当前位置:文档之家› 邵阳县2016-2017学年八年级(下)期中数学试卷(解析版)

邵阳县2016-2017学年八年级(下)期中数学试卷(解析版)

邵阳县2016-2017学年八年级(下)期中数学试卷(解析版)
邵阳县2016-2017学年八年级(下)期中数学试卷(解析版)

2017学年湖南省邵阳市邵阳县八年级(下)

期中数学试卷

一、选择题

1.在下列图形中,既是轴对称图形又是中心对称图形的是

()

A.B. C.D.

2.下列说法正确的有()

①如果∠A+∠B=∠C,那么△ABC是直角三角形;②如果∠A:

∠B:∠C=1:2:3,则三角形是直角三角形;③如果三角形的

三边长分别为4、4、6,那么这个三角形不是直角三角形;④

有一个角是直角的三角形是直角三角形.

A.1个B.2个C.3个D.4个

3.如果一个多边形的内角和是外角和的5倍,那么这个多边

形的边数是()

A.10 B.11 C.12 D.13

4.下列说法正确的是()

A.对角线互相垂直的四边形是菱形

B.矩形的对角线互相垂直

C.一组对边平行的四边形是平行四边形

D.四边相等的四边形是菱形

5.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交

AC于点D,且AB=4,BD=5,则点D到BC的距离是()

A.3 B.4 C.5 D.6

6.如图所示,在?ABCD中,对角

线AC、BD交于点O,下列式子中一定成立的是()

A.AC⊥BD B.OA=OC

C.AC=BD D.AO=OD

7.如图所示,A,B两点分别位于一个池塘的两端,小聪想用

绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了

一个主意:先在地上取一个可以直接到达A,B的点C,找到

AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的

距离为()

A.15m B.25m C.30m D.20m

8.如图所示,在矩形ABCD中,O是BC的中点,∠AOD=90°,

若矩形ABCD的周长为30cm,则AB的长为()

A.5 cm B.10 cm C.15 cm D.7.5 cm

9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对

角线AC于点F,E为垂足,连结DF,则∠CDF等于()

A.80°B.70°C.65°D.60°

10.如图,正方形ABCD中,∠DAF=25°,AF

交对角线BD于点E,那么∠BEC等于()

A.45°B.60°C.70°D.75°

二、填空题

11.若多边形的每一个内角均为135°,则这个多边形的边数

为.

12.在Rt△ABC中,∠C=90°,若a:b=3:4,c=20,则a=,

b=.

13.如图,在Rt△ABC中,∠C=90°,D为AB

的中点,DE⊥AC于点E.∠A=30°,AB=8,则

DE的长度是.

14.如图,在?ABCD中,BE⊥AB

交对角线AC于点E,若∠1=20°,

则∠2的度数为.

15.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,

OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的

条件可以是(写出一个即可).

16.如图所示,已知?ABCD,下列条件:①AC=BD,②AB=AD,

③∠1=∠2,④AB⊥BC中,能说明?ABCD是矩形的有(填写序

号).

17.若菱形的两条对角线的比为3:4,且周长为20cm ,则它

的一组对边的距离等于 cm ,它的面积等于 cm 2

18.如图,在△ABC 中,∠C=90°,AM 是∠CAB 的平分线,CM=20cm ,那么M 到AB 的距离为 .

19.如图,已知E 点在正方形ABCD 的BC 边的延长线上,且CE=AC ,AE 与CD 相交于点F ,则∠AFC= .

20.一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,则一个半小时后两船相距 海里.

三、解答题(共6小题,满分60分)

21.已知:如图所示,Rt △ABC 中,∠C=90°,∠A 、∠B 的平分线AD 、BE 交于F ,求∠AFB 的度数.

22.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=BD .

23.如图所示,

?ABCD 中,E 、F 分别是AB 、CD 上的点,AE=CF ,M 、N 分别是DE 、BF 的中点.求证:四边形ENFM 是平行四边形.

24.如图,矩形ABCD 中,AC 、BD 相交于O ,AE 平分∠BAD 交BC 于E ,若∠CAE=15°,求∠BOE 的度数.

25.如图所示,在菱形ABCD 中,AE ⊥BC ,E 为垂足,且BE=CE ,AB=2,求:(1)∠BAD 的度数;

(2)对角线AC 的长及菱形ABCD 的周长.

26.如图所示,四边形ABCD 是正方形,M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A ,B 重合),另一条直角边与∠CBM 的平分线BF 相交于点F .

(1)如图1,当点E 在AB 边的中点位置时:

①通过测量DE ,EF 的长度,猜想DE 与EF 满足的数量关系是 ;

②连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是 ;

(2)请你证明上述两种猜想?

2016-2017学年湖南省邵阳市邵阳县八年级(下)期中数学试

参考答案与试题解析

一、选择题

1.在下列图形中,既是轴对称图形又是中心对称图形的是( )

A .

B .

C .

D .

【考点】R5:中心对称图形;P3:轴对称图形. 【分析】根据轴对称图形与中心对称图形的概念求解. 【解答】解:A 、是轴对称图形,不是中心对称图形.故错误; B 、不是轴对称图形,也不是中心对称图形.故错误; C 、是轴对称图形,也是中心对称图形.故正确; D 、不是轴对称图形,是中心对称图形.故错误. 故选C .

2.下列说法正确的有( )

①如果∠A +∠B=∠C ,那么△ABC 是直角三角形;②如果∠A :∠B :∠C=1:2:3,则三角形是直角三角形;③如果三角形的三边长分别为4、4、6,那么这个三角形不是直角三角形;④

有一个角是直角的三角形是直角三角形. A .1个 B .2个 C .3个 D .4个

【考点】KN :直角三角形的性质;K7:三角形内角和定理;KS :勾股定理的逆定理.

【分析】根据题意,一一查看选项,根据勾股定理的逆定理或有一个角为直角的三角形为直角三角形判断选项是否正确. 【解答】解:①∵∠A +∠B=∠C ,且∠A +∠B +∠C=180°,得∠C=90°,

∴△ABC 是直角三角形,故①正确;

②设∠A=x ,∠B=2x ,∠C=3x ,则∠A +∠B=∠C ,由①知,该三角形是直角三角形,故②正确;

③42=16,62=36,显然42+42≠62

,不符合勾股定理的逆定理,

该三角形不是直角三角形,故③正确; ④符合直角三角形的判定方法,故④正确; 所以4个结论都正确,故选D .

3.如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是( ) A .10

B .11

C .12

D .13

【考点】L3:多边形内角与外角.

【分析】根据多边形的内角和公式(n ﹣2)?180°与外角和定理列出方程,然后求解即可.

【解答】解:设这个多边形是n 边形,

根据题意得,(n ﹣2)?180°=5×360°, 解得n=12. 故选C .

