当前位置:文档之家› 植物生理学简答题整理新编

植物生理学简答题整理新编

植物生理学简答题整理新编
植物生理学简答题整理新编

植物生理学简答题

1.简述水分在植物生命活动中的作用。

(1)水是植物细胞的主要组成成分;

(2)水分是植物体内代谢过程的反应物质,参与呼吸作用,光合作用等过程。

(3)细胞分裂和伸长都需要水分。

(4)水分是植物对物质吸收和运输及生化反应的溶剂。

(5)水分能使植物保持固有姿态。

(6)可以通过水的理化特性以调节植物周围的大气温度、湿度等。对维持植物体温稳定和降低体温也有重要作用。

2、简述影响根系吸水的土壤条件

(1)土壤中可用水量:当土壤中可用水分含量降低时,土壤溶液与根部细胞间的水势差减小,根系吸水缓慢

(2)土壤通气状况:土壤通气状况不好,土壤缺氧和二氧化碳浓度过高,使根系细胞呼吸速率下降,引起根系吸水困难。

(3)土壤温度:低温不利于根系吸水,因为低温下细胞原生质黏度增加,水分扩散阻力加大;同时根呼吸速率下降,影响根压产生,主动吸水减弱。高温也不利于根系吸水,土温过高加速根的老化进程,根细胞中的各种酶蛋白高温变形失活。

(4)土壤溶液浓度:土壤溶液浓度过高引起水势降低,当土壤溶液水势与根部细胞的水势时,还会造成根系失水。

3、导管中水分的运输何以能连续不断?

由于植物体叶片的蒸腾失水产生很大的负净水压,将导管中的水柱向上拉动,形成水分的向上运输;水分子间有相互吸引的内聚力,该力很大,可达20 MPa以上;同时,水柱本身有重量,受向下的重力影响,这样,上拉的力量与下拖的力量共同作用于导管水柱,水柱上就会产生张力,但水分子内聚力远大于水柱张力。此外,水分子与导管或管胞细胞壁纤维素分子间还具有很大的附着力,因而维持了导管中水柱的连续性,使得导管水柱连续不断,这就是内聚力-张力学说。

4.试述蒸腾作用的生理意义。

(1)是植物对水分吸收和运输的主要动力。

(2)促进植物对矿物质和有机物的吸收及其在植物体内的转运。

(3)能够降低叶片的温度,以免灼伤。

5、根系吸水有哪些途径并简述其概念。

答:有3条途径:

质外体途径:指水分通过细胞壁,细胞间隙等部分的移动方式。

跨膜途径:指水分从一个细胞移动到另一个细胞,要两次经过质膜的方式。

共质体途径:指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质的方式。

6、简述植物体内水分向上运输的动力和产生原因。(水分和营养物质运输到叶子上的原因)

答:植物体内水分向上运输的动力是根压和蒸腾拉力。

根压产生的原因:植物根系从土壤溶液中吸收离子,离子通过一系列途径被释放到木质部导管中。内皮层细胞相当于皮层和导管间的半透膜。离子在导管内引起导管内渗透压下降,水势也下降,从而在内皮层内外建立了水势梯度,水分沿着水势梯度进入导管,因此而产生净水压,即根压。根压推动水分向上运输。

蒸腾拉力产生的原因:当植物叶片进行蒸腾作用时,水分从气孔蒸腾散失到大气中,气孔下腔附近的叶肉细胞因蒸腾失水而水势下降,失水的细胞便会向相邻的水势较高的叶肉细胞吸水。如此传递,接近叶脉导管的细胞向叶脉导管、茎导管、根导管、根部吸水。这样便从叶片到根系产生了一个由低到高的水势梯度,促使根系从土壤吸水。这种因蒸腾作用所产生的吸水的能力就是蒸腾拉力。

7、影响蒸腾作用的因素有那些?

