been widely applied in various fields, has an important position in the modern industry. 关键词:无机非金属(non metallic inorganic)性能(highperformance)发展(development)重要地位(Important position) 一、特种陶瓷的类型 按照化学成分可分为氧化物陶瓷、碳化物陶瓷、氮化物陶瓷、硼化物陶瓷、硅化物陶瓷、氟化物陶瓷、硫化物陶瓷等,此外还有铬酸镧钙陶瓷,金属陶瓷等。

但是人们为了生产、研究和学习上的方便,有时不按化学组成,而根据陶瓷的性能把它们分为结构陶瓷和功能陶瓷,其中又可以分为高强度陶瓷、高温陶瓷、高韧性陶瓷、铁电陶瓷、压电陶瓷、电解质陶瓷、半导体陶瓷、电介质陶瓷、光学陶瓷(即透明陶瓷)、磁性瓷、耐酸陶瓷和生物陶瓷等。结构陶瓷有很好的强度、韧度以及硬度;功能陶瓷则有其特殊的性能,例如绝缘性、介电性、热电性等。 二几种特种陶瓷的性能极其应用 随着现代电器,无线电、航空、原子能、冶金、机械、化学等工业以及电子计算机、空间技术、新能源开发等尖端科学技术的飞跃发展而发展起来的。这些陶瓷所用的主要原料不再是粘土,长石,石英,有的坯休也使用一些粘土或长石,然而更多的是采用纯粹的氧化物和具有特殊性能的原料,制造工艺与性能要求也各不相同。 为了方便更好地了解特种陶瓷,以下以性能分类。 1.介电陶瓷 这类材料主要分为非铁电陶瓷和铁电陶瓷两类。非铁电陶瓷比如二氧化钛、钛酸镁等,高频损耗小,也称为补偿电容器陶瓷。铁电陶瓷比如钛酸钡、锆钛酸铅等,介电常数高,也称为强介电陶瓷。除此以外还有一些比如反铁电陶瓷等等,数量比较少。陶瓷材料特有的高强度、耐热性、稳定性等特点,被人们普遍看好用作集成电路板的制造材料。目前作为集成电路基板的陶瓷材料主要有氧化铝、氧化铍、碳化硅及氮化铝等,其中以氧化铝应用最为普遍。这类陶瓷的介

浅谈新型陶瓷材料

浅谈新型陶瓷材料 ------由陶瓷谈谈我对学科的认识提及陶瓷,大家并不陌生。日常生活中,我们接触的有餐具,卫生陶瓷,装饰瓷砖等等,陶瓷遍布我们生活中的各个领域。最让我们叹为观止的也许是素有“瓷都”之称的景德镇生产出的陶瓷制品,它以“白如玉,明如镜,薄如纸,声如罄”的独特风格蜚声海内外。在中国,制陶技艺的产生可追溯到纪元前4500年至前2500年的时代,可以说,中华民族发展史中的一个重要组成部分是陶瓷发展史,它体现了中国人在科学技术上的成果以及对美的追求与塑造。陶瓷凭借它完美的塑造与所蕴含的科技重量让更多的人去追寻,同时也深深地吸引了我。 早期,陶瓷是陶器与瓷器的总称。陶瓷是以无机非金属天然矿物或化工产品为原料、经原料处理、成型、干燥、烧成等工具制成的产品。也许,没有接触这门学科之前,我对于陶瓷并不了解多少,由一块简单的瓷砖更不能联想到它有其它什么样的性能特点。通过材料概论这门课,也因为为准备这篇论文看了一些关于陶瓷方面的书籍,让我在这方面的知识有了一些拓展与对陶瓷更深入的了解。 陶瓷在我们生活中的广泛应用正因为它具有很多优良的性能。力学性能方面,陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。热性能方面,陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低

于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。电性能也是陶瓷很重要的一个性能,电子陶瓷是现代陶瓷的重要组成部分。大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种绝缘器件。少数陶瓷还具有半导体的特性,可作整流器。陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。同时,陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。 了解了陶瓷的基本性能后,我们看到了它独特的优越性,但也有它的缺点,如脆性。这就需要对陶瓷材料进行研究分析,如合理利用晶界特性是改善材料的重要手段。因此研究开发新型功能陶瓷是材料科学中的一个重要领域。 新型陶瓷材料具有远胜过以往陶瓷独特性能的优异特性,从最根本的原料方面来说,它突破了传统陶瓷以天然的岩石、矿物、粘土等材料做主要原料的界限,而新型陶瓷则采用人工合成的高纯度无机化合物为原料。因此新型陶瓷的生产不再受地域性的限制,而在普通陶瓷中,如景德镇的高岭土在国际陶瓷界都具有影响,高岭土是陶瓷工业最重要的原材料,景德镇产的高岭土品质非常好,用它生产出来的景德镇瓷器,曾经代表着中国陶瓷制品的高端水平和上等品质。可见,新型陶瓷在原料的需求方面不再具有如此明显的地域性。同时,新型

