当前位置:文档之家› 直流无刷电机本体设计

直流无刷电机本体设计

直流无刷电机本体设计
直流无刷电机本体设计

电机与拖动基础

课程设计报告

设计题目:

学号:

指导教师:

信息与电气工程学院

二零一六年七月

直流无刷电机本体设计

1. 设计任务

(1) 额定功率

80N P W = (2) 额定电压310N U V ≤

(3) 电动机运行时额定转速

1000/min N n r = (4) 发电机运行时空载转速max 6000/min

n r = (5) 最大允许过载倍数 2.5λ=

(6) 耐冲击能力21500/m a m s =

(7) 机壳外径42D mm ≤

设计内容:

1. 根据给定的技术指标,计算电机基本尺寸,包括:定子铁心外径、定子铁心内径、铁心长度等。

2. 磁路计算,包括极对选择、磁钢选型、磁钢厚度、气隙长度等方面计算。

3. 定子绕组计算,包括定子绕组形式、定子槽数、绕组节距等计算。

2. 理论与计算过程

2.1 直流无刷电机的基本组成环节

直流无刷电动机的结构原理如图2-1-1所示。它主要由电机本体、位置传感器和电子开关线路三部分组成。电机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,……)组成。图中的电机本体为三相电机。三相定子绕组分别与电子开关线路中相应的功率开关器件连接,位置传感器的跟踪转子与电动机转轴相连接。

当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。

因此,所谓直流无刷电机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电机以及位置传感器三者组成的“电动机系统”。其原理框图如图2-1-2所示。

图2-1-1 直流电动机的工作原理图

图2-1-2 直流无刷电机的原理框图 电机转子的永久磁钢与永磁有刷电机中所使用的永久磁钢的作用相似,均是在电机的气隙中建立足够的磁场,其不同之处在于直流无刷电机中永久磁钢装在转子上,而直流有刷电机的磁钢装在定子上,图

2-1-3示出了典型直流无刷电机本体基本结构图。

图2-1-3 直流无刷电机基本结构图

直流无刷电机电子开关线路是用来控制电动机定子上各相绕组通电的顺序和时间,主要由功率逻辑开关单元和位置传感器信号处理单元两个部分组成。功率逻辑开关单元是控制电路的核心,其功能是将电源的功率以一定逻辑关系分配给直流无刷电机定子上各相绕组,以便使电机产生持续不断的转矩。而各相绕组导通的顺序和时间主要取决于来自位置传感器的信号。但位置传感器所产生的信号一般不能直接用来控制功率逻辑开关单元,往往需要经过一定逻辑处理后才能去控制逻辑开关单元,综上所述,组成直流无刷电机各主要部件的框图,如图2-1-4所示。

图2-1-4 直流无刷电机的组成框图

2.2 直流无刷电机的基本工作原理

众所周知,一般的永磁式直流电机的定子由永久磁钢组成,其主要的作用是在电机气隙中产生磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电机为了实现无电刷换相,首先要求把一般直流电机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。

下面以图2-1-1所示电路对直流无刷电机工作过程作简要说明。

设三相桥式逆变器采用“120°导通型”通断规律。即:每隔1/ 6周期(60°电角度)换相一次,每次换相一个功率管,每一功率管导通120°电角度。各功率管的导通顺序是V1V2、V2V3、V3V4、V4V5、V5V6、V6V1、…。当功率管V1和V2导通时,电流从V1管流入A相绕组,再从C相绕组流出,经V2管回到电源。如果认定流入绕组的电流所产生的转矩为正,那么从绕组流出所产生的

转矩则为负,它们合成的转矩如图2-2-1(a)所示,其大小为3Ta,方向在Ta 和-Tc的角平分线上。当电机转过60°后,由V1V2通电换成V2V3通电。这

时,电流从V3流入B相绕组再从C相绕组流出,经V2回到电源,此时合成的转矩如图2-2-1(b)所示,其大小同样为3Ta。但合成转矩Tbc的方向转过了

60°电角度,而后每次换相一个功率管,合成转矩矢量方向就随着转过60°电角度,但大小始终保持3Ta不变。图2-2-1(c)示出了全部合成转矩的方向。

图2-2-1 定子绕组在空间合成转矩矢量图

(a)V1、V2导通时合成转矩;(b)V2、V3导通时合成转矩;

(c)两两通电时合成转矩矢量图

所以,同样一台直流无刷电机,每相绕组通过与三相半控电路同样的电流时,采用三相星形(Y)联结全控电路,在两两换相的情况下,其合成转矩增加了3

倍。每隔60°电角度换向一次,每个功率管通电120°,每个绕组通电240°,其中正相通电和反相通电各120°,其输出转矩波形如图2-2-2所示。由图2-2-2可以看出,三相全控时的转矩波动比三相半控时小得多。

图2-2-2 全控桥输出波形图

如将三只霍尔传感器按相位差120°安装,则它们所产生的波形如图2-2-3所示。

图2-2-3 各相绕组的导通示意图

2.3 直流无刷电机设计的基本步骤

(1)根据给定的技术指标,计算电机基本尺寸,包括:定子铁心外径、定子铁心内径、铁心长度等。

(2)磁路计算,包括极对选择、磁钢选型、磁钢厚度、气隙长度等方面计算。

(3)定子绕组计算,包括定子绕组形式、定子槽数、绕组节距等计算。

在设计时既要保证电动机运行可靠、性能优良、效率高和寿命长,又要体积小、重量轻、材料省、加工方便,很多因素是相互矛盾和相互制约的。对设计的要求是全面考虑,统筹兼顾,全面落实技术经济指标。

2.4 主要尺寸的选择

(1) 定子铁心内径的选择

直流无刷电机的转子外径Da(由于直流无刷电机气隙一般很小,为简化问题,就认为转子外径等于定子内径)一般随单位转速的输出功率P值增加而增大,当电机的单位转速输出功率P相同时,其Da大致一样。决定Da时,可根据给定的P值并结合工厂的生产条件,参考已制成的类似电机的Da值而选定。我国目前制造的直流电机,其Da与输出功率P的关系曲线如图2-4-1所示,它可以

作为选定Da的初步依据。

图2-4-1 定子内径Da 与单位转速输出功率PN/nN 的关系 根据已知条件计算得

41800.810[kW (r/min)]n 1000N N P --==? (1)

从图2-4-1的曲线对比,取Da=3.4cm=34mm 。 (2) 电磁负荷的选择

42N D a a δ6.110P k D L BA n

αη?= (2) 式中Da ——定子铁心内径(cm );

La ——定子铁心长度(cm );

kD ——考虑电机内部压降等因素影响的小于1的系数;

PN ——额定功率(W );