(1)内部因素:气孔数量、气孔大小和气孔阻力直接影响蒸腾速率。气孔阻力包括气孔和气孔下腔的状况,如气孔的形状、气孔的体积和气孔的开度。在一定范围内,气孔数量多、气孔阻力小,蒸腾作用强。

(2)外部因素:

1)光照:光照能提高大气和叶片的温度,也促使气孔张开,从而增强蒸腾作用;

2)大气相对湿度:大气相对湿度低,蒸腾作用增强,反之则相反;

3)温度:在大气相对湿度相同时,温度增高,蒸腾作用增强。

4)风速:微风能降低气孔外的水蒸气,促进蒸腾作用;强风能引起气孔关闭,蒸腾作用减弱。8、为什么淹水后植物会发生萎蔫的现象

植物因失水过多或吸水不足会使细胞膨压降低而造成萎蔫。水涝时,土壤往往缺氧,根系有氧呼吸受阻,影响根系对矿物质的吸收。根系对离子的主动吸收受阻,根内外不能形成溶质势差(水势差),从而抑制了根系对水分的吸收;在缺氧时,根系进行无氧呼吸,在根际周围产生、累积乙醇等有害物质,使根系受损,限制根系的生长,减少根的吸收面积,并使根部输导水分的能力丧失。因此,在水涝时,尽管植物根系水分供应充足,但由于根系环境缺氧而不能进行正常的水分吸收,表现出萎蔫现象。

9.试述在光照条件下气孔运动的机理。

气孔运动的渗透调节机制:气孔运动主要与保卫细胞的水势(膨压)变化有关,保卫细胞水势提高则气孔打开,水势降低则气孔关闭。目前主要有淀粉-蔗糖转化学说,K+积累学说和苹果酸代谢学说解释气孔运动机制。

(1)淀粉-糖变化学说。气孔运动是由于保卫细胞中淀粉和蔗糖的转化而形成的渗透势改变造成的。在光照下保卫细胞进行光合作用合成可溶性糖。另外由于光合作用消耗CO2使保卫细胞pH值升高,淀粉磷酸化酶水解细胞中淀粉形成可溶性糖,细胞水势下降,当保卫细胞水势低于周围的细胞水势时,便吸水膨胀使气孔张开。

(2)K+离子吸收学说。在光照下,保卫细胞叶绿体通过光合磷酸化合成ATP,活化了保卫细胞质膜上的H+泵ATP酶,H+泵ATP酶分解光合磷酸化和氧化磷酸化产生的ATP,并将H+分泌到细胞壁,结果产生跨膜的H+浓度梯度和膜电位差,引起保卫细胞质膜上的K+通道打开,外面的K+进入到保卫细胞中来,Cl-也伴随着k+进入,以保证保卫细胞的电中性,保卫细胞中积累较多的k+和Cl-,水势降低。保卫细胞吸水,气孔就张开。

(3)苹果酸生成学说。在光下保卫细胞内的CO2被利用,pH值上升,剩余的CO2就转变成重碳酸盐,淀粉通过糖酵解作用产生的磷酸烯醇式丙酮酸PEP在PEP羧化酶作用下还原成苹果酸,保卫细胞苹果酸含量升高,降低水势,保卫细胞吸水,气孔张开。

10、影响气孔运动的外界因素:

(1)光照:光照引起气孔运动的主要环境因素。多数植物的气孔在光照下张开,黑暗中关闭;景天科植物的气孔例外,白天关闭,晚上张开。

(2)温度:在一定的温度范围内,气孔开度一般随温度的上升而增大,在30度左右达到最大气孔开度,35度以上的高温会使气孔开度变小。

(3)水分:叶片水势下降,其空开度减少或关闭。

(4)CO2:低CO2浓度促使气孔张开,高浓度使气孔迅速关闭。

(5)风:大风引起气孔关闭

(6)植物激素:ABA促使气孔关闭,

11、农谚讲“旱长根,水长苗”是什么意思?道理何在?

