当前位置:文档之家› https工作原理简单介绍

https工作原理简单介绍

https工作原理简单介绍
https工作原理简单介绍

https工作原理简单介绍

运营商HTTP劫持(非DNS劫持)推送广告的情况相信大家并不陌生,解决的方法大多也是投诉增值业务部门进而投诉工信部。但这种方法费时费力,投诉接听人员并不了解情况导致答非所问的情况有很多,有时候不但受气最终也没能完全解决问题,或者解决问题后过了一段时间复发的情况并不少见。

近年来,运营商HTTP劫持非但没有收敛,反而变本加厉,玩出了新花样:比如通过HTTP 劫持进行密码截获的活动;比如下载软件被替换的情况;比如劫持进行返利(当然返利不是返给你)的情况。

体验给破坏了,黑锅替人背了,钱还给运营商赚走了,忍无可忍的情况下不少开发者纷纷启用HTTPS加密来保护自己的网站。

什么是HTTPS

在了解HTTPS之前我们需要知道什么是HTTP,HTTP就是我们平时浏览网页时候使用的一种协议。HTTP协议传输的数据都是未加密的,也就是明文的,因此使用HTTP协议传输隐私信息非常不安全。为了保证这些隐私数据能加密传输,于是网景公司设计了SSL(Secure Sockets Layer)协议用于对HTTP协议传输的数据进行加密,从而就诞生了HTTPS。SSL目前的版本是3.0,被IETF(Internet Engineering Task Force)定义在RFC 6101中,之后IETF对SSL 3.0进行了升级,于是出现了TLS(Transport Layer Security) 1.0,定义在RFC 2246。实际上我们现在的HTTPS都是用的TLS协议,但是由于SSL出现的时间比较早,并且依旧被现在浏览器所支持,因此SSL依然是HTTPS的代名词,但无论是TLS还是SSL都是上个世纪的事情,SSL最后一个版本是3.0,今后TLS将会继承SSL优良血统继续为我们进行加密服务。

(TLS原理示意图)

HTTPS的工作原理

HTTPS在传输数据之前需要客户端(浏览器)与服务端(网站)之间进行一次握手,在握手过程中将确立双方加密传输数据的密码信息。TLS/SSL协议不仅仅是一套加密传输的协议,更是一件经过艺术家精心设计的艺术品,TLS/SSL中使用了非对称加密,对称加密以及HASH 算法。握手过程的简单描述如下:

1.浏览器将自己支持的一套加密规则发送给网站。

2.网站从中选出一组加密算法与HASH算法,并将自己的身份信息以证书的形式发回给浏

览器。证书里面包含了网站地址,加密公钥,以及证书的颁发机构等信息。

3.获得网站证书之后浏览器要做以下工作:

a) 验证证书的合法性(颁发证书的机构是否合法,证书中包含的网站地址是否与正在访问的地址一致等),如果证书受信任,则浏览器栏里面会显示一个小锁头,否则会给出证书不受信的提示。

b) 如果证书受信任,或者是用户接受了不受信的证书,浏览器会生成一串随机数的密码,并用证书中提供的公钥加密。

c) 使用约定好的HASH计算握手消息,并使用生成的随机数对消息进行加密,最后将之前生成的所有信息发送给网站。

4.网站接收浏览器发来的数据之后要做以下的操作:

a) 使用自己的私钥将信息解密取出密码,使用密码解密浏览器发来的握手消息,并验证HASH是否与浏览器发来的一致。

b) 使用密码加密一段握手消息,发送给浏览器。

5.浏览器解密并计算握手消息的HASH,如果与服务端发来的HASH一致,此时握手过程结束,之后所有的通信数据将由之前浏览器生成的随机密码并利用对称加密算法进行加密。这里浏览器与网站互相发送加密的握手消息并验证,目的是为了保证双方都获得了一致的密码,并且可以正常的加密解密数据,为后续真正数据的传输做一次测试。另外,HTTPS一般使用的加密与HASH算法如下:

非对称加密算法:RSA,DSA/DSS

对称加密算法:AES,RC4,3DES

HASH算法:MD5,SHA1,SHA256

其中非对称加密算法用于在握手过程中加密生成的密码,对称加密算法用于对真正传输的数据进行加密,而HASH算法用于验证数据的完整性。由于浏览器生成的密码是整个数据加密的关键,因此在传输的时候使用了非对称加密算法对其加密。非对称加密算法会生成公钥和私钥,公钥只能用于加密数据,因此可以随意传输,而网站的私钥用于对数据进行解密,所以网站都会非常小心的保管自己的私钥,防止泄漏。TLS握手过程中如果有任何错误,都会使加密连接断开,从而阻止了隐私信息的传输。