4.下列说法正确的是( ) A .对角线互相垂直的四边形是菱形 B .矩形的对角线互相垂直

C .一组对边平行的四边形是平行四边形

D .四边相等的四边形是菱形

【考点】LB :矩形的性质;L6:平行四边形的判定;L9:菱形的判定.

【分析】直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.

【解答】解:A 、对角线互相垂直且平分的四边形是菱形;故本选项错误;

B 、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;

C 、两组对边分别平行的四边形是平行四边形;故本选项错误;

D 、四边相等的四边形是菱形;故本选项正确. 故选D .

5.如图所示,在Rt △ABC 中,∠A=90°,BD 平分∠ABC ,交AC 于点D ,且AB=4,BD=5,则点D 到BC 的距离是( )

A .3

B .4

C .5

D .6

【考点】KR :勾股定理的证明.

【分析】先根据勾股定理求出AD 的长度,再根据角平分线上的点到角的两边的距离相等的性质解答. 【解答】解:过D 点作DE ⊥BC 于E . ∵∠A=90°,AB=4,BD=5, ∴AD=

=

=3,

∵BD 平分∠ABC ,∠A=90°, ∴点D 到BC 的距离=AD=3. 故选:A .

6.如图所示,在?ABCD 中,对角线AC 、BD 交于点O ,下列式子中一定成立的是( )

A .AC ⊥BD

B .OA=OC

C .AC=BD

D .AO=OD

【考点】L5:平行四边形的性质.

【分析】根据平行四边形的对角线互相平分即可判断. 【解答】解:A 、菱形的对角线才相互垂直.故不对. B 、根据平行四边形的对角线互相平分可知此题选B . C 、只有平行四边形为矩形时,其对角线相等,故也不对. D 、只有平行四边形为矩形时,其对角线相等且平分.故也不

对. 故选B .

7.如图所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到

AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( )

A .15m

B .25m

C .30m

D .20m

【考点】KX :三角形中位线定理.

【分析】利用三角形的中位线定理即可直接求解. 【解答】解:∵D ,E 分别是AC ,BC 的中点,

∴AB=2DE=20m . 故选D .

8.如图所示,在矩形ABCD 中,O 是BC 的中点,∠AOD=90°,若矩形ABCD 的周长为30cm ,则AB 的长为( )

A .5 cm

B .10 cm

C .15 cm

D .7.5 cm

【考点】LB :矩形的性质.

【分析】首先证明△ABO ≌△DCO ,推出OA=OB ,由∠AOD=90°,推出∠OAD=∠ODA=45°,由∠BAD=∠CDA=90°,推出∠BAO=∠CDO=45°,推出∠BAO=∠AOB ,∠CDO=∠COD ,推出AB=BO=OC=CD ,设AB=CD=x ,则BC=AD=2x ,由题意x +x +2x +2x=30,解方程即可解决问题. 【解答】解:∵四边形ABCD 是矩形, ∴AB=CD ,∠B=∠C=90°,

在△ABD 和△DCO 中,

∴△ABO≌△DCO,

∴OA=OB,

∵∠AOD=90°,

∴∠OAD=∠ODA=45°,

∵∠BAD=∠CDA=90°,

∴∠BAO=∠CDO=45°,

∴∠BAO=∠AOB,∠CDO=∠COD,

∴AB=BO=OC=CD,

设AB=CD=x,则BC=AD=2x,

由题意x+x+2x+2x=30,

∴x=5,

∴AB=5,

故选A.

9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()A.80°B.70°C.65°D.60°

【考点】L8:菱形的性质;KG:线段垂直平分线的性质.

【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,

∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角

互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端

点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,

从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根

据全等三角形对应角相等可得∠CDF=∠CBF.

【解答】解:如图,连接BF,

在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,

BC=DC,

∠ABC=180°﹣∠BAD=180°﹣80°=100°,

∵EF是线段AB的垂直平分线,

∴AF=BF,∠ABF=∠BAC=40°,

∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,

∵在△BCF和△DCF中,,

∴△BCF≌△DCF(SAS),

∴∠CDF=∠CBF=60°,

故选:D.

10.如图,正方形ABCD中,∠DAF=25°,AF交对角线BD于点

E,那么∠BEC等于()

A.45°B.60°C.70°D.75°

【考点】LE:正方形的性质.

【分析】首先证明△AED≌△CED,即可证明∠ECF=∠DAF=25°,

从而求得∠BEC,再根据三角形内角和定理即可求解.

【解答】解:∵AD=CD,∠ADE=∠CDE,DE=DE

∴△AED≌△CED

∴∠ECF=∠DAF=25°,

又∵在△DEC中,∠CDE=45°,

∴∠CED=180°﹣25°﹣45°=110°,

∴∠BEC=180°﹣110°=70°.

故选C.

二、填空题

11.若多边形的每一个内角均为135°,则这个多边形的边数为8.

【考点】L3:多边形内角与外角.

【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.

【解答】解:∵所有内角都是135°,

∴每一个外角的度数是180°﹣135°=45°,

∵多边形的外角和为360°,

∴360°÷45°=8,

即这个多边形是八边形.

故答案为:8.

12.在Rt△ABC中,∠C=90°,若a:b=3:4,c=20,则a=12,b=16.

【考点】KQ:勾股定理.

【分析】根据a与b的比值设出a与b,利用勾股定理列出关系式,即可求出a与b的值.

【解答】解:根据题意得:a=3k,b=4k,k>0,

∵c=20,

∴根据勾股定理得:9k2+16k2=400,即k2=16,

解得:k=4,

则a=12,b=16.故答案为:12;16

13.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC

于点E.∠A=30°,AB=8,则DE的长度是2.

【考点】KX:三角形中位线定理;KO:含30度角的直角三角

形.

【分析】根据D为AB的中点可求出AD的长,再根据在直角

三角形中,30°角所对的直角边等于斜边的一半即可求出DE的

长度.

【解答】解:∵D为AB的中点,AB=8,

∴AD=4,

∵DE⊥AC于点E,∠A=30°,

∴DE=AD=2,

故答案为:2.

14.如图,在?ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,

则∠2的度数为110°.

【考点】L5:平行四边形的性质.

【分析】首先由在?ABCD中,∠1=20°,求得∠BAE的度数,然

后由BE⊥AB,利用三角形外角的性质,求得∠2的度数.

【解答】解:∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠BAE=∠1=20°,

∵BE⊥AB,

∴∠ABE=90°,

∴∠2=∠BAE+∠ABE=110°.

故答案为:110°.

15.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,

OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的

条件可以是AB=AD(写出一个即可).

【考点】L9:菱形的判定.

【分析】利用菱形的判定定理添加邻边相等或对角线垂直即可

判定该四边形是菱形.