B ——磁负荷(T);

A ——电负荷(A/cm );

δα——极弧系数;

η——电机效率;

n ——电机额定转速(r/min )。

由式(2)可知,电负荷A 与磁负荷B 的选择与电动机的主要尺寸直接相关。同时,A 、B 的数值与电动机的运行性能和使用寿命也有密切关系,因此必须全面考虑各方面因素,才能正确选择A 、B 的数值。

一般来说,选用较高的磁负荷B 可以节约有效材料、缩小电机体积。但是B 过高会产生以下一些不利影响:

1)将增加转子和定子铁心饱和程度,特别是定子齿中的饱和更为强烈,于是空气隙及电动机定子磁路所需的磁感应强度增高,势必要求高性能的磁钢和导

磁材料,其价格随之上升。

2)因为单位体积的铁耗近似地与铁内磁感应强度的平方成正比,所以B的增大将使电机的铁耗增加,导致电机的效率降低,同时也使电机的温升增高。

同样,选用较高的电负荷A也可以节约有效材料、缩小电机体积。但是A 过高会产生以下一些不利影响:

1)定子绕组的去磁作用的影响比较显著,导致工作特性变差。

2)在定子绕组电流密度不变的条件下,这将增加定子槽内导线,从而增加了定子绕组的用铜量、铜耗和温升。

电机的电负荷A和磁负荷B与定子内径Da有关,根据已生产电机的经验数据可以绘制成曲线,作为设计时参考。图2-4-2和图2-4-3分别表示B级绝缘直流电机的A、B的经验值和Da的关系。

由Da=3.4cm,根据图2-4-2和图2-4-3预取A=130A/cm,B=0.6T。

图2-4-2 电负荷A与定子内径Da的关系

图2-4-3 磁负荷B 与定子内径Da 的关系

(3) 定子铁心长度L 的确定

从式(2),可以得到转子磁钢计算长度La 的表达式为

4N D a 2δa 6.110P k L BAD n

αη?=

(3)

图2-4-4 计算极弧系数δα与转子外径Da 的关系

由Da=3.4cm ,根据图2-4-4,参考以往经验值,预取

δα=0.9。 预取系数0.8D k =,效率0.7η=,根据式(3)计算得La=6.8cm 。

所以,铁心长度L=La=6.8cm 。

(4) 转子长度与直径的比值λ

从式(2)可以看出,在同样给定条件和选定的A 、B 和δα数值下,2a a D L 是

一定的。因此,如果把Da 选得大一些,La 必定小一些,电机就比较粗短;反之,如果把Da 选得小一些,La 必定大一些,电机就比较细长。电机的这个几个形状关系可用电动机计算长度与定子内径的比值来表示:

a a

L D λ= (4) 由Da=3.4cm ,La=6.8cm ,代入式(4)计算得

a a 2L D λ=

=。

(5) 定子铁心外径的选择

由定子铁心内径Da=3.4cm=34mm ,技术要求机壳外径42D mm ≤,根据表1可以选择定子铁心外径D1=36.8mm=3.68cm 。

2.5 磁路计算

(1) 极数的选择

我们已知δa a 2πp BL D αΦ=,在转子外径、长度和气隙磁感应强度确定后,沿定子圆周的总磁通Φ为一定值。增加极对数p ,可减少每级磁通,定子轭及机座的截面积可相应减少,从而减少电机的用铁量;定子绕组的端接部分将随极数增加(即极距减小)而缩短,在同样的电流密度下,绕组用铜量也将减少;磁极增多后,定子绕组电感相应减少,这将有利于电子器件换相。总的来说,增加极数可以节约原材料和缩小电机外形。

同时,当增加极数后制造工时也相应地增加了;随着极对数的增加,考虑到极漏磁不能太大,极弧系数δα要减小,从而使电机原材料的利用率变差;增加极对数后,在同样转速下,电子器件的换相次数增加,从而增加了电子器件的换相损耗。在同样转速下,定子绕组的交变频率将随极数的增加而增加,因而齿的铁损耗随极数的增加而增大,而定子轭的铁损耗则增加很少,因为铁轭的重量反

比于极数而下降;当电流密度不变时,定子绕组中铜耗随极数的增加而降低。一般说,电机效率随极数的增加而有所下降。

目前,直流无刷电机的容量比较小,极距12~50mm τ=。

若取极对数p=2,则

a π 3.143325.9mm 222

D p τ?===? (5) 所以极对数p=2,极数为4,满足设计要求。

(2) 磁钢的选择

1) 磁钢材料的选择

永磁材料的种类多种多样,性能相差很大,因此在设计永磁电机时首先要选择好适宜的永磁材料品种和具体的性能指标。归纳起来,选择的原则为:

① 应能保证电机气隙中有足够大的气隙磁场和规定的电机性能指标。

② 在规定的环境条件、工作温度和使用条件下应能保证磁性能的稳定性。 ③ 有良好的机械性能,以方便加工和装配。

④ 经济性要好,价格适宜。

目前在直流无刷电机中常用的永磁材料有铝镍钴合金、铁氧体和钕铁硼等。 在满足性能指标的前提下,考虑到其经济性,百瓦级的小型直流无刷电机转子磁钢选用铁氧体。

2) 磁钢结构的选择

小型直流无刷电机按工作主磁场方向不同,主要有径向磁场型式和切向磁场型式两种,如图2-5-1所示。

图2-5-1 转子磁路结构

1) 径向磁场型式

采用径向磁场结构的小型直流无刷电机的运行速度一般比较低,可直接将励磁磁钢粘结在转子磁辘上。为了减轻转子的整体重量,可以在转子磁扼上开减轻孔,如图2-5-1a 所示。从图2-5-1a 的主磁路可以看出,径向磁场型式是一对极的两块磁钢串联。仅有一个磁钢截面积对每一个气隙提供磁通,而由两个磁钢长度对发电机提供磁势。

2) 切向磁场型式

如图2- 5-1b 所示,这类结构是把磁钢镶嵌在转子磁极中间,磁钢与磁极固

定在隔磁衬套上。磁极由导磁性能良好的铁磁材料(如软铁等)制成,衬套由非磁性材料制成(如铝、工程塑料等),用以隔断磁极、磁钢与转子的磁通路,减小漏磁。从图2-5-1b 可以看出,它的结构是一对磁极的两块磁极并联,由两块磁钢向每个气隙提供磁通,这样电机的气隙磁密B 高,制造出的电机体积小。切向磁场型式的转子整体结构比较复杂,除机械加工量比较大外,它的拼装必须用专用设备,尤其将磁钢镶嵌到磁极中间要有专用工具。转子拼装好后,在转子端部将磁钢固紧,以免造成转子(对定子)的扫膛现象,甚至卡死,电机烧坏现象。