这是指水分供应状况对植物根冠比调节的一个形象比喻。植物地上部生长和消耗的大量水分,完全依靠根系供应,土壤有效水的供应量直接影响枝叶的生长,因此增加土壤有效水,必然有利地上部生长;而地上部生长旺盛,消耗耗大量光合产物,使输送到根系的有机物减少,又会削弱根系的生长,加之如果水分过多,通气不良,也会限制根系活动,这些都将使根冠比减少。干旱时,由于根系的水分环境比地上部好,根系仍能较好地生长;而地上部则由于抽水,枝叶生长明显受阻,光合产物就可输入

根系,有利根系生长,使根冠比增大。所以水稻栽培中,适当落干晒田,可对促进根系生长,增加根冠比。

1、植物必需的矿质元素要具备哪些条件?

答:(1)缺乏该元素植物生长发育发生障碍,不能完成生活史。

(2)除去该元素则表现专一的缺乏症,而且这种缺乏症是可以预防和恢复。

(3)该元素在植物营养生理上应表现直接的效果而不是间接的。

2、简述植物必需矿质元素在植物体内的生理作用。

答:(1)是细胞结构物质的组成部分。

(2)是植物生命活动的调节者,参与酶的活动。

(3)起电化学作用,即离子浓度的平衡、胶体的稳定和电荷中和等。

3、试述根吸收矿质元素的基本过程。

答:(1)把离子吸附在根部细胞表面。这是通过离子吸附交换过程完成的,这一过程不需要消耗代谢能,吸附速度很快。

(2)离子进入根的内部。离子由根部表面进入根部内部可通过质外体,也可通过共质体。从根表皮细胞经过内皮层进入木质部,这一过程是主动吸收。

(3)离子进入导管。可能是主动地有选择性地从导管周围薄壁细胞向导管排入,也可能是离子被动地随水分的流动而进入导管。

5、植物细胞吸收矿质元素的方式和机理有哪些?

植物对例子的吸收有三种方式:1、被动运输,顺着浓度梯度的运输,包括简单扩散和协助扩散;

2、主动运输,逆浓度梯度的运输;

3、通过胞饮作用来吸收矿质。矿质元素从膜外转运到膜内主要通过被动运输和主动运输两种方式。前者不需要代谢提供能量,后者需要代谢提供ATP能量。两者都可通过载体运输。被动运输有扩散作用和协助扩散两种方式。扩散作用是指分子或离子沿着化学势或电化学势梯度转移的现象;协助扩散是小分子物质经膜转运蛋白顺浓度梯度或电化学势梯度的跨膜转运。

1、光合作用有哪些重要意义?

答:(1)光合作用是制造有机物质的重要途径。

(2)光合作用将太阳能转变为可贮存的化学能。

(3)可维持大气中氧和二氧化碳的平衡。

2、植物的叶片为什么是绿的?秋天时,叶片为什么又会变黄色或红色?

答:光合色素主要吸收红光和蓝紫光,对绿光吸收很少,故呈绿色,秋天树叶变黄是由于低温抑制了叶绿素的合成,已形成的叶绿素也被分解破坏,而类胡萝卜素比较稳定,所以叶片呈黄色。至于红叶,是因为秋天降温,体内积累较多的糖分以适应寒冷,体内可溶性糖多了,就形成较多的花色素,叶子就呈红色。

3、简述影响叶绿素生物合成的外界因素

(1)、光:光是影响叶绿素形成的主要条件。但光过强,叶绿素受光氧化而破坏。

(2)、温度:叶绿素的生物合成是一系列酶促反应,受温度影响;

(3)、营养元素:氮、镁是叶绿素的组成成分,铁、锰、铜、锌等有催化功能或间接作用;(4)、氧:叶绿素的生物合成过程中需要氧的参与;

(5)水:缺水影响叶绿素的合成,还促使原叶绿素分解,所以干旱时叶片呈黄褐色。

4、C3途径可分为几个阶段?每个阶段有何作用?

答:C3途径可分为三个阶段:(1)羧化阶段。CO2被固定,生成了3-磷酸甘油酸,为最初产物。(2)还原阶段。利用同化力(NADPH、ATP)将3-磷酸甘油酸还原3—磷酸甘油醛—光合作用中的第一个三碳糖。(3)更新阶段。光合碳循环中形成了3—磷酸甘油醛,经过一系列的转变,再重新形成RuBP 的过程。

5、作物为什么会有“午休”现象?