HTTPS足够安全吗

是的,作为一项必要的基础防护措施,HTTPS能够做到足够程度的安全防护。特别是对于流量劫持来说,你有多久没在百度的搜索页上看到弹出来的小广告了呢?很多时候,HTTPS都在悄无声息的保护着用户。

我们不会把自己的用户名和密码写在明信片上然后将它邮寄出去公之于众,但在网上,我们却一直都在这样做——在每次登陆使用HTTP连接的服务时,我们基本上都是这么做的。

换上HTTPS之后,第三方将无法通过嗅探等手段收集我们与服务器之间传输的数据的难度,我们也许并不介意别人读取你通过服务器发布的微博消息,但大多数人肯定不希望其他人看到自己的用户名和密码信息。并且不希望自己在浏览网页时不停的从左下角弹出小广告。

主板的工作原理

第二章主板的工作原理 2.1主板的工作原理概述 2.1.1主板的硬启动过程 主板的硬启动过程如下: ①主板插入ATX电源插头,主板加载SVSB。 ②按下主机上的电源开关(POWER BUTTON),通知南桥,然后南桥发出信号经过转换后产生PS_ON#信号。 ③POWER(ATX电源)输出SV、3.3V、12V等各路供电。 ④电源输出稳定后,发出POWERGOOD信号通知主板。 ⑤主板上产生各芯片和设备需要的电压,如1.5V、2.5V等。同时CPU也得到一个供电,拉低VRM芯片(CPU供电管理芯片)的VID信号。 ⑥VRM芯片控制产生VCORE(CPU核心供电,部分资料也称为VCCP)给CPU。 ⑦稳定的VCORE电压反馈给VRM控制芯片。VRM产生PWRGD信号,部分资料也称为VRM_GD、VCORE_GD等,专指CPU供电电源就绪。 ⑧同时VCORE经转换后,产生CLK-EN送给主板CLK(时钟芯片)电路,时钟电路开始工作,产生各设备所需的时钟。 ⑨南桥收到VRM产生的PWEGD和CLK电路送达的时钟信号后产生PCIRST#。 ⑩PCIRST#送达ACPI控制器或门电路,经转化后分别送出,送达北桥的PCIRST#(新款主板为PLTRST#),送达北桥后,北桥送出CPURST#。 ○11CPU收到CPURST#后,发出一个地址信号,这个地址信号固定为FFFFFFFOH,指向BIOS的入口地址,通过CPU到北桥的前端总线到北桥,北桥将该地址信号,经过HUB-LINK (新款Intel芯片组叫做DMI总线,不同厂家、不同产品的叫法不同)送达南桥。 ○12南桥收到地址信号后,将地址发送给BIOS,然后取得该地址存储的命令,并通过数据线将取得的BIOS命令送到北桥,再至CPU,CPU执行接收到的指令,执行运算和控制,发出一系列指令。

主板的结构和工作原理

主板无疑是电脑最核心的部件。目前,奔腾主板市场空前繁荣,据《计算机世界报》报导,奔腾主板来自数十个生产厂家,有近百种之多,如何从这么多种类的主板中选择呢?本节将从主板的原理与结构方面出发,揭开主板的神秘面纱,使读者对主板能有一个清晰的认识,对选购和装机都不无益处。

奔腾级 AT 主板的结构及工作原 理奔腾级主板的结构 下面是奔腾级主板的结构框图。由图中可以看到主板上的一些主要部分。 FDC:软驱控制器(接口) USB:通用串行总线(接口) SIMM:72 线内存条插槽 DIMM:168 线内存条插槽 PS/2:PS/22 鼠标接口 BIOS:基本输入输出系统 LPT:并行接口(打印口) COM1、COM2:串行接口显然,主板主要由三类构件组成:集成电路、各种插槽插座和一大块多层电 路板。在主板上的众多集成电路中,有着重要程度上的差别。图中有阴影的几个集成电路决定了主板的性能,这几个集成电路称为“芯片组”或“套片”,包括PCM 芯片、LBX 芯片、SIO 芯片。

奔腾主板的工作原理PCI ISA 总线奔腾主板中,CPU 只与套片(芯片组)直接打交道,套片作为CPU 的全权代表,处理 CPU 与内存、高速缓存、PCI 插卡、ISA 插卡、硬盘等外部设备的通信。各芯片的作用如下: 1. PCI、内存、Cache 控制器(PCMC)芯片 PCMC 是“PCI、Cache and Memory Controller”的缩写,从名字上就可以看出来,它的作用是:管理 PCI 总线、管理 Cache、管理内存。

由于 PCMC 内的二级 Cache 控制器只支持 256KB 或 512KB 的二级 Cache,于是采用 Intel 套片的主板就没有提供其它容量 Cache。如果你听到某个主板声称