综上所述,本文所设计的直流无刷电机适合选用磁钢径向磁场结构。

所以,本设计磁钢选择铁氧体材料、磁钢径向冲磁结构,磁钢厚度取Hm=0.2cm ,气隙长度取为=0.7mm δ。

(3) 简单磁路的计算

直流无刷电机的磁路,一般由永久磁钢、导磁体和气隙三部分组成。其中导磁体磁阻很小,可以忽略不计。这样,磁路仅由磁钢和气隙两部分组成,它近似于具有空气隙的一个圆环形永久磁钢的简单磁路,如图2-5-2所示。

图2-5-2 具有固定气隙的环形永久磁钢

假设环形永久磁钢之间的漏磁通为零,即忽略环形磁钢本身的漏磁通,并设环形磁钢的截面积处处相等,均为SM ,平均长度为LM 。因此可认为磁钢内部的磁感应强度在任一截面处都是均匀分布的,而沿全长LM 磁钢内部的磁场强度分布也是均等的。

当磁路中的气隙长度为δ时,按磁路的基尔霍夫第二定律,可得

M M δ0H L H δ+= (6)

式中M L ——环形永久磁钢的平均长度(m );

δ——气隙长度(m );

M H ——环形永久磁钢内部的磁场强度(A/m );

δH ——气隙中的磁场强度(A/m )。

根据上述分析预取和计算的已知条件,参考有关资料所给的经验值和计算公式,对磁路中相关参数计算如下:

1) 漏磁系数 1.2σ=;

2)气隙磁通δδδδδδ15.85B S B L B ατΦ===;

3)空载电枢齿磁密δt t Fe B t B b K =

;(t b 齿宽,Fe K 电枢冲片叠片系数,t 齿距)

4)空载电枢轭磁密112j j Fe B h K L

δΦ=

;(1j h 电枢轭高) 5)空载转子轭磁密

222j j B b L δσ

Φ=;(2j b 转子磁轭等效宽度) 6)气隙磁势61.610F K B δδδδ=?;(K δ

气隙系数) 7)定子齿磁势2t t t F H h =;(t h 槽高)

8)定子轭部磁势

111j j j F H L =;(1j L 电枢铁心轭部沿磁路计算长度) 9)转子轭部磁势

222j j j F H L =;(2j L 转子轭部沿磁路方向长度) 10)总磁势12t j j F F F F F δ=+++∑

; 11)总磁通4δ1.215.8510m B Wb

δσ-Φ=Φ=?? 2.6 定子绕组计算

(1) 定子结构的设计

设计直流无刷电机时,在保证足够的机械强度及磁通密度允许的情况下,应尽量减少齿宽和轭厚,以扩大槽面积,增大定子绕组导线面积,降低铜耗,提高发电机的效率。

同时,为了使电机能够快速起动,需要采用合适的极槽配合,使得

/2/s Q Z p A C D ==+ (7)

式中:Zs 为定子槽数;p 为发电机极对数;A 为整数,C/D 为不可约分的分数。理论和实践证明,D 越大,电机的起动阻转矩越小。对于一极数一定的直流无刷电机,它的起动阻转矩随着槽数的变化而变化,如图2-6-1所示。为此,在实际设计中,应选择合适的极槽配合,以使起动阻转矩满足要求。

图2-6-1阻转矩和槽数的关系

在上文的分析中,我们选择转子为2对极磁钢,为了使得直流无刷电机的起动阻力矩满足要求,我们选择12槽定子来满足极槽配合的要求。

(2) 定子绕组形式

在直流无刷电动机内,绕组可分为单层绕组和双层绕组。每个槽内放置一个线圈边时,称为单层绕组;每个槽内放置两个线圈边,且分为上、下层时,称为双层绕组。双层绕组一般都采用短距绕组,其节距y在0.8τ左右,以使其5次和7次谐波的影响同时削减到比较小,这样既改善了电动机的电磁性能,又可节省材料(因为绕组的端部接线缩短了)。

单层绕组,每相每极仅一个线圈,而双层绕组,每相每极仅两个线圈时称为集中绕组。单层绕组每相每极有两个或更多个线圈、双层绕组每相每极有两个以上线圈时,称为分布绕组。

电动机的定子(或转子),其圆周等于360°,这种用机械关系计量的空间角度叫做机械角。但是在电工技术中,经常用到电角度(简称电角)的概念。每对磁极占定子圆周的空间的机械角为360°/(极对数),但其电角度为360°。且每经过一对磁极,就相应转过360°电角度。显然电角度是与磁极数有关,它与机械角度的关系(图2-5-1)为

电角度=极对数×机械角度

图2-6-2 电动机机械角与电角的关系

a)4极电机磁场示意图 b)转子导体1的感应电动势波形归纳起来,直流无刷电动机对绕组有下列基本要求:

1)绕组导体沿定子圆周排列,通电后产生的磁场,应形成与转子磁场相同的极对数,这是最基本的要求。否则,它将无法运行;

2)节约用铜。在用铜量一定时,产生的感应电势或电动势最大;

3)绕组的结构应尽力使工艺简单,制作维修方便;

4)绝缘可靠,散热条件好。

根据以上分析,本设计中直流无刷电机定子绕组采用双层绕组形式。对双层绕组而言,电动机定子有多少个槽,就会有多少个线圈,即线圈数等于槽数。

双层绕组特点之一是一般都用短距绕组。一般说来,节距缩短一或两个槽时,对于各个线圈的安放,不会发生什么妨碍。而短距绕组的明显好处是缩短了端接线,节省了铜线,而所产生的基波感应电势削弱得并不多。相反,采用短距绕组以后,对感应电势的谐波可以削弱很多,这对改善感应电势的波形是有利的。为了定量分析上述优点,下面通过计算短距绕组的基波感应电势和谐波感应电势来加以说明。

图2-6-3 短距绕组

图2-6-3画出了一个短距绕组,它由导体Ⅰ和导体Ⅱ组成,线圈的节距y1小于极距τ,其节距比为β。

采用短距绕组后,该绕组所产生的感应电势比全距绕组的应有所减少,那么如何来精确地计算其数值呢?为此,先看其中一匝所产生的感应电势。在分析感

应电势之前,首先规定好导体与绕组感应电势的正方向。导体感应电势以顺时针方向作为感应电势的正方向,并规定绕组的中心线处在磁极之间时作为时间的起点。 导体Ⅰ的基波感应电势

1sin[t ()]E sin(t )