【解答】解:∵OA=OC,OB=OD,

∴四边形ABCD 是平行四边形, ∵邻边相等的平行四边形是菱形, ∴添加的条件是AB=AD (答案不唯一), 故答案为:AB=AD .

16.如图所示,已知?ABCD ,下列条件:①AC=BD ,②AB=AD ,③∠1=∠2,④AB ⊥BC 中,能说明?ABCD 是矩形的有(填写序号) ①④ .

【考点】LC :矩形的判定;L5:平行四边形的性质. 【分析】矩形是特殊的平行四边形,矩形有而平行四边形没有的特征是:矩形的四个内角是直角;矩形的对角线相等且互相平分;可根据这些特点来选择条件.

【解答】解:能说明?ABCD 是矩形的有: ①对角线相等的平行四边形是矩形; ④有一个角是直角的平行四边形是矩形.

17.若菱形的两条对角线的比为3:4,且周长为20cm ,则它的一组对边的距离等于

cm ,它的面积等于 24 cm 2.

【考点】L8:菱形的性质.

【分析】根据菱形的周长即可求菱形的边长,根据对角线的比为3:4,即可求两条对角线的值,根据菱形的面积即可计算菱形的高,根据对角线的长即可计算菱形的面积. 【解答】解:设BO=4x ,则AO=3x , 菱形周长为20cm ,则AB=5cm , 菱形对角线互相垂直平分,

∴(3x )2+(4x )2=52

得x=1,即AO=3cm ,BO=4cm ,

∴菱形的面积为S=×6cm ×8cm=24cm 2

故AE==cm ,

故答案为

、24.

18.如图,在△ABC 中,∠C=90°,AM 是∠CAB 的平分线,CM=20cm ,那么M 到AB 的距离为 20cm .

【考点】KF :角平分线的性质.

【分析】过点D 作DM ⊥AB 于D ,根据角平分线上的点到角的两边距离相等可得DM=CM .

【解答】解:如图,过点D 作DM ⊥AB 于D , ∵∠C=90°,AM 是∠CAB 的平分线, ∴DM=CM=20cm ,

即M 到AB 的距离为20cm . 故答案为:20cm .

19.如图,已知E 点在正方形ABCD 的BC 边的延长线上,且CE=AC ,AE 与CD 相交于点F ,则∠AFC= 112.5° .

【考点】LE :正方形的性质.

【分析】根据等边对等角的性质可得∠E=∠CAE ,然后根据正

方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°,再根据三角形的一

个外角等于与它不相邻的两个内角的和列式计算即可得解. 【解答】解:∵CE=AC ,

∴∠E=∠CAE,

∵AC是正方形ABCD的对角线,∴∠ACB=45°,

∴∠E+∠CAE=45°,

∴∠E=×45°=22.5°,

在△CEF中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.

故答案为:112.5°.

20.一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,则一个半小时后两船相距30海里.

【考点】KU:勾股定理的应用.

【分析】根据已知条件,构建直角三角形,利用勾股定理进行解答.

【解答】解:如图,由已知得,OB=16×1.5=24海里,OA=12×1.5=18海里,

在△OAB中

∵∠AOB=90°,

由勾股定理得OB2+OA2=AB2,

即242+182=AB2,

AB==30(海里).

故答案为:30.三、解答题(共6小题,满分60分)

21.已知:如图所示,Rt△ABC中,∠C=90°,∠A、∠B的平

分线AD、BE交于F,求∠AFB的度数.

【考点】KN:直角三角形的性质;K7:三角形内角和定理.

【分析】先根据C=90°,求得∠CAB+∠CBA=90°,再根据AD、

BE平分∠CAB、∠CBA,即可得到∠FAB+∠FBA=45°,最后根据

三角形内角和定理即可得到∠AFB=135°.

【解答】解:∵∠C=90°,

∴∠CAB+∠CBA=90°,

∵AD、BE平分∠CAB、∠CBA,

∴∠FAB+∠FBA=45°,

∴∠AFB=135°.

22.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分

∠ACB,AE=EB,求证:EF=BD.

【考点】KX:三角形中位线定理;KH:等腰三角形的性质.

【分析】首先根据等腰三角形的性质可得F是AD中点,再根

据三角形的中位线定理可得EF=BD.

【解答】证明:∵CD=CA,CF平分∠ACB,

∴F是AD中点,

∵AE=EB,

∴E是AB中点,

∴EF=BD.

23.如图所示,?ABCD中,E、F分别是AB、CD上的点,AE=CF,

M、N分别是DE、BF的中点.求证:四边形ENFM是平行四

边形.

【考点】L7:平行四边形的判定与性质.

【分析】首先根据平行四边形ABCD的性质得到AB和CD

平行

且相等,结合已知条件发现DF和BE平行且相等.证明四边形DEBF为平行四边形.得到DE和BF平行且相等,再结合中点的概念,所以四边形MENF为平行四边形.

【解答】证明:∵四边形ABCD是平行四边形,

∴AD=BC,∠A=∠C.

又∵AE=CF,

∴△ADE≌△CBF(SAS).

∴∠AED=∠CFB,DE=BF.

由四边形ABCD是平行四边形,

∴DC∥AB.

∴∠CFB=∠ABF.

∴∠AED=∠ABF.

∴ME∥FN.

又∵M、N分别是DE、BF的中点,且DE=BF,

∴ME=FN.

∴四边形ENFM是平行四边形.

24.如图,矩形ABCD中,AC、BD相交于O,AE平分∠BAD 交BC于E,若∠CAE=15°,求∠BOE的度数.

【考点】LB:矩形的性质.【分析】先根据AE平分∠BAD交BC于E可得∠AEB=45°,再

根据三角形的外角性质求出∠ACB=30°,然后判断出△AOB是

等边三角形,从而可以得出△BOE是等腰三角形,然后根据三

角形的内角和是180°进行求解即可.

【解答】解:∵AE平分∠BAD交BC于E,

∴∠AEB=45°,AB=BE,

∵∠CAE=15°,

∴∠ACB=∠AEB﹣∠CAE=45°﹣15°=30°,

∴∠BAO=60°,

又∵OA=OB,

∴△BOA是等边三角形,

∴OA=OB=AB,

即OB=AB=BE,

∴△BOE是等腰三角形,且∠OBE=∠OCB=30°,

∴∠BOE==75°.

25.如图所示,在菱形ABCD中,AE⊥BC,E为垂足,且BE=CE,

AB=2,求:

(1)∠BAD的度数;

(2)对角线AC的长及菱形ABCD的周长.

【考点】L8:菱形的性质.