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

常用电工仪表的分类、基本组成及工作原理

1.常用电工仪表的分类 电气测量指示仪表种类繁多,分类方法也很多,了解电气渊量指示式仪表的分类,有助于认识它们所具有的特性,对学习电气测金指示式仪表的概况有一定的帮助。 下面介绍几种常见的电气测量指示仪表的分类方法。 (1)按工作原理分有磁电系、电磁系、感应系、静电系等。 (2)按被侧电量的名称分有电流表(安培表、毫安表和微安表)、电压表(伏特表、毫伏表)、功率表、电能表、功率因数表、频率表、兆欧表以及其他多种用途的仪表,如万用表等。 (3)按被测电流的种类分有直流表、交流表、交直流两用表。 (4)按使用方式分有开关式与便携式仪表。开关板式仪表通常固定安装在开关板或某一装置.七,一般误差较大,价格也较低,适用于一般工业测量。便携式仪表误差较小(准确度较高),价格较贵,适于实验室适用。 (5)按仪表的准确度分有0.1,0.2,0.5,1.0,1.5,2.5,5.0共七个等级。 此外.按仪表对电磁场的防御能力可分为Ⅰ,Ⅱ,Ⅲ,Ⅳ四级;按仪表使用条件分为A,B,C三组。 2.电工仪表的基本组成和工作原理 电工指示仪表的基本工作原理都是将被测电量或非电量变换成指示仪表活动部分的偏转角位移量。被测量往往不能直接加到测量机构上,一般需要将被测量转换成测量机构可以测量的过渡量.这个把被测量装换为过渡量的组成部分叫测量线路。把过渡量按某一关系转换成偏转角的机构叫测量机构。测量机构有活动部分和固定部分组成,它是仪表的核心。如图A1所示,电工指示仪表一般有测量线路和测量机构这两个部分组成。 测量机构的主要作用是产生使仪表的指示器偏转的转动力矩,以及使指示器保持平衡和迅速稳定的反作用力矩及阻尼力矩。 测量线路把被测电量或非电量转换为测量机构能直接测量的电量时,测量机构活动部分在偏转力矩的作用下偏转。同时测量机构产生反作用力矩的部件所产生的反作用力矩也作用在活动部件上,当转动力矩与反作用力矩相等时,可动部分便停止下来。由于可动部分具有惯性,以至于其达到平衡时不能迅速停止下来,而是在平衡位置附近来回摆动。测量机构中的阻尼装笠产生的阻尼力矩使指针迅速停止在平衡位置上,指出被测量的大小,这也就是电工指示仪表的基本工作原理。

主板的结构工作原理

主板的结构工作原理 主板的结构/工作原理 主板无疑是电脑最核心的部件。目前,奔腾主板市场空前繁荣,据《计算机世界报》报导,奔腾主板来自数十个生产厂家,有近百种之多,如何从这么多种类的主板中选择呢?本节将从主板的原理与结构方面出发,揭开主板的神秘面纱,使读者对主板能有一个清晰的认识,对选购和装机都不无益处。 奔腾级AT主板的结构及工作原理 奔腾级主板的结构 下面是奔腾级主板的结构框图。由图中可以看到主板上的一些主要部分。 FDC:软驱控制器(接口) USB:通用串行总线(接口) SIMM:72线内存条插槽 DIMM:168线内存条插槽 PS/2:PS/22鼠标接口 BIOS:基本输入输出系统 LPT:并行接口(打印口) COM1、COM2:串行接口 显然,主板主要由三类构件组成:集成电路、各种插槽插座和一大块多层电路板。在主板上的众多集成电路中,有着重要程度上的差别。图中有阴影的几个集成电路决定了主板的性能,这几个集成电路称为“芯片组”或“套片”,包括PCM芯片、LBX芯片、SIO芯片。 奔腾主板的工作原理 PCI ISA总线奔腾主板中,CPU只与套片(芯片组)直接打交道,套片作为CPU的全权代表,处理CPU与内存、高速缓存、PCI插卡、ISA插卡、硬盘等外部设备的通信。各芯片的作用如下: 1. PCI、内存、Cache控制器(PCMC)芯片 PCMC是“PCI、Cache and Memory Controller”的缩写,从名字上就可以看出来,它的作用是:管理PCI总线、管理Cache、管理内存。 由于PCMC内的二级Cache控制器只支持256KB或512KB的二级Cache,于是采用Intel套片的主板就没有提供其它容量Cache。如果你听到某个主板声称自己支持1024KB 的Cache,那就说明它用的肯定不是Intel的套片。 另外,在PCMC内还集成有DRAM控制器,负责DRAM的刷新、读写和被Cache。因此,主板支持的内存种类、内存的最大容量也不是任意的,主板生产商在这方面依然只能服从这些限制。 2.局部总线加速器(LBX)芯片 LBX是“Local Bus Accellerator”的缩写,它具有下列主要功能: ◇提供64位的DRAM界面,支持猝发式读写。支持的内存读写方式和读写周期也