22m m E E βπ

βπ

ωπω=+-=-- (8) 导体Ⅱ的基波感应电势

2sin[t ()]E sin(t )22m m E E βπ

βπωπω=++=-+ (9) 绕组的基波感应电势

1212E [sin(t )sin(t )]22E sin cos t 2m m E E E βπβπωωβπ

ω=-=+

--= (10)

绕组为整距时,绕组基波感应电势应为

122E cos(t)m E ω=,所以短距绕组的基波感应电势

1212121E sin 2E 2p E k βπ

== (11)

式中kpl —基波短距因数,1(2)/p k sin βπ=。

短距因数也是一个小于1的数。这是由于当绕组采用短距后,线圈里的两根导体所产生的基波感应电势的相角不是相差180°。所以,线圈的基波感应电势不是导体基波感应电势的两倍,而是相当于整距绕组的基波感应电势乘上小于1的因数。

所以,采用短距绕组后,一方面可使端接部分缩短,节省了铜,另一方面还能改善感应电势的波形,这是双层短距绕组的显著优点。

双层绕组一般存在两种绕组型式,即叠绕组和波绕组。图2-6-4表示了两种绕组的绕组型式,其中,图a 为叠绕,图b 为波绕。叠绕组的联接特点是,把一个极下同一相的几个线圈依次串联起来成为一个极相组。

由于串联元件是后一个叠在前一个上面,故叫做叠绕组。

图2-6-4双层绕组的两种绕组型式

a)叠绕 b)波绕

叠绕组的优点是,短距时端部可以节约用铜;缺点是,各相绕组之间的联线较长,极数多时费铜。叠绕组一般为多匝导线,主要用于电压、额定电流不太大的中、小型电动机定子绕组中。波绕组的联接特点是把所有同极性下的属于同一相的线圈按照一定的次序联接起来,相联接线圈的外形似波浪形,因此叫作波绕组。

由于本设计的直流无刷电机为小型电机,故采用双层叠绕组形式联接。

(3) 定子绕组节距的计算

根据上文分析,定子总槽数Zs=12,极对数p=2,由此计算极距为

12324s Z p τ=

== (12)

考虑到本设计中直流无刷电机绕组采用双层叠绕组形式,适合采用短距绕组形式,以削弱感应电势中产生的高次谐波,所以,绕组节距计算公式为

10.8 2.42y τ==≈ (13)

即定子绕组节距y1=2。

3. 小结

3.1 总结

根据上文分析,本设计的直流无刷电机为:

(1) 主要尺寸:

定子铁心内径:Da=3.4cm=34mm ;

定子铁心外径:D1=36.8mm=3.68cm ;

定子铁心长度:L=6.8cm ;

(2) 磁路参数:

极对数:p=2;

磁钢类型:铁氧体材料、磁钢径向冲磁结构;

磁钢厚度:Hm=0.2cm ;

气隙长度:=0.7mm δ;

(3) 定子绕组

定子绕组形式:双层叠绕组整距联接;

定子槽数:Zs=12;

绕组节距:10.82y τ=≈。

3.2 心得与体会

经过为期两周的研究与设计,本次电机与拖动课程设计——直流无刷电机本体设计顺利完成。通过这次课程设计,使我对直流无刷电机的工作原理及其本体结构有了更进一步的了解,对直流无刷电机内部参数和形式有了更加深入的理解

与体会。

在课程设计过程中我也遇到很多困难,开始时候并不能理解直流无刷电机的技术要求与结构设计的关系,在查找了大量资料,对直流无刷电机的基本尺寸、磁路、定子结构有了更进一步的了解,仿照其他类型电机设计的模板,一步一步理清思路,逐渐设计出自己想要的结果,才使得此次设计顺利进行。

当然,此次课程设计实践,也进一步历练了自己,增强了自己独立发现问题、思考并解决问题的能力,使我面对困难不妥协,学会了换个角度思考问题,灵活变通。在学术研究面前变得更加沉稳,有耐心。

总而言之,在这两周的课设实践中,我学到了许多有意义的东西,这些东西都是很宝贵的财富。

直流无刷电机本体设计解读

电机与拖动基础 课程设计报告 设计题目: 学号: 指导教师: 信息与电气工程学院 二零一六年七月

直流无刷电机本体设计 1. 设计任务 (1) 额定功率 80N P W = (2) 额定电压310N U V ≤ (3) 电动机运行时额定转速 1000/min N n r = (4) 发电机运行时空载转速max 6000/min n r = (5) 最大允许过载倍数 2.5λ= (6) 耐冲击能力21500/m a m s = (7) 机壳外径42D mm ≤ 设计内容: 1. 根据给定的技术指标,计算电机基本尺寸,包括:定子铁心外径、定子铁心内径、铁心长度等。 2. 磁路计算,包括极对选择、磁钢选型、磁钢厚度、气隙长度等方面计算。 3. 定子绕组计算,包括定子绕组形式、定子槽数、绕组节距等计算。 2. 理论与计算过程 2.1 直流无刷电机的基本组成环节 直流无刷电动机的结构原理如图2-1-1所示。它主要由电机本体、位置传感器和电子开关线路三部分组成。电机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其他起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,……)组成。图中的电机本体为三相电机。三相定子绕组分别与电子开关线路中相应的功率开关器件连接,位置传感器的跟踪转子与电动机转轴相连接。 当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转,再由位置传感器将转子磁钢位置变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。 因此,所谓直流无刷电机,就其基本结构而言,可以认为是一台由电子开关线路、永磁式同步电机以及位置传感器三者组成的“电动机系统”。其原理框图如图2-1-2所示。

直流无刷电机硬件设计文档

硬件电路设计说明书V1 文档版本 1.0 编写人:彭威 编写时间:2015-06-10 部门:研发部 审核人: 审核时间:

1.引言 1.1编写目的 本文档是无刷直流电机风机盘管电源电路及控制驱动电路的硬件设计说明文档,它详细描述了整个硬件模块的设计原理,其主要目的是为无刷直流电机控制驱动电路的原理图设计提供依据,并作为 PCB 设计、软件驱动设计和上层应用软件设计的参考和设计指导。 1.2产品背景 1.3参考资料 Datasheet:Kinetis KE02 Datasheet:MKE02Z16VLC2 Datasheet:MKE02Z64M20SF0RM Datasheet:FSB50760SFT Datasheet:TNY266 Datasheet:FAN7527 2.硬件电路概述 2.1电源部分 电源部分主要功能是提供400V直流电供给电机,另外提供15V直流电给电机驱动芯片供电。采用反激式开关电源设计。 2.1.1总体方案