【分析】(1)由在菱形ABCD在,AE⊥BC,BE=CE,易证得△

ABC是等边三角形,继而求得∠BAD的度数;

(2)由(1),可求得AC的长,由菱形的性质可知其四边相等,

进而可求出其周长.

【解答】解:(1)∵四边形ABCD是菱形,

∴AB=BC,

∵AE⊥BC,BE=CE,

∴AB=AC,

∴AB=BC=AC,

即△ABC是等边三角形,

∴∠BAC=60°,

∴∠BAD=2∠BAC=120°;

(2)∵△ABC是等边三角形,

∴AB=AC=2,

∵AB=BC=CD=AD=2,

∴菱形ABCD的周长=2×4=8.

26.如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB 边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.

(1)如图1,当点E在AB边的中点位置时:

①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是DE=EF;

②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是NE=BF;

(2)请你证明上述两种猜想?

【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】可利用两角夹一边求解△DNE≌△EBF(ASA),进而可得出线段相等.

【解答】解:(1)DE=EF;

(2)NE=BF;

证明:∵四边形ABCD是正方形N,E分别为AD,AB的中点∴DN=EB,AN=AE

∵BF平分∠CBM

∴∠EBF=90°+45°=135°

又∵AN=AE,∠A=90°∴∠DNE=180°﹣45°=135°

∴∠EBF=∠DNE

又∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°∴∠NDE=∠BEF,

在△DNE和△EBF中

∴△DNE≌△EBF(ASA)

∴DE=EF,NE=BF.

故答案为:(1)①DE=EF;②NE=BF.

2017年6月2日

八年级数学上学期期末考试试题

八年级上学期期末考试数学试题3 一、单项选择题。每小题3分,共24分) 1.在下列的计算中正确的是( ) +3y =5xy ; B.(a +2)(a -2)=a 2 +4; ab =a 3b ; D.(x -3)2=x 2 +6x +9 2.已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( ) A . 1,2,3 B . 2,5,8 C . 3,4,5 D . 4,5,10 3.如图,已知∠1=∠2,则不一定...能使△ABD 和△ACD 全等的条件是( ) A . AB =AC B . ∠B =∠C C .∠BDA =∠CDA D . BD =CD 5.如图,在直角三角形ABC 中,AC≠AB,AD 是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E 、F ,则图中与∠C(∠C 除外)相等的角的个数是( ) 个 个 个 个 6.下列“QQ 表情”中属于轴对称图形的是( ) A . B . C . D . 7.若 0414=----x x x m 无解,则m 的值是( ) A.-2 B.2 D.-3 8.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b),再沿虚线剪开,如图①,然 后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( ) =(a +b)(a -b) B.(a +b)2 =a 2 +2ab +b 2 C.(a -b)2 =a 2 -2ab +b 2 -b 2 =(a -b)2 二、填空题(每小题3分,共24分) 9.当x 时,分式51 -x 有意义;当x 时,分式11x 2+-x 的值为零 10.等腰三角形的一边长等于4,一边长等于9,则它的周长是 . 11.若a 2 +b 2 =5,ab =2,则(a +b)2 = 。 12.如图,在ABC ?中,16AB AC cm ==,AB 的垂直平分线交AC 于点D ,如果10BC cm =,那么BCD ?的周 长是 cm . 13.计算:20132 -2014×2012=______ ___. 14.如图,△ABC 中,AB=AD=DC ,∠BAD = 40,则∠C = . 15.计算: =+-+3 9 32a a a __________。16.如图,AD∥BC,BD 平分∠ABC.若∠ABD=30°,∠BD C=90°,CD=2, 12题 A B D C C A B D 16题 8题

八年级下册数学测试卷

八年级下期末数学试卷 班级 姓名 成绩 一、选择题(本大题10个小题,每小题4分,共40分) 1.下列式子是最简二次根式的是( ) A.21 B.8 C.4.0 D. 22- 2.下列计算正确的是( ) A .()332-=- B .632=? C .2332=- D .725=+ 3. 下列各组数中,以它们为边长的线段不能构成直角三角形的是( ) A . 2,2,3 B . 3,4,5 C . 5,12,13 D . 1,2,3 4.若为实数,且,则y x -的值为( ) A .1 B . C .-4 D .4 5.菱形的两条对角线长分别为9与4,则此菱形的面积为( ) A .12 B .18 C .20 D .36 6. 下列说法中错误的是( ) A .两条对角线互相平分的四边形是平行四边形; B .两条对角线相等的四边形是矩形; C .两条对角线互相垂直的矩形是正方形; D .两条对角线相等的菱形是正方形 7.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴于点M ,则点M 表示的数为( ) A .2 B .1-5 C .1-10 D .5 8.已知正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小, 则一次函数y=x+k 的图象大致是( ) A . B . C . D . 9.如图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( ) A 、体育场离张强家3.5千米 B 、张强在体育场锻炼了15分钟 C 、体育场离早餐店1.5千米 D 、张强从早餐店回家的平均速度是3千米/小时 10.如图.矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3.则AB 的长为( ) A . 3 B . 4 C . 5 D . 6

最新人教版八年级数学下册期末试卷

人教版八年级数学下学期综合检测卷 一、选择题(本题共10小题,满分共30分) 1.二次根式2 1、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( ) 个。 A 、1 个 B 、2 个 C 、3 个 D 、4个 2.若式子2x -有意义,则x 的取值范围为( ). A 、x ≥2 B 、x ≠3 C 、x ≥2或x ≠3 D 、x ≥2且x ≠3 3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .1113,4,5222 C .3,4, 5 D . 114,7,8 22 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( ) (A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC 5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点 F ,则∠1=( ) 1 F E D C B A A .40° B .50° C .60° D .80° 6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( ) 7.如图所示,函数x y =1和3 4 312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )

A .x <-1 B .—1<x <2 C .x >2 D . x <-1或x >2 8、 在方差公式( )()( )[]2 22212 1 x x x x x x n S n -++-+-= Λ中,下列说法不正确的是( ) A. n 是样本的容量 B. n x 是样本个体 C. x 是样本平均数 D. S 是样本方差 9、班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47 (B )众数是42 (C )中位数是58 (D )每月阅读数量超过40的有4个月 10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F , M 为EF 中点,则AM 的最小值为【 】 A .54 B .52 C .53 D .65 二、填空题(本题共10小题,满分共30分) 11.48 -1 3-? ?? +)13(3--30 -23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2 的值为( ) M P F E B A

初中八年级上册期末数学试卷(含答案)