[工作]开关电源原理与维修开关电源原理图

[工作]开关电源原理与维修开关电源原理图开关电源原理与维修开关电源原理图 电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 二(开关电源的组成 开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。 1( 主电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2( 控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 3( 检测电路 提供保护电路中正在运行中各种参数和各种仪表数据。 4( 辅助电源

实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。 开关电源原理图 三(开关电源的工作原理 开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。 VO=TON/T*Vi VO 为负载两端的电压平均值 TON 为开关每次接通的时间 T 为开关通断的工作周期

手机工作原理

一、CDMA手机饰品的闪光原理为什么中国移动GSM手机饰品挂在中国联通CDMA手机上不闪光?这要从CDMA和GSM手机的工作原理谈起,GSM手机是采取将语音打包压缩后发射出去的,也就是说间隙脉冲工作的,工作时提高发射功率来保持语音清晰,其余时间不发射。而CDMA手机基台采用了定向天线系统,当基台发现有手机要工作时,便会启动定向系统指向手机所在的方向并计算手机最经济的发射功率,使手机发射功率维持在比较低的水平,也就是说CDMA手机系统是充分利用基台的定向系统优势,而让手机工作在小功率状态(这就是大家看到的CDMA手机的电池容量可以比GSM手机容量小而使用时间长的原因)。这样CDMA手机系统便可采用连续工作的方式发射信号,而不像GSM手机脉冲工作方式那样工作时大功率发射。目前市面上手机饰品是为GSM手机设计的,也就是说利用了GSM手机脉冲工作时大功率发射信号来触发IC闪光的。但对于CDMA手机GSM手机饰品就不会闪光了。本公司在充分研究CDMA手机系统后,开发了CDMA手机闪光饰品,她能在CDMA手机工作时触发专用IC闪光。这是目前世界上真正的第一款CDMA手机来电闪光饰品。二、手机贴纸的闪光原理当手机向基台传送信号时,手机发射的是很强的电磁波。根据电磁理论,电磁波在空中遇到天线,在天线的中段就会产生电压和电流。闪光贴纸其实就是一根接收天线,它把手机的电磁波信号变为电压和电流导致发光。但是为什么只有NOKIA的手机使用贴纸效果最好呢?因为由于此类型的手机没有采用标准的高效率螺旋天线,为了达到通话清晰和不掉线的效果,此类手机设计时就增大了手机的发射功率。这也是此类手机电池不够其它手机电池使用时间长的原因。三、GSM手机饰品的闪光原理手机使用时,手机是一部信号发射接收器,不停地和基台进行接收和发射的交换。手机闪光饰品中有一块具有检测手机信号发射接收的专用IC,当接检测到手机有信号时,就启动IC工作―-发光或发声等等。早期的闪光吊饰采用的是通用IC,需要加外围电路来检测手机的信号,这样做体积大,不适用产品的小型化。而现在把检测手机信号的外围电路和闪光IC集成一起。 GSM手机工作原理简介 发布时间:2006-10-18 图1 FDMA、TDMA及CDMA之间的对照图 GSM是采用FDMA(频分)与TDMA(时分)制式相结合的一种通信技术,其网络中所有用户分时使用不同的频率进行通信。在GSM900频段,25MHZ的频率范围划分为124个不同的信道,每个信道带宽为200K,每个信道含8个时隙,即GSM900M频段在同一区域内,可同时供近1000个用户使用。而CDMA是采用码分多址技术的一种通信系统,在这个系统中所有用户都使用同一频率。FDMA、TDMA及CDMA的比较如图. 一、GSM的理论基础. GSM系统是第二代数字蜂窝移动通信系统,它采用900MHz频段,在后期又加入了1800MHz频段及1900MHz频段,为便于区别,分别称为GSM900、DCS1800及PCS1900. 凌锐手机具有GSM900MHz及DCS1800MHz两个频段自动切换的功能. 初期的GSM的工作频率是890~915MHz(移动台发),935~960MHz(基站发)共25MHz的双工频率;后加入了EGSM(扩展GSM)其频段为880~890MHz(移动台发),925~935MHz(基站发),为与EGSM区别,把前者称之为PGSM。GSM900上行与下行频段的间隔为45MHz,信道间隔为200KHz,可分为124个信道(EGSM加入了975~1023共49个信道);因此E-GSM共有174个信道。 DCS1800的频段为1710~1785MHz(移动台发),1805~1880MHz(基站发),上行与下行频段的间隔为95MHz,频带宽度为75M,可分为374个信道(512至885)。 PCS1900的频段分为上行:1850~1910MHz,下行:1930~1990MHz,上行与下行频段的间隔为80MHz,频带宽度为60M,可分为300个信道。 每信道分成8个时隙(半速率是有16个),每个时隙信道速率是s,信道总传输速率s,采用GMSK调制,通信方式是全双工,分集接收,每秒跳频217次,交错信道编码,自适应均衡.现在GSM向前发展开发了GPRS业务,作为2G向3G的过渡方式。 注:GPRS(General Packet Radio Service,通用无线分组业务)作为第二代移动通信技术GSM向第三代移动通信(3G)的过渡技术,是由英国BT Cellnet 公司早在1993年提出的,是GSM Phase2+ (1997年)规范实现的内容之一,是一种基于GSM的移动分组数据业务,面向用户提供移动分组的IP或者连接。 GSM手机的话音编码采用RPE-LTP(规则脉冲激励线性预测编码)方案,它每20ms输出260比特,因此速率是13Kb/s.每帧为120/26=,每时隙为577us,每