设计一款 100W驱动开关电源。给定电源具体参数如下: (1)输入电压:AC 85V~265V (2)输入频率:50Hz (3)工作温度:-20℃~+70℃ (4)输出电压/电流:400V/0.25A (5)转换效率:≧85% (6)功率因数:≧90% (7)输出电压精度:±5% 系统整体框架如下 如图所示为电源的整体架构框图,主要目的是在输入的85~265V、50Hz交流电下,输出稳定的恒压电机驱动直流电。由图可知,电源电路主要包括了前级保护电路模块、差模共模滤波模块、整流模块、功率因数校正模块、DC/DC模块。其中EMI滤波电路能够抑制自身和电源线产生的电磁污染,功率因数校正电路采用Boost有源功率因数

51单片机直流无刷电机控制

基于MCS-51单片机控制直流无刷电动机 学号:3100501044 班级:电气1002 :王辉军

摘要 直流无刷电机是同步电机的一种,由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说直流无刷电机能够在额定负载围当负载变化时仍可以控制电机转子维持一定的转速。 MCS-51单片机是美国英特尔公司生产的一系列单片机的总称,是一种集成电路芯片,采用超大规模技术把具有数据处理能力的微处理器(CPU)、随机存储器(RAM)、只读存储器(ROM)、输入输出接口电路、定时计算器、串行通信口、脉宽调制电路、A/D转换器等电路集成到一块半导体硅片上,这些电路能在软件的控制下准确、迅速、高效地完成程序设计者事先规定的任务。 本论文将介绍基于MCS-51单片机控制直流无刷电动机的设计,它可以实现控制直流无刷电动机的启动、停止、急停、正反转、加减速等功能。 关键词:单片机,直流无刷电动机,控制系统

直流无刷电动机是在直流电动机的基础之上发展而来的,它是步进电动机的一种,继承了直流电动机的启动转矩大、调速性能好等特点克服了需要换向器的缺点在交通工具、家用电器及中小功率工业市场占有重要的地位。直流无刷电动机不仅在电动自行车、电动摩托车、电动汽车上有着广泛的应用,而且在新一代的空调机、洗衣机、电冰箱、吸尘器,空气净化器等家用电器中也有逐步采用的趋势,尤其是随着微电子技术的发展,直流无刷电动机逐渐占有原来异步电动机变频调速的领域,这就使得直流无刷电动机的应用围越来越广。 本设计就是基于MCS-51系列单片机控制直流无刷电动机,利用所学的知识实现单片机控制直流无刷电动机的启动、停止、急停、正反转,加减速等控制,并对直流无刷电动机运行状态进行监视和报警。详细介绍单片机的种类、结构、功能、适用领域和发展历史、未来前景及其直流无刷电动机的工作原理、控制结构等容,既着重单片机的基本知识、功能原理的深入阐述,又理论联系实际详细剖析单片机控制直流无刷电动机的过程。 1.直流无刷电动机的基本组成 直流无刷电动机是在直流电动机的基础上发展而来的,直流无刷电动机继承了直流电动机启动转矩大、调速性能好的优点,克服了直流电动机需要换向器的缺点,在交通工具、家用电器等生活的方方方面面占有重要的地位。 由于直流无刷电动机既具有交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、无励磁损耗以及调速性能好等诸多优点,故在当今国民经济各领域应用日益普及。 直流无刷电动机主要由电动机本体、位置传感器和电子开关线路三部分组成。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2,4,…)组成。图3-1所示为三相两极直流无刷电机结构。 三相定子绕组分别与电子开关线路中相应的功率开关器件联结,A、B、

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

无刷直流电机软件的设计

4.3 控制器软件设计 软件设计是控制系统最重要的一个组成部分,软件设计的好坏直接关系着整个控制系统性能的优良,控制系统的软件设计一定要具备实时性、可靠性和易维护性,对此,选择一款简单、方便的开发环境对于系统软件的整体优化以及提高整个系统的开发效率有很大的影响。目前支持STM 32系列控制芯片且应用比较广泛的主要有IAR EWARM和KEIL MDK这两个集成开发环境,本文采用的开发环境是KEIL MDK,它是ARM 公司推出的嵌入式微控制器开发软件,集成了业界领先的Vision 4开发平台,具有良好的性能,是ARM开发工具中的最好的选择,适合于不同层次的开发人员使用,尤其是它与我们经常使用的51单片机开发环境Keil C51的整体布局和使用方法类似,只有一些地方不同,操作起来比较熟练,很容易上手,极大的减小了开发人员的使用难度,缩短了开发周期,提高了开发效率,因此这款KEIL MDK得到了很多人的认可。 STM 32的软件开发主要开发方式有2种,就是基于寄存器的开发和基于库函数的开发,其中基于寄存器的开发方式就更51单片机的开发差不多,它是通过直接操作芯片内部的各个寄存器来达到控制芯片的目地,这种方式较直观,程序运行占用的资源少,但对于STM 32这种寄存器数目非常多的芯片来说,采用寄存器的开发方式会减慢开发速度,还让程序可读性降低。而基于库函数的开发方式则是对寄存器的封装,它向下处理与寄存器直接相关的配置,向上为用户提供配置寄存器的接口,这种方式大大降低了使用STM 32的条件,不仅提高了开发效率,而且程序还具有很好的可读性和移植性,因此本文采用的是基于库函数的开发方式,编程语言全采用 C 语言。

无刷电机设计基础知识三

3 无刷直流电动机的电磁设计 3.1 基本要求和主要指标 3.1.1基本要求 (1) 运行方式 直流无刷电动机的运行方式有连续、短时和断续三种 (2) 防护形式 一般直流电动机的防护型式主要有防护式和封闭式两种。 (3) 温升 一般交流电机包括同步电机和感应电机,转子不计算铁耗,然而该类电机正常稳态运行时,定子绕组产生的2个旋转磁场转速与转子本体转速存在较大的转差,转子铁芯损耗不容忽视。不仅电磁设计时,其电磁负荷的选择应与常规电机有所区别,而且对通风冷却结构设计应予足够的重视。 (4) 效率 (5) 电动机的转速变化率 明确电机转速运行的最大区间,并应指明电机的常用转速区间,以便选择合适的电机数据,获得良好的力能指标。 3.1.2主要指标 ①额定功率P N = 100W ②额定电压U N = 270V ③额定转速n N = 1000 r/min ④定子相数m = 3 ⑤极对数p = 4 ⑥定子槽数Z = 18 3.2 主要尺寸的确定 3.2.1 定子铁心内径D a的选择

