当前位置:文档之家› 17-4PH热处理

17-4PH热处理

17-4PH热处理
17-4PH热处理

钢的热处理原理 (1)

钢的热处理原理 一、钢加热时的A化过程 1.共析钢P在加热温度大余等于Ac1时,转化为A. 其转化可分为以下四个阶段:?A形核?A晶核长大?残余Fe3C溶解?A均匀化A形成必须要有一定的过热度?T,提供相变驱动力?G ?A形核,成核位置通常在F和Fe3C两相界面上。 ?A晶核长大,形核后同时向F和Fe3C两个相界面推移,F晶格重构成面心立方,Fe3C不断溶解,向A提供C分。重构速度比Fe3C溶解速度快,所以F先溶解,剩余Fe3C通过C原子扩散,从而使A均匀化。亚共析钢和过共析钢要分别加热到Ac3或Accm以上才能完全转变为A。 二、A晶粒大小 晶粒大小对冷却转变过程及其所获得的组织与性能均有很大影响。因此,掌握A晶粒长大的规律性及控制A晶粒度的方法,对于热处理实践具有很重要的意义 1.A化后晶粒长大 A化后,随着温度升高或保温时间延长,A晶粒会不断长大 2.A晶粒大小指标 ?晶粒度:晶粒直径的平均值。根据GB6394-86,A晶粒度一般分10个级别(标准照片对照),数字越大,晶粒越细。1-4级,粗晶粒;5-10级细晶粒;10级以上超细,也有比1级还粗的0级、-1级等。 ?起始晶粒度:A形成刚结束,其晶粒边界刚刚相互接触时的晶粒大小。与A长大倾向性有关,还与化学成分有关。 3.影响A长大因素:

?内因:钢的成分、组织决定它具有一定的A长大倾向性。 长大倾向性:同样条件下,有些晶粒容易长大,因钢种的不同而不同,甚至对同一种钢,由于冶炼方法不同,在同样加热条件下也可以表现出不同的晶粒长 大倾向性。 a.钢C%?,亚共析钢易长大,过共析钢不易长大,共析钢最易长大。 b.合金元素 除Mn、P外,一般合晶元素均能阻止A晶粒长大,如V Ti Nb Al等分布在晶界形成难溶化合物均能强烈阻止A晶粒长大。 c.优质结构钢、碳素工具钢、A晶粒不易长大 ?外因:加热条件 加热温度越高,保温时间越长,原子扩散越容易,晶界越易迁移,A实际晶粒就越大。 晶粒长大过程实际上是无数个晶粒同时长大的过程,是一种大晶粒吞并小晶粒的过程。

钢的热处理(原理及四把火)

钢的热处理 钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。其共同点是:只改变内部组织结构,不改变表面形状与尺寸。 第一节钢的热处理原理 热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。 热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下) 1、整体热处理:包括退火、正火、淬火、回火和调质; 2、表面热处理:包括表面淬火、物理和化学气相沉积等; 3、化学热处理:渗碳、渗氮、碳氮共渗等。 热处理的三阶段:加热、保温、冷却

一、钢在加热时的转变 加热的目的:使钢奥氏体化 (一)奥氏体( A)的形成 奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。在铁素体和渗碳体的相界面上形成。有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。 1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。 2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。(F比Fe 3 C先消失) 3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。 (二)奥氏体晶粒的长大 奥氏体大小用奥氏体晶粒度来表示。分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。影响 A晶粒粗大因素 1、加热温度越高,保温时间愈长,奥氏体晶粒越粗大。因此,合理选择加热和保温时间。以保证获得细小均匀的奥氏体组织。(930~950℃以下加热,晶粒长大的倾向小,便于热处理) 2、A中C含量上升则晶粒长大的倾向大。