(完整版)主板供电电路图解说明

主板供电电路图解说明 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。 图2

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

GSM手机工作原理简介

GSM手机工作原理简介 GSM是采用FDMA(频分)与TDMA(时分)制式相结合的一种通信技术,其网络中所有用户分时使用不同的频率进行通信。在GSM900频段,25MHZ的频率范围划分为124个不同的信道,每个信道带宽为200K,每个信道含8个时隙,即GSM900M频段在同一区域内,可同时供近1000个用户使用。而CDMA 是采用码分多址技术的一种通信系统,在这个系统中所有用户都使用同一频率。FDMA、TDMA及CDMA 的比较 一、GSM的理论基础. GSM系统是第二代数字蜂窝移动通信系统,它采用900MHz频段,在后期又加入了1800MHz频段及1900MHz频段,为便于区别,分别称为GSM900、DCS1800及PCS1900. 凌锐手机具有GSM900MHz及DCS1800MHz两个频段自动切换的功能. 初期的GSM的工作频率是890~915MHz(移动台发),935~960MHz(基站发)共25MHz的双工频率;后加入了EGSM(扩展GSM)其频段为880~890MHz(移动台发),925~935MHz(基站发),为与EGSM区别,把前者称之为PGSM。GSM900上行与下行频段的间隔为45MHz,信道间隔为200KHz,可分为124个信道(EGSM加入了975~1023共49个信道);因此E-GSM共有174个信道。 DCS1800的频段为1710~1785MHz(移动台发),1805~1880MHz(基站发),上行与下行频段的间隔为95MHz,频带宽度为75M,可分为374个信道(512至885)。 PCS1900的频段分为上行:1850~1910MHz,下行:1930~1990MHz,上行与下行频段的间隔为80MHz,频带宽度为60M,可分为300个信道。 每信道分成8个时隙(半速率是有16个),每个时隙信道速率是22.8kb/s,信道总传输速率270.83Kb/s,采用GMSK调制,通信方式是全双工,分集接收,每秒跳频217次,交错信道编码,自适应均衡.现在GSM 向前发展开发了GPRS业务,作为2G向3G的过渡方式。 注:GPRS(General Packet Radio Service,通用无线分组业务)作为第二代移动通信技术GSM向第三代移动通信(3G)的过渡技术,是由英国BT Cellnet公司早在1993年提出的,是GSM Phase2+ (1997年)规范实现的内容之一,是一种基于GSM的移动分组数据业务,面向用户提供移动分组的IP或者X.25连接。 GSM手机的话音编码采用RPE-LTP(规则脉冲激励线性预测编码)方案,它每20ms输出260比特,因此速率是13Kb/s.每帧为120/26=4.625ms,每时隙为577us,每比特宽度为3.692us. 但它还要加入纠错编码.因为话音编码的比特重要性不同,一种是重要的称为I类比特,必需加以保护,即规则脉冲编码与LPC参数比特共182个,加上3位奇偶检验比特,及4位尾比特共189比特.纠错编码使用1/2码率的卷积码,因此共编码为378个比特.260比特中的其余78个比特,则不加以保护.这样加起来,每20ms 的总输出是456比特. 为了防止抗衰落引起的突了误码,编码后的比特还须进行交织.交织的原理在此从略. 移动电话(以下均称手机)电路结构可分为四个部分:无线部分、传输处理部分、接口部分、电源部分。其电路原理可归纳为两大部分:射频电路和基带电路。 1.无线部分 包括天线回路、发送、接收、调制解调和振荡器等高频系统.其中发送部分由射频功率放大器、带通滤波器组成.接收部分由高频滤波、高频放大、变频及中频滤波器组成,调制解调器采用GMSK. 2.传输处理 2.1发送通道的处理包括语音编码、信道编码、加密、TDMA帧形成. 1)语音编码:用户的话音通过MIC转化成电信号,这个电信号通过ADC转化成数字的、代表语音的 13Kbitps的信息流。