我国目前制造的直流电机,其D a 与输出功率P N 的关系曲线如下,它可以作为选定D a 的初步依据。 由于P N /n N =0.0001,从张琛的《直流无刷电动机原理及应用》中图3.1定子内径D a 与单位转速输出功率P N /n N 的关系曲线查得: cm D a 5.5~0.4=,则取cm D a 5= 3.2.2 电磁负荷的选择 电负荷A 与磁负荷B 的选择与电动机的主要尺寸直接相关。同时,A ,B 的选择与电动机的运行性能和使用寿命也密切相关,因此必须全面考虑各种因素,才正确选择A,B 的值。 (1) 线负荷A 高,磁负荷B 不变 ① 电机体积减小,节约材料 ② B 一定时,由于铁心重量减小,铁耗减小 ③ 绕组用铜量增加 ④ 增大电枢单位表面上铜耗,绕组温升增高 ⑤ 影响电机参数和电机特性: q a =ρAJ (2) 磁负荷B 高,线负荷A 不变 ① 电机体积减小,节约材料 ② 基本铁耗增大 ③ 磁路饱和程度增大 ④ 影响电机参数和电机特性 电负荷A 与磁负荷B 与定子的内径D a 有关,根据已生产的电动机的经验数据绘制成曲线。 由于D a =5cm ,由张琛的《直流无刷电动机原理及应用》中图3.2电负荷A 与定子内径D 的关系得电负荷A=75~150A/cm ,取A =90。 由于D a =5cm ,由张琛的《直流无刷电动机原理及应用》中图3.3磁负荷B 与定子内径D 的关系得磁负荷B=0.50~0.65T ,取B=0.55T 3.2.3 转子磁钢计算长度L a 的确定 先确定极弧系数δα,由经验数据得确定9.0=δα。 转子磁钢计算长度: n p k AD B L D a a ???=ηαδδ27 101.6 ,则cm L a 0.7=

直流无刷电机与永磁同步电机区别

无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波,逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。本质上,无刷直流电机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。 通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制方式。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为“无刷直流电机”也算是合适的。 无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波, 逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。 本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。通常说的永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制 策略。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。 最后纠正一个概念,“直流变频”实际上是交流变频,只不过控制对象通常称之为“无刷直流电机”。 仅对电机结构而言,二者确实相差不大,个人认为二者的区别主要在于: 1 概念上的区别。无刷直流电机指的是一个系统,准确地说应该叫“无刷直流电机系统”,它强调的是电机和控制器的一体化设计,是一个整体,相互的依存度非常高,电机和控制器不能独立地存在并独立工作,考核的也是他们整体的技术性能。而交流永磁同步电机指的是一台电机,强调的是电机本身就是一台独立的设备,它可以离开控制器或变频器而独立地存在独立地工作。 2 从设计和性能角度上看,“无刷直流电机系统”设计时主要考虑将普通的机械换向变为电子换向后如何还能保持机械换向电机的优点,考核的重点也是系统的直流电机特性,如调速特性等;而交流永磁同步电机设计主要着重电机本身的性能,特别是交流电机的性能,如电压的波形、电机的功率因数、效率功角特性等。 3 从反电势波形看,无刷直流电机多为方波,而交流永磁同步电机反电势波形多为正弦波。 4 从控制角度看无刷直流电机系统基本不用什么算法,只是依据转子位置考虑给那个绕组通电流即可,而交流永磁同步电机如果需要变频调速则需要一定的算法,需要考虑电枢电流的无功和有功等。

直流无刷电机的控制系统设计方案

直流无刷电机的控制系统设计方案1 引言 1.1 题目综述 直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。基于这么多的优点无刷直流电机有了广泛的应用。比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。 1.2 国内外研究状况 目前,国内无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规范。外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。近些年来,计算机和控制技术快速发展。单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。 经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。所以对无刷直流电机控制系统的研究学习仍是国内的重要研究内容[2]。 1.3 课题设计的主要内容 本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。本课题涉及的技术概括如下:

无刷直流电机调速控制原理

电子技校 电子报/2004年/04月/18日/第013版/ 无刷直流电机调速控制原理 天津潘旗 电动助力车大都使用轮毂电机,即把电机做成轮毂的样子,直接驱动后轮,从而降低成本,且可提高其电能与机械能的转换效率。现在的电动助力车,一般都采用如下三种电机:高效低速稀土永磁直流无刷电机、高效低速永磁直流有刷电机、高效高速稀土永磁直流有刷电机。 直流电机在转动过程中,绕组中的电流要不断地改变方向,以使转子向一个方向转动。其中,有刷电机是采用电刷与换相器通过机械接触的方式进行换相的;而无刷电机则是通过霍尔传感器检测出绕组实时运转位置的信号,再通过微处理器或专用芯片对采集的信号进行处理,并实时控制相应的驱动电路对电机绕组进行控制。由于无刷电机的换相是通过传感器及相关电路进行的,所以这种电机没有电刷与换相器的机械接触与磨损,不需要经常换电刷等易损器件,从而可有效提高电机的使用寿命,减少维修费用。同时,由于无刷电机没有电刷与换相器之间的摩擦,所以在换相期间没有电火花产生,。但是,由于无刷电机的电流换相需要专门的电路进行控制,所以整个控制电路将会比较复杂。 通常,电动助力车的无刷电机与车的后轮主轴为一体,其定子安装在主轴上,电机的外壳作为转子,通过钢丝与后轮钢圈连接。电动助力车的无刷电机三个绕组按三角形方式连接,当给电机加直流电时,其三个绕组中的电流流向变化有三种(如图1所示): 1.设第一拍C端悬空,则I C=0,电流从B端流向A端,可得知I B=I A,但极性相反,另有I1=I2。 2.第二拍时A端悬空,电流从C端流向B端。 3.第三拍工作时B端悬空,电流从A端流向C端。第二拍与第三拍的分析与第一拍类似。 假设按上述顺序对电机进行电流运行方向控制,每经过三个节拍的电流方向就会转换,由于绕组产生的磁场在定子中旋转了一圈(360°),故称为一个循环周期。由于转子的结构设计所决定:每6个循环周期(18拍),转子旋转一圈,即车轮转动一周。

无刷直流电机控制系统的设计

无刷直流电机控制系统 的设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

无刷直流电机控制系统的设计及仿真毕业设计

目录 1 前言 (1) 1.1 无刷直流电机的发展 (1) 1.2 无刷直流电机的优越性 (1) 1.3 无刷直流电机的应用 (2) 1.4 无刷直流电机调速系统的研究现状和未来发展 (2) 2 无刷直流电机的原理 (4) 2.1 三相无刷直流电动机的基本组成 (4) 2.2 无刷直流电机的基本工作过程 (5) 2.3 无刷直流电动机本体 (6) 2.3.1 电动机定子 (6) 2.3.2 电动机转子 (7) 2.3.3 有关电机本体设计的问题 (8) 3 转子位置检测 (9) 3.1 位置传感器检测法 (9) 3.2 无位置传感器检测法 (10) 4 系统方案设计 (12) 4.1 系统设计要求 (12) 4.1.1 系统总体框架 (12) 4.2 主电路供电方案选择 (13) 4.3 无刷直流电机电子换相器 (14)