初二上册期末数学测试 一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格 ) 1.在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是 2.如图,小手盖住的点的坐标可能为 A (46)--, B (63)-, C (52), D (34)-, 3.下列各式中正确的是 A 416±= B 9273 -=- C 3)3(2-=- D 2 11412 = 4. 下列图形中,单独选用一种图形不能进行平面镶嵌的图形是 A 正三角形 B 正方形 C 正五边形 D 正六边形 5.顺次连结对角线互相垂直的等腰梯形四边中点得到的四边形是 A 平行四边形 B 矩形 C 菱形 D 正方形 6.若点),(1y a 、),1(2y a +在直线1+=kx y 上,且21y y >,则该直线所经过的象限是 A 第一、二、三象限 B 第一、二、四象限 C 第二、三、四象限 D 第一、三、四象限 7.如图所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是 8. 如图,是一块在电脑屏幕上出现的矩形色块图,由6个不同颜色的正方形组成, 已知中间最小的一个正方形的边长为1,那么这个矩形色块图的面积为 晴 C 冰雹 A 雷阵雨 B 大雪 D 第8题 第2题 x y A B C D

A 142 B 143 C 144 D 145 二、填空题(本大题共10小题,每小题3分,共30分,把答案填在题目中的横线上) 9.平方根等于本身的数是 . 10.把1.952取近似数并保留两个有效数字是 . 11.已知:如图,E (-4,2),F (-1,-1),以O 为中心,把△EFO 旋转180°, 则点E 的对应点 E ′的坐标为 . 12.梯形的中位线长为3,高为2,则该梯形的面积为 . 13.已知点),(11y x 、),(22y x 、……、),(n n y x 都在直线53-=x y 上,若这n 个 点的横坐标的平均数为a ,则这n 个点的纵坐标的平均数为 . 14.等腰梯形的上底是4cm ,下底是10cm ,一个底角是60o ,则等腰梯形的腰长 是 cm . 15.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组 , y ax b y kx =+?? =?的解是 . 16.在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =15,且BD ∶DC =3∶2,则D 到边AB 的距离是 . 第11题 C 第16题 第18题

八年级下学期数学测试卷及答案

八年级下学期数学测试卷 一、选择题: 1.如果代数式有意义,那么x的取值范围是() A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1 2. 下列各组数中,以a、b、c为边的三角形不是直角三角形的是() A 1.5,2,3 a b c === B 7,24,25 a b c === C 6,8,10 a b c === D 3,4,5 a b c === 3.如图,直线l上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b的面积为() A.4 B.6 C.16 D.55 4. 如图,在平行四边形ABCD中,下列结论中错误的是() A.∠1=∠2B.∠BAD=∠BCD C.A B=CD D.A C⊥BD 5. 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H ,则的值为() A.1B.C.D.6.0) y kx b k =+≠ (的图象如图所示,当0 y>时,x的取值范围是 () A.0 x< B.0 x> C.2 x< D.2 x> 7. 体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人, 进球数0 1 2 3 4 5 人数 1 5 x y 3 2 A.y=x+9与y= 3 x+ 3 B.y=-x+9与y= 3 x+ 3 C.y=-x+9与y=- 2 3 x+ 22 3 D.y=x+9与y=- 2 3 x+ 22 3 8. 已知一次函数y=kx+b(k、b为常数且k≠0)的图象经过点A(0,﹣2)和点B(1,0),则k=,b= 9.已知:ΔABC中,AB=4,AC=3,BC=7,则ΔABC的面积是( ) A.6 B.5 C.1.57 D.27 10. 如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y 轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为. a b c

八年级下期末数学试题

八年级数学第二学期期末检测 第I 卷(选择题) 一、选择题:(本大题共15个小题.每小题3分,共45分。在每小题给出的四个选项 中,只有一项是符合题目要求的,把正确的选择填在答题卡中。) 1.若a -b <0,则下列各式中一定正确的是 ( ) A.a >b B.-a >-b C.b a <0 D.ab >0 2.下列从左到右的变形是因式分解的是( ) A.(x -4)(x +4)=x 2-16 B.x 2-y 2+2=(x +y )(x -y )+2 C.x 2+1=x(x+x 1 ) D.a 2b+ab 2=ab(a+b) 3.下列方程中,是一元二次方程的是( ) A.x=2y-3 B.2(x+1)=3 C.x 2+3x-1=x 2+1 D.x 2=9x-1 4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是 ( ) A.1个 B.2个 C.3个 D.4个 5.如图,点A 、B 、C 、D 都在方格纸的格点上,若△AOB 绕点O 按逆时针方向旋转到 △COD 的位置,则旋转的角度为( ) A.30° B.45° C.90° D.135° 6.下列说法正确的是 ( ) A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小 B.平移和旋转的共同点是改变了图形的位置,而图形的形状大小没有变化 C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离 D.在平移和旋转图形中,对应角相等,对应线段相等且平行 7.在下列式子2y x -,a 3,11--m m ,πx ,23 y y ,31中,分式的个数是( ). A.2个 B.3个 C.4个 D.5个 5题图

八年级下学期期末考试数学试题(含答案) (24)

八年级(下)期末数学试卷 一、选择题(下列各题的备选答案中,只有一个答案是正确的每小题2分,共20分)1.(2分)下列电视台图标是中心对称图形的为() A.B. C.D. 2.(2分)不等式2x+1>﹣3的解集在数轴上表示正确的是()A.B. C.D. 3.(2分)下列说法正确的是() A.如果a>b,那么ac>bc B.如果a>b,那么a+3>b﹣1 C.如果a2>ab,那么a>b D.如果a>b,那么3﹣a>3﹣b 4.(2分)如果一个n边形每个外角都是30°,那么n是() A.十一B.十二C.十三D.十四5.(2分)下面式子从左边到右边的变形是因式分解的是() A.x2﹣x﹣2=x(x﹣1)﹣2B.x2﹣4x+4=(x﹣2)2 C.(x+1)(x﹣1)=x2﹣1D.x﹣1=x(1﹣) 6.(2分)下列命题中,逆命题是真命题的是() A.矩形的两条对角线相等B.正多边形每个内角都相等 C.对顶角相等D.对角线互相垂直的四边形是菱形7.(2分)如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()

A.16cm B.14cm C.12cm D.8cm 8.(2分)若关于x的方程=有增根,则m的值为() A.1B.2C.3D.4 9.(2分)小东是一位密码爱好者,在他的密码手册中有这样一条信息:a﹣b、a+b、a2﹣b2、c﹣d、c+d、c2﹣d2依次对应下列六个字:科、爱、勤、我、理、学,现将(a2﹣b2)c2﹣(a2﹣b2)d2因式分解,其结果星现的密码信息可能是() A.勤学B.爱科学C.我爱理科D.我爱科学10.(2分)某市在建地铁的一段工程要限期完成,甲工程队单独做可如期完成,乙工程队单独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,求该工程规定的工期是多少天?设规定的工期为x天,根据题意,下列方程错误的是() A.4()+=1B. C.D. 二、填空题(每小题3分,共18分) 11.(3分)分解因式:3a3﹣12a2+12a=. 12.(3分)平面直角坐标系内已知两点A(3,﹣2),B(1,﹣4),将线段AB平移后,点A的对应点是A1(7,6),那么点B的对应点B1的坐标为. 13.(3分)已知平行四边形ABCD中,∠B=4∠A,则∠C=. 14.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为. 15.(3分)如图,Rt△OA0A1在平面直角坐标系内,∠OA0A1=90°,∠A0OA1=30°,以