手机供电电路与工作原理

手机供电电路结构和工作原理 一、电池脚的结构和功能。 目前手机电池脚有四脚和三脚两种:(如下图) 正温类负正温负 极度型极极度极 脚脚脚 (图一)(图二) 1、电池正极(VBATT)负责供电。 2、TEMP:电池温度检测该脚检测电池温度;有些机还参与开机,当用电池能开机,夹正负极不能开机时,应把该脚与负极相接。 3、电池类型检测脚(BSI)该脚检测电池是氢电或锂电,有些手机只 认一种电池就是因为该电路,但目前手机电池多为锂电,因此,该脚省去便为三脚。 4、电池负极(GND)即手机公共地。 二、开关机键: 开机触发电压约为2.8-3V(如下图)。 内圆接电池正极外圆接地;电压为0V。 电压为2.8-3V。 触发方式 ①高电平触发:开机键一端接VBAT,另一端接电源触发 脚。 (常用于:展讯、英飞凌、科胜讯芯片平台) ①低电平触发:开机键一端接地,另一端接电源触发脚。 (除以上三种芯片平台以外,基本上都采用低电平触发。如:MTK、AD、TI、飞利浦、杰尔等。) 三星、诺基亚、moto、索爱等都采用低电平触发。

三、手机由电池直接供电的电路。 电池电压一般直接供到电源集成块、充电集成块、功放、背光灯、振铃、振动等电路。在电池线上会并接有滤波电容、电感等元件。该电路常引起发射关机和漏电故障。 四、手机电源供电结构和工作原理。 目前市场上手机电源供电电路结构模式有三种; 1、 使用电源集成块(电源管理器)供电;(目前大部分手机都使用该电路供电) 2、 使用电源集成块(电源管理器)供电电路结构和工作原理:(如下图) 电池电压 逻辑电压(VDD) 复位信号(RST) 射频电压(VREF) VTCXO 26M 13M ON/OFF AFC 开机维持 关机检测 (电源管理器供电开机方框图) 1)该电路特点: 低电平触发电源集成块工作; 把若干个稳压器集为一个整体,使电路更加简单; 把音频集成块和电源集成块为一体。 2)该电路掌握重点: 电 源 管 理 器 CPU 26M 中频 分频 字库 暂存

常用压力仪表工作原理

压力类仪表的工作原理 压力是工业生产过程中的重要参数之一。在许多生产过程中,要求系统只有在一定的压力条件下工作,才能达到预期效果,同时,压力也是监控安全生产的保证。因此,压力检测与控制是保证工业生产过程经济性和安全性的重要环节。 在物理学中,垂直作用在单位面积上的力称为压强,在工程上称为压力。如下式: S F p 表示受力面积。表示垂直作用力;表示压力;式中,S F p 由于参照点不同,在工程技术中压力分为以下几种: 1.大气压:地球表面上的空气质量所产生的压力。它和所处的海拔高度、纬度及气象状况有关。 2.差压(压差):两个压力之间的相对差值。 3.绝对压力:绝对压力是相对零压力(绝对真空)而言的压力。 4.表压力(相对压力):如果绝对压力和大气压的差值是一个正值,那么这个正值就是表压力,即表压力=绝对压力-大气压>0。 5.负压(真空表压力):和“表压力“相对应,如果绝对压力和大气压的差值是一个负值,那么这个负值就是负压力,即负压力=绝对压力-大气压<0。 在工程上,按压力随时间的变化关系分为以下两类: 1、静态压力:一般理解为“不随时间变化的压力,或者是随时间变化较缓慢的压力,即在流体中不受流速影响而测得的表压力值”。