4.3.1 三相半控电路 (14) 4.3.2 三相全控电路 (15) 4.4 无刷直流电机的基本方程 (16) 4.5 逆变电路的选择 (19) 4.6 基于MC33035的无刷直流电动机调速系统 (19) 4.6.1 MC33035无刷直流电动机控制芯片 (19) 4.6.2 基于MC33035的无刷直流电动机调速系统设计 (21) 5 无刷直流电机调速系统的MATLAB仿真 (23) 5.1 电源、逆变桥和无刷直流电机模型 (24) 5.2 换相逻辑控制模块 (25) 5.3 PWM调制技术 (30) 5.3.1 等脉宽PWM法 (32) 5.3.2 SPWM(Sinusoidal PWM)法 (32) 5.4 控制器和控制电平转换及PWM发生环节设计 (32) 5.5 系统的仿真、仿真结果的输出及结果分析 (34) 5.5.1 起动,阶跃负载仿真 (34) 5.5.2 可逆调速仿真 (36) 6 总结和体会 (38)

直流无刷电机与永磁同步电机区别

直流无刷电机与永磁同 步电机区别 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波,逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。本质上,无刷直流电机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。 通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦,外加的定子电压和电流也应为正弦波,一般靠交流变压变频器提供。永磁同步电机控制系统常采用自控式,也需要位置反馈信息,可以采用矢量控制(磁场定向控制)或直接转矩控制的先进控制方式。 两者区别可以认为是方波和正弦波控制导致的设计理念不同。最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频,从电机理论上讲,无刷直流电机与交流永磁同步伺服电机相似,应该归类为交流永磁同步伺服电机;但习惯上被归类为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为“无刷直流电机”也算是合适的。 无刷直流电机通常情况下转子磁极采用瓦型磁钢,经过磁路设计,可以获得梯形波的气隙磁密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。无刷直流电机的控制需要位置信息反馈,必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速系统。控制时各相电流也尽量控制成方波, 逆变器输出电压按照有刷直流电机PWM的方法进行控制即可。 本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。通常说的永磁同步电动机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分

无刷直流电机实体设计..

无刷直流电机本体设计 摘要:无刷直流电机即不使用电刷进行换向,而采用电子方式进换向。由于其高转速、寿命长、机械损耗小等优点,具有更广的运用空间。通过此次设计,以了解无刷电机结构、性能;并进行其控制系统的简略介绍。 关键字:无刷直流电机 电刷 电子换向 控制系统 一、引言 本次主要是针对微型电机本体进行设计,了解无刷电机与有刷电机结构差异。针对其具体指标要求,进行电机本体计算,了解电机设计中一些具体细节及难点,如紧圈、极弧系数、空载负载工作点等,从而完成对电机本体设计。 二、电机主要指标 额定电压:P N =20W 额定转速:n N =1500r/min 额定电压:24U N =V 效率:η=70% 极对数:p=1 三、电机实体计算 本电机短期运行 =?+=N P P , , η η3211W 86.22200.730.721=???+ 取线负荷 A S =50A/cm 预取计算极弧系数 0.75~0.6=α 此处取0.7 预取长径 1.5~0.6=λ 此处取1 预取气隙磁密 B δ=0.5T 1、定子结构计算: 电枢内径 D 'n =cm n B A P N S 74.11500 0.55010.722.86 1.610101.633 13=??????=*****?δλα 取电枢内径 D n =1.7cm 电枢外径

D w =3.3cm 极对数 p=1 电枢铁芯长 L= D n λ?=1.7cm 极距 πτ=D n /2p=2.67cm 定子齿数Z=12 齿距 t 1=n D π/12=0.445cm 定子槽型:开口梯形槽 槽口宽 01b =0.1 cm 槽口深 01h =0.1cm 槽肩宽 1x b =0.2cm 槽肩深 1x h =0.05 cm 槽底宽 1d b =0.4cm 槽身深 1s h =0.3cm 槽面积 10111112 2x x s x d s h b b h b b S ?++?+= =0.0975cm 2 电枢轭高 h j =0.35cm

无刷直流电机仿真

基于MATLAB/SIMULINK的无刷直流电动机系统仿真 0引言 无刷直流电机(Brushless DC Motor,以下简称BLDCM),是随着电力电子技术和永磁材料的发展而逐渐成熟起来的一种新型电机。为了有效的减少控制系统的设计时间,验算各种控制算法,优化整个控制系统,有必要建立BLDCM控制系统仿真模型。本文在BLDCM数学模型的基础上,利用MATLAB的SIMULINK和S-FUNCTION建立BLDCM的仿真模型,并通过仿真结果验证其有效性。 1无刷直流电机仿真模型 本文在MATLAB的SIMULINK的环境下,利用其丰富的模块库,在分析BLDCM 数学模型的基础上,建立BLDCM控制系统仿真模型,系统结构框图如图1所示。 图1 无刷直流电机控制原理框图 以图1为基础,按照模块化建模的思想搭建的系统的仿真模型如图2所示。整个控制系统主要包括电动机本体模块、逆变器模块、电流滞环控制模块、速度控制模块等。

图2 无刷直流电机控制系统仿真模型框图 1.1 电动机本体模块 在整个控制系统的仿真模型中,BLDCM本体模块是最重要的部分,该模块根据BLDCM电压方程求取BLDCM三相相电流,而要获得三相相电流信号i a,i b,i c必须首先求得三相反电动势信号e a,e b,e c,整个电动机本体模块的结果如下图3所示。电机本体模块包括反动电势求取模块,中性点求取模块,转矩计算模块 和位置检测模块。

图3 电机本体模块 1.反电势求取模块 本文直接采用了SIMULINK中的Lookup Table模块,运用分段线性化的思想,直观的实现了梯形波反电动势的模拟,具体实现如图4所示。 图 4 反电势求取模块

无刷直流永磁电动机设计流程和实例

. 无刷直流永磁电动机设计实例 一.主要技术指标 1.额定功率:P N30W 2.额定电压:U N 48,直流 V 3.额定电流:I N1A 3.额定转速:n N10000r/min 4.工作状态:短期运行 5.设计方式:按方波设计 6.外形尺寸:0.0360.065m 二.主要尺寸的确定 1.预取效率0.63、 2.计算功率P i 直流电动机 ' K m P N0.8530 P i40.48W,按陈世坤书。 N 0.63 长期运行 1 2 PN Pi 3 短期运行 1 3 PN Pi 4 3.预取线负荷A s'11000A/m 4.预取气隙磁感应强度B'0.55T 5. 预取计算极弧系数i0.8 6.预取长径比(L/D)λ′=2