陶瓷材料科学论文

学号: 1004230213 专业素质教育 2012 ~ 2013 学年秋季学期 学院:材料学院 专业班级:无机10—02班 姓名:宋海彬 透明陶瓷的研究现状与发展展望 摘要:陶瓷具有广大的发展前景,透明陶瓷以其优异的综合性能已成为一种新型的、备受瞩目的功能材料。综述了透明陶瓷的分类,探讨了透明陶瓷的制备工艺,并展望了透明陶的应用前景。 关键词:性能透明材料前景组成陶瓷透光性制备工艺应用 前言:1962年RLC首次报导成功地制备了透明氧化铝陶瓷材料以来,为陶瓷材料开辟了新的应用领域。这种材料不仅具有较好的透明性,且耐腐蚀,能在高温高压下工作,还有许多其他材料无可比拟的性质,如强度高、介电性能优良、低电导率、高热导性等,所以逐渐在照明技术、光学、特种仪器制造、无线电子技术及高温技术等领域获得日益广泛的应用。 透明陶瓷的分类 透明陶瓷材料主要分为氧化物透明陶瓷和非氧化物透明陶瓷两类。 1氧化物透明陶瓷

对氧化物透明陶瓷的研究早于对非氧化物透明陶瓷的究,其制备工艺也相对成熟。到目前为止,已经先后研发出了多种材料:Be()、ScZ()3、Ti认、ZK):、Ca(〕、Th(矢、A12()3仁5·6〕、Mg()、AI()NL,」、YZ03[8·”〕、稀土元素氧化物、忆铝石榴石(3Y203·SA12()。)仁’0,”】、铝镁尖晶石(Mg()·A一2()。)〔’2,’3]和透明铁电陶瓷pLZ子川等。其中AiZ姚、M四、YZ姚以及忆铝石榴石以其自身优异的综合性能,现已经得到广泛的应用。2非氧化物透明陶瓷 对非氧化物透明陶瓷的研究是从20世纪80年代开始的。非氧化物透明陶瓷的制备比氧化物透明陶瓷的制备要困难得多,这是由于非氧化物透明陶瓷具有较低的烧结活性、自身含有过多的杂质元素(如氧等),这些都成为制约非氧化物透明陶瓷实现成功烧结并得到广泛应用的主要因素。但经过各国研究人员的共同努力和深人研究,现已经成功地制备出了多种透明度很高的非氧化物透明陶瓷,其中最典型的是AIN、GaAS、MgFZ、ZnS、CaFZ等透明陶瓷。 与氧化物透明陶瓷相比,大多数的非氧化物透明陶瓷不仅室温强度高,而且高温力学性能好,此外,还具有优良的抗急冷急热冲击性能。这些都使得对非氧化物透明陶瓷的研究势在必行。 透明陶瓷的制备工艺 透明陶瓷的制备过程包括制粉、成型、烧结及机械加工的过程。为了达到陶瓷的透光性,必须具备以下条件〔4〕:(1)致密度高;(2)晶界没有杂质及玻璃相,或晶界的光学性质与微晶体之间差别很小;(3)晶粒较小而且均匀,其中没有空隙;(4)晶体对入射光的选择吸收很小; (5)无光学各向异性,晶体的结构最好是立方晶系;(6)表面光洁度高。因此,对制备过程中的每一步,都必须精确调控,以制备出良好的透明陶瓷材料。

浅谈陶瓷仓储管理

浅谈陶瓷仓储管理 —黄金宝 2019年5月25日 前言: 光阴荏苒,日月如梭,走进建材行业在陶瓷后勤岗位工作不觉已有数年,期间历经了数个一线品牌,如“诺贝尔”、“新中源”、“欧神诺”,闲暇之余也走访了一些个体经营的小品牌和“大路货”;一直以来,无论是在仓管员岗位还是在加工对接、物流配送、票务或主管岗位工作上,扪心自问,我都会尽心尽职、始终如一,同时也在数年中收获一点点浅薄的工作心得,借此分享一二: 所谓仓储管理指的是对仓储货物收、发、结存等活动有效的控制,目的是保证企业仓储货物完好无损,以明确的数据或图表等方式表达仓储货物的数量、品质、分类摆放以及订单状况等情况的综合管理形式。当前,最常用的是采用陶瓷专业软件和和8S管理理念或部分管理理念结合的综合管理方式,所谓的8S管理,是指整理(SEIRI)、整顿(SEITON)、清扫(SEISO)、清洁(SEIKETSU)、素养(SHITSUKE)、安全(SAFETY)、节约(SAVE)、学习(STUDY)八个项目,因其罗马发音均以“S”开头,故而简称为8S;目前在建材行业中,无论是个体经营者还是多元化建材经营的大公司,这种专业软件运用的已经非