八年级下册数学测试卷

八年级下期末数学试卷 班级 姓名 成绩 一、选择题(本大题10个小题,每小题4分,共40分) 1.下列式子是最简二次根式的是( ) A.21 B.8 C.4.0 D. 22- 2.下列计算正确的是( ) A .()332-=- B .632=? C .2332=- D .725=+ 3. 下列各组数中,以它们为边长的线段不能构成直角三角形的是( ) A . 2,2,3 B . 3,4,5 C . 5,12,13 D . 1,2,3 4.若为实数,且,则y x -的值为( ) A .1 B . C .-4 D .4 5.菱形的两条对角线长分别为9与4,则此菱形的面积为( ) A .12 B .18 C .20 D .36 6. 下列说法中错误的是( ) A .两条对角线互相平分的四边形是平行四边形; B .两条对角线相等的四边形是矩形; C .两条对角线互相垂直的矩形是正方形; D .两条对角线相等的菱形是正方形 7.如图,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴于点M ,则点M 表示的数为( ) A .2 B .1-5 C .1-10 D .5 8.已知正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小, 则一次函数y=x+k 的图象大致是( ) A . B . C . D . 9.如图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是( ) A 、体育场离张强家3.5千米 B 、张强在体育场锻炼了15分钟 C 、体育场离早餐店1.5千米 D 、张强从早餐店回家的平均速度是3千米/小时 10.如图.矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3.则AB 的长为( ) A . 3 B . 4 C . 5 D . 6

八年级下数学期末测试题

D A B C 八年级下数学期末测试题 一、选择题(每题2分,共20分) 1、下列各式中,分式的个数有( ) 31-x 、12+a b 、πy x +2、21--m 、a +21、2 2) ()(y x y x +-、x 12-、115- A 、2个 B 、3个 C 、4个 D 、5个 2、如果把223y x y -中的x 和y 都扩大5倍,那么分式的值( ) A 、扩大5倍 B 、不变 C 、缩小5倍 D 、扩大4倍 3、已知正比例函数y =k 1x (k 1≠0)与反比例函数y =2 k x (k 2≠0)的图象有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是 A. (2,1) B. (-2,-1) C. (-2,1) D. (2,-1) 4、一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为 A .10米 B .15米 C .25米 D .30米 5、一组对边平行,并且对角线互相垂直且相等的四边形是( ) A 、菱形或矩形 B 、正方形或等腰梯形 C 、矩形或等腰梯形 D 、菱形或直角梯形 6、把分式方程12121=----x x x 的两边同时乘以(x -2), 约去分母,得( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x -2 D .1+(1-x)=x -2 7、如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、 以上答案都不对 (第7题) (第8题) (第9题) 8、如图,等腰梯形ABCD 中,AB ∥DC ,AD=BC=8,AB=10,CD=6,则梯形ABCD 的面积是 ( ) A 、1516 B 、516 C 、1532 D 、1716 9、如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ) A 、x <-1 B 、x >2 C 、-1<x <0,或x >2 D 、x <-1,或0<x <2 10、小明通常上学时走上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的 速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时 A 、 2n m + B 、n m mn + C 、 n m mn +2 D 、mn n m + 二、填空题(每题2分,共20分) 11、一组数据8、8、x 、10的众数与平均数相等,则x= 。 12、如果反比例函数的图象经过点(1,-2),那么这个反比例函数的解析式为_______ 13、当x 时,分式15x -无意义;当m = 时,分式2 (1)(3) 32 m m m m ---+的值为零 14、已知双曲线x k y = 经过点(-1,3),如果A (11,b a ),B (22,b a )两点在该双曲线上, 且1a <2a <0,那么1b 2b . 15、梯形ABCD 中,BC AD //,1===AD CD AB ,?=∠60B 直线MN A B C D A M N C

2019-2020年八年级下册期末数学试卷及答案

2019-2020年八年级下册期末数学试卷及答案 一、填空:(每题2分,共20分) 1.当x ________时,分式11 x +有意义,当_______时,分式2341x x x --+的值为0. 2.如果最简二次根式3x =_______. 3.当k =________时,关于x 的方程()1 1270k k x x +-+-=是一元二次方程. 4.命题“矩形的对角线相等”的逆命题是____________________________________. 5.若点(2,1)是反比例221 m m y x +-=的图象上一点,则m =_______. 6.一次函数y =ax +b 图象过一、三、四象限,则反比例函数ab y x = (x >0)的函数值随x 的增大而_______. 7.如图,已知点A 是一次函数y =x +1与反比例函数2 y x =图象在第一象限内的交点,点B 在x 轴的负半 轴上,且OA =OB ,那么△AOB 的面积为________. 8.如图,在正方形ABCD 中,E 为AB 中点,G 、F 分别是AD 、BC 边上的点,若AG =1,BF =2,∠GEF =90°,则GF 的长为________. 9.如图,小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是__米. 10.数据-2,-3,4,-1,x 的众数为-3,则这组数据的极差是________,方差为________. 二、选择题:(每题2分,共20分) 11.下列二次根式中,最简二次根式是( )

八年级上册数学期末试卷及答案

B D E C A 八 年 级 第 一 学 期 期 末 试 卷 数 学 2018.1 班级 姓名 成绩 一、选择题(本大题共30分,每小题3分) 在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格题号 1 2 3 4 5 6 7 8 9 10 答案 1形的是 A B C D 2.下列计算正确的是 A .325a a a += B .325a a a ?= C .23 6 (2)6a a = D .623a a a ÷= 3.叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为 A .4 0.510-? B .4 510-? C .5 510-? D .3 5010-? 4.若分式 1 a a +的值等于0,则a 的值为 A .1- B .1 C .2- D .2 5.如图,点D ,E 在△ABC 的边BC 上,△ABD ≌△ACE ,其中B ,C 为对应顶点,D ,E 为对应顶点,下列结论不. 一定成立的是 A .AC =CD B .BE = CD C .∠ADE =∠AED D .∠BAE =∠CAD 6.等腰三角形的一个角是70°,它的底角的大小为 A .70° B .40° C .70°或40° D .70°或 55° 7.已知2 8x x a -+可以写成一个完全平方式,则a 可为 A .4 B .8 C .16 D .16- 8.在平面直角坐标系xOy 中,以原点O 为圆心,任意长为半径作弧,分别交x 轴的负半轴和y 轴的正半轴于A 点,B 点.分别以点A ,点B 为圆心,AB 的长为半径作弧,两弧交于P 点.若点P 的坐标为(a ,b ),则 A .2a b = B .2a b =