钢的热处理(原理和工艺)第3版 胡光立 谢希文

第二章钢的加热转变 2、奥氏体晶核优先在什么地方形成? 为什么? 答:奥氏体的形核 球状珠光体中: 优先在F/Fe3C 界面形核 片状珠光体中: 优先在珠光体团的界面形核 也在F/Fe3C 片层界面形核 奥氏体在F/Fe3C 界面形核原因: (1) 易获得形成A所需浓度起伏,结构起伏和能量起伏. (2) 在相界面形核使界面能和应变能的增加减少。 △G = -△Gv + △Gs + △Ge △Gv—体积自由能差,△Gs —表面能,△Ge —弹性应变能 6、钢的等温及连续加热TT A图是怎样测定的,图中的各条曲线代表什么? 答:等温TTA图 将小试样迅速加热到Ac1以上的不同温度,并在各温度下保持不同时间后迅速淬冷,然后通过金相法测定奥氏体的转变量与时间的关系,将不同温度下奥氏体等温形成的进程综合表示在一个图中,即为钢的等温TTA图。 四条曲线由左向右依次表示:奥氏体转化开始线,奥氏体转变完成线,碳化物充全溶解线,奥氏体中碳浓度梯度消失线。 连续加热TTA图 将小试样采用不同加热速度加热到不同温度后迅速淬冷,然后观察其显微组织.,配合膨胀试验结果确定奥氏体形成的进程并综合表示在一个图中,即为钢的连续加热TTA图。 Acc加热时Fe3CII →A终了温度 Ac3加热时α→A终了温度 Ac1加热时P→A开始温度 13、怎样表示温度、时间、加热速度对奥氏体晶粒大小的影响? 答:奥氏体晶粒度级别随加热温度和保温时间变化的情况可以表示在等温TTA图中加热速度对奥氏体晶粒度的影响可以表示在连续加热时的TTA图中 随加热温度和保温时间的增加晶粒度越大 加热速度越快I↑由于时间短,A晶粒来不及长大可获得细小的起始晶粒度 补充 1、阐述加热转变A的形成机理,并能画出A等温形成动力学图(共析钢)? 答:形成条件ΔG=Ga-Gp<0 形成过程 形核:对于球化体,A优先在与晶界相连的α/Fe3C界面形核 对于片状P, A优先在P团的界面上形核 长大:1 )Fe原子自扩散完成晶格改组 2 )C原子扩散促使A晶格向α、Fe3C相两侧推移并长大 Fe3C残留与溶解:A/F界面的迁移速度> A/Fe3C界面的迁移速度,当P中F完全消 失,Fe3C残留Fe3C→A A均匀化:刚形成A中,C浓度不均匀。C扩散,使A均匀化。 A等温形成动力学图(共析钢)见课本P22 图2-16 2、用Fe-Fe3C相图说明受C在A中扩散所控制的A晶核的长大。

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、为何新相形成时往往呈薄片状或针状? 4、说明相界面结构在金属固态相变中的作用,并讨论它们对新相形状的影响。 5、固-固相变的等温转变动力学图是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

钢的热处理原理及工艺复习重点及课后习题

钢的热处理原理及工艺复习重点及课后习题 一、复习重点 1、什么是加工硬化?产生加工硬化的根本原因是什么? 2、什么是再结晶?再结晶的实际应用是什么?金属再结晶是通过什 么方式发生的?再结晶退火的主要作用是什么? 3、冷加工和热加工的区别是什么? 4、热处理的定义及三个基本过程。为什么钢能够进行热处理?奥氏 体化的目的是什么? 5、珠光体、贝氏体、马氏体分别都有哪几种组织形态?每种组织力 学性能如何? 6、退火、正火、淬火、回火的定义是什么? 7、什么是钢的淬透性? 二、课后复习题 (一)、填空题 1、加工硬化现象是指随变形度的增大,金属强度和硬度显著提高而塑性和韧性显著下降的现象。加工硬化的结果,使金属对塑性变形的抗力增大,造成加工硬化的根本原因是位错密度提高,变形抗力增大。消除加工硬化的方法是再结晶退火。 2、再结晶是指冷变形金属加热到一定温度之后,在原来的变形组织中重新产生无畸变的新等轴晶粒,而性能也发生明显的变化,并恢复到冷变形之前状态的过程。 3、在金属的再结晶温度以上的塑性变形加工称为热加工。在金属的再结晶温度以下的塑性变形加工称为冷加工。