2、.动态压力:和“静态压力”相对应,“随时间快速变化的压力,即动压是指单位体积的流体所具有的动能大小。”通常用1/2ρν2计算。式中ρ为流体密度;v 为流体运动速度。” 压力单位换算关系见下表: 牛顿/米2 (帕斯卡) (N/m 2)(Pa) 公斤力/米2 (kgf/m 2) 公斤力/厘米2 (kgf/cm 2) 巴 (bar) 标准大气压 (atm) 毫米水柱 4o C (mmH 2O) 毫米水银柱 0o C (mmHg) 磅/英寸2 (lb/in 2,psi) 牛顿/米2 (帕斯卡) (N/m 2)(Pa) 1 0.10197 2 10.1972×10-6 1×10-5 0.986923×10-5 0.101972 7.50062×10- 3 145.038×10-6 公斤力/米2 (kgf/m 2) 9.80665 1 1×10-4 9.80665×10-5 9.67841×10-5 1×10-8 0.0735559 0.00142233 公斤力/厘米2 (kgf/cm 2) 98.0665×103 1×104 1 0.980665 0.967841 10×103 735.559 14.2233 巴 (bar) 1×105 10197.2 1.01972 1 0.986923 10.1972×103 750.061 14.5038 标准大气压 (atm) 1.01325×105 1033 2.3 1.03323 1.01325 1 10.3323×103 760 14.6959 毫米水柱 4o C (mmH 2O) 0.101972 1×10-8 1×10-4 9.80665×10-5 9.67841×10-5 1 73.5559×10-3 1.42233×10-3 毫米水银柱 0o C (mmHg) 133.322 13.5951 0.00135951 0.00133322 0.00131579 13.5951 1 0.0193368 磅/英寸2 (lb/in 2,psi) 6.89476×103 703.072 0.0703072 0.0689476 0.0680462 703.072 51.7151 1 压力测量系统根据测量的原理,分为如下几类: 一、净重式。净重式压力计包括液柱式压力计和活塞式压力计;

主板电路工作原理

主板各电路工作原理 主要内容: 1、主板开机电路 含主供电及其他供电电路)) 主板供电电路((含主供电及其他供电电路 2、主板供电电路 3、时钟电路 4、复位电路 5.1 主板开机电路 5.1.1软开机电路的大致构成及工作原理 开机电路又叫软开机电路,是利用电源(绿线被拉成低电平之后,电源其它电压就可以 输出)的工作原理,在主板自身上设计的一个线路,此电路以南桥或I/O为核心,由门电路、电阻、电容、二极管(少见)三极管、门电路、稳压器等元件构成,整个电路中的元件皆由紫线5V提供工作电压,并由一个开关来控制其是否工作,(如图4-1) 当操作者瞬间触发开机之后,会产生一个瞬间变化的电平信号,即0或1的开机信号,此信号会直接或间接地作用于南桥或I/O内部的开机触发电路,使其恒定产生一个0或1的的信号,通过外围电路的转换之后,变成一个恒定的低电平并作用于电源的绿线。当电源的绿线被拉低之后,电源就会输出各路电压(红5V、橙3.3V、黄12V等)向主板供电,此时主板完成整个通电过程。

图5-1 主板通电电路的工作原理图 5.1.2学习重点: ①主板软开机电路的大致构成及工作原理; ②软开机线路的寻找; ④主板不通电故障的检修; ⑤实际检修中需注意的特殊现象。 5.1.3实例剖析: 一款MS-6714主板,故障为不能通电,其开机电路如图5-2所示 (图5-2) 通过以上线路发现,开机电路由W83627HF-AW组成整个线路,按照主板不通电故障的检修流程进行检修,测其67脚没有3.3V左右的控制电压,此时就算更换I/O仍是不

能工作的,于是查找相关线路,发现此点的控制电压是由FW82801DB直接发出,再查此南桥的1.5V的待机电压异常,跟寻此点线路,发现南桥旁一个型号为702的场效应管损坏,更换此管后,故障排除。 注:W83627系列I/O在Intel芯片组的主板中从Intel810主板开始,到目前的主板当中,都有广泛的应用,而且在实际维修中极容易损坏. 5.1.4目前主板中常见的几种开机电路图:

开关电源工作原理详细分析(1)

PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常 会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模 式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线 性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫 正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需 要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC 直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、 PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比: 也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线 性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开

压力测量仪表按工作原理分为液柱式

压力测量仪表按工作原理分为液柱式、弹性式、负荷式和电测式等类型。液压式压力测量仪表常称为液柱式压力计,它是以一定高度的液柱所产生的压力,与被测压力相平衡的原理测量压力的。大多是一根直的或弯成U形的玻璃管,其中充以工作液体。常用的工作液体为蒸馏水、水银和酒精。因玻璃管强度不高,并受读数限制,因此所测压力一般不超过兆帕。 它的特点是。液柱式压力计灵敏度高,因此主要用作实验室中的低压基准仪表,以校验工作用压力测量仪表。由于工作液体的重度在环境温度、重力加速度改变时会发生变化,对测量的结果常需要进行温度和重力加速度等方面的修正。 弹性性式压力测量仪表是利用各种不同形状的弹性元件,在压力下产生变形的原理制成的压力测量仪表。弹性式压力测量仪表按采用的弹性元件不同,可分为弹簧管压力表、膜片压力表、膜盒压力表和波纹管压力表等;按功能不同分为指示式压力表、电接点压力表和远传压力表等。这类仪表的特点是结构简单,结实耐用,测量范围宽,是压力测量仪表中应用最多的一种。 负荷式压力测量仪表常称为负荷式压力计,它是直接按压力的定义制作的,常见的有活塞式压力计、浮球式压力计和钟罩式压力计。由于活塞和砝码均可精确加工和测量,因此这类压力计的误差很小,主要作为压力基准仪表使用,测量范围从数十帕至2500兆帕。 电测式压力测量仪表是利用金属或半导体的物理特性,直接将压力转换为电压、电流信号或频率信号输出,或是通过电阻应变片等,将弹性体的形变转换为电压、电流信号输出。代表性产品有压电式、压阻式、振频式、电容式和应变式等压力传感器所构成的电测式压力测量仪表。精确度可达级,测量范围从数十帕至700兆帕不等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