常普遍了,从采购、入库、客户报备、收款、订单制定、占库、转销售出库、加工调拨、加工单及加工图纸上传下载、物流配送、财务结算、归档、库存查询、各种统计报表查看等等,几乎每种专业软件都能达到相应管理目的。 无论是采用什么专业软件和什么管理理念,最终的目的都是使其行为专业化、规范化和流程化,其结果数据化、表格化;但不能疏忽的是,管理的核心手段一定得是“复杂问题简单化、简单问题明了化”,否则只能是自缚手脚、妨碍经营。 一、8S管理: 1S—整理(SEIRI): 目的,合理高效利用有限空间。具体工作措施: 1、仓库空间分类: 不同面积和条件下的仓库,首先一定得宏观的规划出主干道和大小分支道路,有条件的话,主干道可以预留足够大货车往返的两车道,小分支道路至少要预留宽度2米以上,至少保证托盘和推车同时从容进出。另外还要将仓库平面划可分诺干区域(如不同品牌、不同规格、畅销或滞销产品区域、回收样品区等),有条件的可以采用拦网进行分隔。空间也可分区(如设立几个货架,可以将花片、腰线或

陶瓷材料学课程教学大纲

《陶瓷材料学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分: 《陶瓷材料学》是材料物理、材料化学专业必修的专业基础课,学时54,学分3。 (二)课程简介、目标与任务: 本课程从材料物理与化学的观点系统阐明了陶瓷材料的制备工艺、组成与结构、显微组织及其演化。目的和任务是使材料物理、材料化学专业本科生掌握陶瓷材料的相关知识、理论和技能,与《金属材料学》《高分子材料学》等课程一起构筑完整的材料科学知识和理论体系。 (三)先修课程要求: 学习本课程的本科生应先修《材料科学导论》或类似课程。本课程可与《金属材料学》、《材料物理》(或《固体物理》等相似课程)并行学习,以促进本课程的学习。本课程可以作为后续课程如《结构陶瓷》、《功能材料》、《材料合成与制备》等专业课程的先导。 (四)教材与参考书目: 本课程教材自编 参考书目: 1.《陶瓷导论》,(美)金格瑞等著,清华大学新型陶艺与精细工艺国家重点实验室译,高等教育出版社,2010.6 2.《陶瓷材料学》,周玉主编,哈尔滨工业大学出版社,1995 二、课程内容与安排 (一)课程内容 本课程主要包括以下章节: 第一章绪论 第二章陶瓷材料工艺过程 2.1陶瓷粉体的基本性能及制备 2.2成型 2.3烧结 第三章陶瓷晶体结构 3.1陶瓷材料的结合键 3.2鲍林规则 3.3 离子晶体 3.4硅酸盐结构 3.5共价晶体 3.6同质多相 第四章玻璃与熔体 4.1熔体的结构与性质

4.2玻璃的通性与玻璃转变 4.3玻璃的形成 4.4玻璃结构理论 第五章陶瓷晶体缺陷 5.1点缺陷 5.2固溶体 5.3非化学剂量化合物 第六章陶瓷显微结构 6.1陶瓷的相组成 6.2表面与界面行为 6.3晶界 6.4吸附与粘附 第七章固相反应 7.1固相反应机理 7.2固相反应热力学 7.3固相反应动力学 7.4固相反应影响因素 第八章烧结 8.1烧结过程和机理 8.2烧结动力学 8.3晶粒长大与再结晶 8.4烧结影响因素 (二)教学方法与学时分配 教学方法为课堂讲授,需51学时,另需3学时复习,总计54学时。各章节的学时分配如下: 第一章绪论 3学时 第二章陶瓷材料工艺过程 6学时 第三章陶瓷晶体结构 9学时 第四章玻璃与熔体 6学时 第五章陶瓷晶体缺陷 6学时 第六章陶瓷显微结构 6学时 第七章固相反应 6学时 第八章烧结 9学时 复习 3学时 (三)内容及基本要求 主要内容及基本要求如下: 第一章绪论【一般了解】 第二章陶瓷材料工艺过程 2.1陶瓷粉体的基本性能及制备【了解】 2.2成型【了解】 2.3烧结【了解】 第三章陶瓷晶体结构

相关主题
文本预览
相关文档 最新文档