4、金属在塑性变形时所消耗的机械能,绝大部分(占90%)转变成热 而散发掉。但有一小部分能量(约10%)是以增加金属晶体缺陷(空位和位错)和因变形不均匀而产生弹性应变的形式(残余应力)储存起来,这种能量我们称之为形变储存能。 5、马氏体是碳在a Fe中的过饱和间隙固溶体,具有很大的晶格畸变, 强度很高。贝氏体是渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。根据形貌不同又可分为上贝氏体和下贝氏体。用光学显微镜观察,上贝氏体的组织特征呈羽毛状,而下贝氏体则呈针状。相比较而言,上贝氏体的机械性能比下贝氏体要差。 6、在过冷奥氏体等温转变产物中,珠光体与屈氏体的主要相同点是都是渗碳体的机械混合物,不同点是层间距不同,珠光体较粗,屈氏体较细。 7、马氏体的显微组织形态主要有板条状、针状马氏体两种。其中板 条状马氏体的韧性较好。钢在淬火后获得的马氏体组织的粗细主要取决于奥氏体的实际晶粒度。 8钢的热处理工艺由加热、保温、冷却三个阶段所组成。 9、淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能 力。 10、当钢中发生奥氏体向马氏体的转变时,原奥氏体中碳含量越高, 贝S M S点越低。 11、钢的正常淬火温度范围,对亚共析钢是线以上A C3+30 ~ 50C , 对过共析钢是A C1+30 ~ 50C O 12、淬火钢进行回火的目的是消除内应力,获得所要求的组织与性能:回火温度越高,钢的强度与硬度越低。 13、调质处理是经淬火后再高温回火,能得到回火索氏体组织,具有

钢的热处理原理钢的热处理工艺课后题答案模板

第九章钢的热处理原理 第十章钢的热处理工艺 1,.金属固态相变有哪些主要特征? 哪些因素构成相变阻力? 答: 金属固态相变主要特点: 1、不同类型相界面, 具有不同界面能和应变能2、新旧相之间存在一定位向关系与惯习面 3、相变阻力大4、易于形成过渡相5、母相晶体缺陷对相变起促进作用6、原子的扩散速度对固态相变起有显著影响…..阻力: 界面能和弹性应变能 2、何为奥氏体晶粒度? 说明奥氏体晶粒大小对钢的性能的影响。答: 奥氏体晶粒度是指奥氏体晶粒的大小。 金属的晶粒越细小,晶界区所占的比例就越大, 晶界数目越多( 则晶粒缺陷越多, 一般位错运动到晶界处即停) , 在金属塑变时对位错运动的阻力越大, 金属发生塑变的抗力越大, 金属的强度和硬度也就越高。晶粒越细, 同一体积内晶粒数越多, 塑性变形时变形分散在许多晶粒内进行, 变形也会均匀些, 虽然多晶体变形具有不均匀性, 晶体不同地方的变形程度不同, 位错塞积程度不同, 位错塞积越严重越容易导致材料的及早破坏, 晶粒越细小的话, 会使金属的变形更均匀, 在材料破坏前能够进行更多的塑性变形, 断裂前能够承受较大的变形, 塑性韧性也越好。因此细晶粒金属不但强度高, 硬度高, 而且在塑性变形过程中塑性也较好。 3..珠光体形成时钢中碳的扩散情况及片,粒状珠光体的形成过程?

4、试比较贝氏体转变、珠光体转变和马氏体转变的异同。 答: 从以下几个方面论述: 形成温度、相变过程及领先相、转变时的共格性、转变时的点阵切变、转变时的扩散性、转变时碳原子扩散的大约距离、合金元素的分布、等温转变的完全性、转变产物的组织、转变产物的硬度几方面论述。 试比较贝氏体转变与珠光体转变的异同点。对比项目珠光体贝氏体形成温度高温区( A1以下) 中温区( Bs以下) 转变过程形核长大形核长大领先相渗碳体铁素体

相关主题
文本预览
相关文档 最新文档