八年级下册数学试卷含答案

八年级数学北师大(下)期末测试题(B) 河北饶阳县第二中学郭杏好053900 一、填空题(每题3分,共30分) 2.若-2x+10的值不小于-5,则x的取值范围是_____________. 3.在数据-1,0,4,5,8中插入一数据x,使得该数据组中位数为3,则x=_______.4.如图1,在△ABC中,D、E分别在AC、AB上,且AD∶AB=AE∶AC=1∶2,BC=5,则DE= _______. 图1 9.如图2,在△ABC中,AD是BC边上的中线,BE是AC边上的中线,BE交AD于F,那么AF∶FD= _______. 图2 ._______=C°,则∠101=BDC°,∠30=B°,∠40=A,∠3.如图10

3 图 ) 二、选择题(每题3分,共24分) 11.下列说法中错误的是(<5的正整数解有无数个B.xx A.2x<-8的解集是<-4 .D x>3的正整数解有无限个x C.x+7<3的解集是<-4 -2 2 .B-3 C.D.A.1 13.下列各式中不成立的是() yx??xy??yx=A=-B.x+y.)y)(x?xxy??yy(x?yx?2.x?005yx?y0.11=.C = D .22y.02x?yy4yx?) 6,则两个多边形的周长分别为(214.两个相似多边形面积之比为1∶,其周长差为2212 -6和.66 B6A.和2266和12 D.6++和C.28 .下面的判断正确的是() 150 |b|则b=-+A.若|a||b|=|a|3232=B.若ab=b,则a 点钟的火车C.如果小华不能赶上7点40分的火车,那么她也不能赶上8D.如果两个三角形面积不等,那么两个三角形的底边也不等 (.在所给出的三角形三角关系中,能判定是直角三角形的是) 16=∠CB B=∠C .∠A+∠B A.∠A=∠11=∠C.∠°=∠C.∠AB=30 D A=∠B42 11 1 D.1 ..-A. B C- 88b、、) ABCc是△的三条边,则下列不等式中正确的是(a18.如果2222220 <bc2-c-b-a.B 0 >ab2-c-b-a.A 2222220 -c≥- 0 D.a2-C.ab-bc-bc-2bc= 新课标第一网三、解答题(共54分) 19.(10分)证明题 ∥,过D作DEABC如图4,在△中,∠ABC的平分线与∠ACB的外角平分线交于D .-CF,交AC于F.求证:EF=BEEBC交AB于

2018新人教版八年级下册数学期末试卷和答案

最新2018年新人教版八年级数学(下)期末检测试卷 (含答案) 一、选择题(本题共 10小题,满分共30分) 1.二次根式 2 1、12 、30 、x+2 、240x 、22y x +中,最简二次根 式有( )个。 A 、1 个 B 、2 个 C 、3 个 D 、4个 2.若式子2x -有意义,则x 的取值范围为( ). A 、x≥2 B 、x≠3 C 、x≥2或x≠3 D 、x≥2且x≠3 3.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .1113,4,5 222 C .3,4, 5 D . 11 4,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( ) (A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC 5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交 AE 于点F ,则∠1=( ) 1 F E D C B A A .40° B .50° C .60° D .80° 6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( ) 7.如图所示,函数x y =1和3 4 312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )

A .x <-1 B .—1<x <2 C .x >2 D . x <-1或x >2 8、 在方差公式( )()( )[]2 22212 1 x x x x x x n S n -++-+-=Λ中,下列说法不正确的是 ( ) A. n 是样本的容量 B. n x 是样本个体 C. x 是样本平均数 D. S 是样本方差 9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47 (B )众数是42 (C )中位数是58 (D )每月阅读数量超过40的有4个月 10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】 A .54 B .52 C .53 D .65 M P F E C B A

【典型题】八年级数学上期末试题含答案

【典型题】八年级数学上期末试题含答案 一、选择题 1.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .③连接OE 交CD 于点M .下列结论中错误的是( ) A .CEO DEO ∠=∠ B .CM MD = C .OC D ECD ∠=∠ D .12OCED S CD O E =?四边形 2.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( ) A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112 x x -=- 3.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12 CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是 A .射线OE 是∠AO B 的平分线 B .△COD 是等腰三角形 C .C 、 D 两点关于O E 所在直线对称 D .O 、 E 两点关于CD 所在直线对称 4.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( ) A . B . C . D .

5.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m < C .3m >- D .3m ≥- 6.若(x ﹣1)0=1成立,则x 的取值范围是( ) A .x =﹣1 B .x =1 C .x≠0 D .x≠1 7.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是( ) A .4 B .6 C .8 D .10 8.如果30x y -=,那么代数式 ()2222x y x y x xy y +?--+的值为( ) A .27- B .27 C .72- D .72 9.如果2x +ax+1 是一个完全平方公式,那么a 的值是() A .2 B .-2 C .±2 D .±1 10.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n 个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n 的最小值为( ) A .10 B .6 C .3 D .2 11.如图,在△ABC 中,∠ABC =90°,∠C =20°,DE 是边AC 的垂直平分线,连结AE ,则∠BAE 等于( ) A .20° B .40° C .50° D .70° 12.若关于x 的方程 244x a x x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4 二、填空题 13.腰长为5,高为4的等腰三角形的底边长为_____. 14.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .

八年级下册数学试卷带答案

八年级下册数学试卷带答案 一、选择题(每小题3分,共24分) 1.下面图形中,既是轴对称图形又是中心对称图形的是() 2.如图所示,在□ 中,,,的垂直平分线交于点,则△ 的周长是() A.6 B.8 C.9 D.10 3.如图所示,在矩形中,分别为边的中点.若, ,则图中阴影部分的面积为() A.3 B.4 C.6 D.8 4.如图为菱形与△ 重叠的情形,其中在上.若,,,则() A.8 B.9 C.11 D.12 5. (2020江苏连云港中考)已知四边形ABCD,下列说法准确的是( ) A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形 B.当AD=BC,AB=DC时,四边形ABCD是平行四边形 C.当AC=BD,AC平分BD时,四边形ABCD是矩形 D.当AC=BD,AC⊥BD时,四边形ABCD是正方形 6. (2020湖北孝感中考)已知一个正多边形的每个外角等于60°,则这个正多边形是() A.正五边形 B.正六边形 C.正七边形 D.正八边形 7.若正方形的对角线长为2 cm,则这个正方形的面积为()

A.4 B.2 C. D. 8.(2020贵州安顺中考)如图,点O是矩形ABCD的中心,E是 AB上的点,折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长 为() A.2 B. C. D.6 二、填空题(每小题3分,共24分) 9.如图,在□ABCD中,已知∠ ,,,那么 _____ , ______ . 10.如图,在□ 中,分别为边的中点,则图中共有个平行四边形. 11. (2020湖北襄阳中考)在鰽BCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则 ∠A的度数为_________. 12.如图,在△ 中,点分别是的中点,,则 ∠C的度数为________. 13.(2020上海中考)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________. 14.若凸边形的内角和为,则从一个顶点出发引出的对角线条数 是__________. 15.如图所示,在矩形ABCD中,对角线与相交于点O,且,则BD的长为_____cm,BC的长为_____cm.