常见九大压力仪表工作原理、选型、安装注意事项

常见九大压力仪表工作原理、选型、安装注意事项 一、常见九大压力仪表工作原理 1、液柱式压力计 2、活塞式压力计 活塞式压力计是基于静压平衡的原理工作的,一般有单活塞和双活塞两种。活塞压力计根据其精度分为一等、二等、三等,精度等级误差分别为0.02级,0.05级,0.2级。活塞的有效面积一般取1cm2、0.5cm2或0.1cm2。传压介质常用的有变压器油和蓖麻油。 3、弹性式压力计 弹性式压力计有弹簧管式、膜片式、膜盒式和波纹管式等;工业上常用的弹性测压元件有弹簧管、波纹管及膜片三类。弹性式压力计是根据弹性元件的变形和所受压力成比例的原理来工作的。当作用于弹性元件上的被测压力越大时,弹性元件的变形也越大。常用的弹性式压力表有弹簧管式压力表、膜片式压力表、波纹管式压力表,其中弹簧管式压力运用最广。 弹性元件的钢度就是指弹性元件变形的难易程度。钢度大的弹簧管受压变形后形变小。用不锈钢、合金钢制作的钢度大,一般用来测量大于20MPa以上压力;磷铜、黄铜制作的钢度小,一般测量小于20MPa以下的压力。 弹簧压力表一般由弹簧管、连接杆、扇形齿轮、游丝、指针和刻度盘等几部分组成。 弹簧管压力表中弹簧管都是由一根弯成270°圆弧状、截面呈椭圆形的金属管制成。因为椭圆形截面在介质压力的作用下将趋向圆形,使弯成圆弧形的弹簧管随之产生向外挺直扩张的变形,使弹簧管的自由端产生位移,并通过连接带动扇形齿轮进行放大,带动指针转动,指针转动的角度和压力程线性关系,这样就通过刻度盘读出被测压力的大小。游丝的作用是产生一个反作用力。膜片式压力表一般由测量膜片、传动系统、指示系统和表壳接头几部分组成。 4、电远传式压力表

电脑主板原理图

1.主板上的英文字母都代表什么 1.L----电感.电感线圈 2.C----电容. 3.BC---贴片电容 4.R----电阻 5.9231 芯片-----脉宽 6.74 门电路-----它在主板南桥旁边 7.PQ----场效应管 8.VT 、Q、V----三级管 9.VD 、D---二级管 10.RN----排阻 11. ZD----稳压二极管 12.W-----电位器 13.IC---稳压块 14.IC 、N、U----集成电路 15.X 、Y、G、Z----晶振 16.S-----开关 17.CM----频率发生器(一般在晶振14.31818 旁边) 2. 计算机开机原理 开机原理:插上ATX 电源后,有一个静态5V 电压送到南桥,为南桥里面的ATX 开机电路提 供工作条件(ATX 电源的开机电路是集成南桥里面的),南桥里面的ATX 开机电路将开始 工作,会送一个电压给晶体,晶体起振工作,产生振荡,发出波形。同时ATX 开机电路会 送出一个开机电压到主板的开机针帽的一个脚,针帽的另一个脚接地。当打开开机开关时, 开机针帽的两个脚接通,而使南桥送出开机电压对地短路,拉低南桥送出的开机电压,而使 南桥里的开机电路导通,拉低静态5V 电压,使其变为0 电位。使电源开始工作,从而达到 开机目的。(ATX 电源里还有一个稳压部分,它需要静态5V 变为0 电位才能工作)。 3. 主板时钟电路工作原理 时钟电路工作原理:3.5 电源经过二极管和电感进入分频器后,分频器开始工作,和晶体一 起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450---700 欧之间。 在它的两脚各有1V 左右的电压,由分频器提供。晶体两脚常生的频率总和是14.318M 。 总频(OSC )在分频器出来后送到PCI 槽的B16 脚和ISA 的B30 脚。这两脚叫OSC 测试脚。 也有的还送到南桥,目的是使南桥的频率更加稳定。在总频OSC 线上还电容。

相关主题
文本预览
相关文档 最新文档