Word资料

. 7.计算电枢内径 6.1P i 6.1 40.48 10 2 m D i13 3 1.37 i A s B n N 0.811000 0.55 210000 根据计算电枢内径取电枢内径值D i1 1.4 102 m 8. 气隙长度 0.7 103 m 9. 电枢外径D 1 2.95 102m 10. 极对数p=1 11.计算电枢铁芯长 L D i1 2 1.4 102 2.8 102 m 根据计算电枢铁芯长取电枢铁芯长 L= 2.8102 m 12. 极距 Di13.14 1.410 2 2 m 2p 2 2.2 10 13. 输入永磁体轴向长L m L 2.8102 m 三.定子结构 1. 齿数 Z=6 2. 齿距 D i1 3.141.410 2 10 2 m t 6 0.733 z 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: b t tB 0.733 102 0.55 0.294 10 2 m ,B t 可由 B t K Fe 1.430.96 设计者经验得 1.43T ,b t 由工艺取0.295102 m 5. 预估轭高: h j1 a i B 2.2 0.8 0.55 0.32310 2 m 2lB j1K Fe 2KFeBj1 2 0.96 1.56

基于单片机的无刷直流电机的控制系统

绪论 随着计算机进入控制领域,以及新型的电力电子功率器件的不断出现,采用全控型的开关功率元件进行脉冲调制(paulse width modulation,简称PWM)控制的无刷直流电机已成为主流。随着半导体工业,特别是大功率电子器件及微控制器的发展,变速驱动变的更加现实且成本更低。 本文充分利用单片机的数字信号处理器运算快、外围电路少、系统组成简单、可靠的特点,将其应用于无刷电机的驱动设计。实验表明,该设计使得无刷直流电机的组成简化和性能的改进成为可能,有利于电机的小型化和智能化。 (一)电机的分类 电机按工作电源种类可分为: 1.直流电机 (1)有刷直流电机 ①永磁直流电机 ·稀土永磁直流电动机 ·铁氧体永磁直流电动机 ·铝镍钴永磁直流电动机 ②电磁直流电机 ·串励直流电动机 ·并励直流电动机 ·他励直流电动机 ·复励直流电动机 (2)无刷直流电机 稀土永磁无刷直流电机 2.交流电机 (1)单相电动机

(2)三相电动机 (二)无刷直流电机及其控制技术的发展 1831年,法拉第发现了电磁感应现象,奠定了现代电机的基本理论基础。从19世纪40年代研制成功第一台直流电机,经过大约17年的时间,直流电机技术才趋于成熟。随着应用领域的扩大,对直流电机的要求也就越来越高,有接触的机械换向装置限制了有刷直流电机在许多场合中的应用。为了取代有刷直流电机的电刷-换向器结构的机械接触装置,人们曾对此作过长期的探索。1915年,美国人Langnall发明了带控制栅极的汞弧整流器,制成了由直流变交流的逆变装置。20世纪30年代,有人提出用离子装置实现电机的定子绕组按转子位置换接的所谓换向器电机,但此种电机由于可靠性差、效率低、整个装置笨重又复杂而无实用价值。 科学技术的迅猛发展,带来了电力半导体技术的飞跃。开关型晶体管的研制成功,为创造新型直流电机——无刷直流电机带来了生机。1955年,美国人Harrison首次提出了用晶体管换相线路代替电机电刷接触的思想,这就是无刷直流电机的雏形。它由功率放大部分、信号检测部分、磁极体和晶体管开关电路等组成,其工作原理是当转子旋转时,在信号绕组中感应出周期性的信号电动势,此信号电动势份别使晶体管轮流导通实现换相。问题在于,首先,当转子不转时,信号绕组内不能产生感应电动势,晶体管无偏置,功率绕组也就无法馈电,所以这种无刷直流电机没有起动转矩;其次,由于信号电动势的前沿陡度不大,晶体管的功耗大。为了克服这些弊病,人们采用了离心装置的换向器,或采用在定子上放置辅助磁钢的方法来保证电机可靠地起动。但前者结构复杂,而后者需要附加的起动脉冲。其后,经过反复的试验和不断的实践,人们终于找到了用位置传感器和电子换相线路来代替有刷直流电机的机械换向装置,从而为直流电机的发展开辟了新的途径。20世纪60年代初期,接近开关式位置传感器、电磁谐振式位置传感器和高频耦合式位置传感器相继问世,之后又出现了磁电耦合式和光电式位置传感器。半导体技术的飞速发展,使人们对1879年美国人霍尔发现的霍尔效应再次发生兴趣,经过多年的努力,终于在1962年试制成功了借助霍尔元件(霍尔效应转子位置传感器)来实现换相的无刷直流电机。在⒛世纪70年代初期,又试制成功了借助比霍尔元件的灵敏度高千倍左右的磁敏二极管实现换相

无刷直流电动机的设计

上传说明: 本论文仅供大家学习和参考用

无刷直流电动机的设计摘要 【摘要】 无刷直流电动机是近年迅速兴起的一种新型电机,它广泛应用与工业,农业,以及军事等领域。无刷直流电动机既保持了直流电动机良好的调速控制特性,又消除了电刷和换向器的机械接触。 本文是对无刷直流电动机做出深入的剖析与设计。无刷直流电动机是一种具有高效率、低磨损、低噪声的新型直流电机机种.本设计在介绍无刷直流电动机设计中,关于相数、极数、槽数及绕组连接方式的选择方法和应遵从的规律.而且针对小功率直流电动机结构特点和工作性能,在电枢反应理论基础上设计出功率为120w的无刷直流电动机,并对霍尔位置传感器和无刷电动机的控制及驱动做了详细的分析。 【关键词】设计无刷直流电动机霍尔位置传感器 Design of Brushless DC motor 【Abstract】 Brushless DC motor is rapidly development new motor in the recently, and it widely used in industry、agriculture and in the army. The better governing speed characteristic is kept and the mechanical touch between brushes and commutator is removed as well in brushless DC Motors. This paper intends to make a better on the Design of Brushless DC motor .The DC motor without coal brushless is in a new style, with higher work rate. Less wear and lower noise. This paper presents the method of selecting phase, slot number and winding connection type and introduces the laws that should be obey in the design of brushless DC motor. Also based on introducing the structure of a light power DC motor, a 120w light power DC motor is design according to the theory. Not only make a lot of analyzed about the Hall position sensor in this paper .but also the brushless DC’s controls and the driving-methods for brushless DC. 【Key words】design brushless DC motor Hall position sensor

相关主题
文本预览
相关文档 最新文档