八年级下期末考试数学试题

八年级下期末考试数学试题 (考试时间:120分钟 试卷总分:120分) 题 号 得 分 一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,只有一个是正确的,请将正确答案的字母代号填写在下面的表格中。 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 1、如果分式 x -11 有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =1 2、己知反比例数x k y = 的图象过点(2,4),则下面也在反比例函数图象上的点是 A 、(2,-4) B 、(4,-2) C 、(-1,8) D 、(16,2 1 ) 3、一直角三角形两边分别为3和5,则第三边为 A 、4 B 、34 C 、4或34 D 、2 4、用两个全等的等边三角形,可以拼成下列哪种图形 A 、矩形 B 、菱形 C 、正方形 D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为 A B C D 6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考 A 、众数 B 、平均数 C 、加权平均数 D 、中位数 7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为 A 、120cm B 、360cm C 、60cm D 、cm 320 第7题图 第8题图 第9题图 8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,

【压轴题】八年级数学上期末试卷(带答案)

【压轴题】八年级数学上期末试卷(带答案) 一、选择题 1.已知三角形的两边长分别为4cm 和9cm,则下列长度的线段能作为第三边的是( ) A .13cm B .6cm C .5cm D .4m 2.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( ) A .8个 B .7个 C .6个 D .5个 3.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按图中所标注的数据,计算图中实线所围成的面积S 是( ) A .50 B .62 C .65 D .68 4.等腰三角形一腰上的高与另一腰的夹角为60o ,则顶角的度数为( ) A .30o B .30o 或150o C .60o 或150o D .60o 或120o 5.若实数m 、n 满足 402n m -+=-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是 ( ) A .12 B .10 C .8或10 D .6 6.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是 ( ) A .甲和乙 B .乙和丙 C .甲和丙 D .只有丙 7.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为 ( )

A.8 B.9 C.10 D.11 8.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为 () A.10B.6C.3D.2 9.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是() A.70°B.44°C.34°D.24° 10.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何? A.5B.6C.7D.10 11.到三角形各顶点的距离相等的点是三角形() A.三条角平分线的交点B.三条高的交点 C.三边的垂直平分线的交点D.三条中线的交点 12.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于() A.20°B.40°C.50°D.70° 二、填空题 13.若一个多边形的边数为 8,则这个多边形的外角和为__________. 14.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=______.15.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是_______.

八年级下册数学测试题汇总

一、选择题 1. 当分式 1 3 -x 有意义时,字母x 应满足( ) A. 0=x B. 0≠x C. 1 =x D. 1≠x 2.若点(-5,y 1)、(-3,y 2)、(3,y 3)都在反比例函数y= -3 x 的图像上,则( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 3>y 1>y 2 D .y 1>y 3>y 2 3.(08年四川乐山中考题)如图,在直角梯形ABCD 中,AD BC ∥,点E 是边CD 的中点,若 5 2AB AD BC BE =+= ,,则梯形ABCD 的面积为( ) A .254 B .252 C .258 D .25 4.函数k y x =的图象经过点(1,-2),则k 的值为( ) A. 12 B. 1 2 - C. 2 D. -2 5.如果矩形的面积为6cm 2 ,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( ) A B C D 6.顺次连结等腰梯形各边中点所得四边形是( ) A .梯形 B.菱形 C.矩形 D.正方形 7.若分式3 49 22+--x x x 的值为0,则x 的值为( ) A .3 或-3 8.(2004年杭州中考题)甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追上乙.那么甲的速度是乙的速度的( ) A. b b a +倍 B. b a b +倍 C. a b a b -+倍 D. a b a b +-倍 9.如图,把一张平行四边形纸片ABCD 沿BD 对折。使C 点落在E 处,BE 与AD 相交于点D .若∠DBC=15°,则∠BOD= A .130 ° ° ° ° 10.如图,在高为3米,水平距离为4米楼梯的表面铺地毯,地毯的长度至少需多少米( ) o y x y x o y x o y x o A D E C B

最新人教版八年级下期末考试数学试题及答案

八年级(下)期末数学试卷 一.选择题(本大题共10小题,每小题4分,共40分) 1.下列二次根式中,最简二次根式是( ) A B C D 2.下列计算正确的是( ) A . 3=B = C D 23.已知样本1x ,2x ,3x ,4x 的平均数是 2 ,则13x +,23x +,33x +, 43x +的平均数为( ) A . 2 B . 2.75 C . 3 D . 5 4.我校男子足球队22名队员的年龄如下表所示:这些队员年龄的众数和中位数分别是( ) A .18,17 B .17,18 C .18,17.5 D .17.5,18 5 12a -,则a 的取值范围为( ) A .12 a < B .12 a > C .12 a … D .12 a … 6.在2(1)1y k x k =++-中,若y 是x 的正比例函数,则k 值为( ) A .1 B .1- C .1± D .无法确定 7.若等腰ABC ?的周长是50cm ,一腰长为xcm ,底边长为ycm ,则y 与x 的函数关系式及自变量x 的取值范围是( ) A .502(050)y x x =-<< B .1(502)(050)2 y x x =-<< C .25502(25)2 y x x =-<< D .125(502)(25)2 2 y x x =-<<

8.如图,在44?的正方形网格中,ABC ?的顶点都在格点上,下列结论错误的是( ) A . 5AB = B .90 C ∠=? C .AC = D .30A ∠=? 9.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( ) A .平行四边形 B .矩形 C .对角线相等的四边形 D .对角线互相垂直的四边形 10.如图,四边形ABCD 中,//AD BC ,90ABC DCB ∠+∠=?,且2BC AD =,以AB ,BC ,CD 为边向外作正方形, 其面积分别为1S ,2S ,3S .若14S =,264S =,则3S 的值为( ) A .8 B .12 C .24 D .60 二.填空题(本大题有6小题,每小题4分,共24分) 11.将直线21y x =+向下平移2个单位,所得直线的表达式是 .

相关主题
文本预览
相关文档 最新文档