答:炎热的夏天,C3植物中午光合作用强度下降的现象称为“午休现象”。原因主要有:

(1)中午光照强、温度高、大气相对湿度较低,叶片大量失水而造成气孔开度变小或关闭(2)气孔关闭,限制CO2的吸收,CO2的供应不足(3)温度升高,降低了各种酶的活性(4)生物钟的调节。

6、如何理解C4植物比C3植物的光呼吸低?

答:C4植物,PEP羧化酶对CO2亲和力高,固定CO2的能力强,在叶肉细胞形成C4二羧酸后,再转运到维管束鞘细胞,脱羧后放出CO2,就起到了CO2泵的作用,增加了CO2浓度,提高了RuBP羧化酶的活性,有利于CO2的固定和还原,不利于乙醇酸形成,不利于光呼吸进行,所以C4植物光呼吸测定值很低。

C3植物,在叶肉细胞内固定CO2,叶肉细胞的CO2/O2的比值较低,此时,RuBP加氧酶活性增强,有利于光呼吸的进行,而且C3植物中RuBP羧化酶活性低,光呼吸释放的CO2不易被重新固定。

7、什么是希尔反应?

离体叶绿体加入具有适当氢接受体的水溶液中,在光下进行光解,并放出氧的反应,称为希尔效应。

8、Rubisco的特点及其对光合作用的重要性

Rubisco是核酮糖-1、5-二磷酸羧化/加氧酶,具有双重催化作用。

在光合作用中,Rubiso催化RUBP的羧化反应,固定CO2,形成3-磷酸甘油酸;

在光呼吸中,Rubisco催化RuBP的加氧反应,产生的磷酸乙醇酸被磷酸酶催化脱去磷酸而生成乙醇酸(即乙醇酸循环);

在CO2/O2比值高的条件下,Rubisco的加氧活性被抑制,催化羧化反应,进行碳同化,当CO2/O2的比值低时,Rubisco的加氧活性表现出来,进行光呼吸。

Rubisco的羧化酶活性和加氧酶活性取决于CO2/O2的比值。

9、光呼吸有何生理意义?

答:①回收碳素。通过C2碳氧化环可回收乙醇酸中3/4的碳。

②维持C3光合碳还原循环的运转。在叶片气孔关闭或外界CO2浓度低时,光呼吸释放的CO2

能被C3途径再利用,以维持光合碳还原环的运转。

③防止强光对光合机构的破坏作用。在强光下,光反应中形成的同化力会超过CO2同化的需要,从而使叶绿体中NADPH/NADP、ATP/ADP的比值增高。同时由光激发的高能电子会传递给O2,形成的超氧阴离子自由基会对光合膜、光合器有伤害作用,而光呼吸可消耗同化力与高能电子,降低超氧阴离子自由基的形成,从而保护叶绿体,免除或减少强光对光合机构的破坏。

10. 论述植物光合作用碳同化途径的特点。

答:根据光合作用碳同化途径的不同,可以将高等植物区分为三个类群,即C3途径(卡尔文循环或光合碳循环)、C4—二羧酸途径、景天酸代谢途径。

11、矿质元素和光合作用的关系

植物生命活动所必需的矿质元素,都对光合作用速率有着直接或间接的影响,其表现为:

(1)、叶绿体及叶绿素组分:N、P、S、Mg、C、H、O;

(2)、影响叶绿素的形成:N、Mg、Fe、Mn、Cu、Zn;

(3)水的光解放氧:Mn、Cl、Ca;

(4)光和电子传递:Fe、Cu、S;

(5)同化力形成:Mg、P、K、H;

(6)酶活化:K、Mg、Zn、Mn;

(7)促进光合产物运输:K、B、P;

(8)光合作用原料:C、H、O;

(9)影响气孔开放:K、CL、Ca。

光合作用为矿质元素的吸收提供能力及动力,促进矿质元素的吸收;同时光合作用形成的同化产物有利于体内矿质元素的运输、同化。

1.试述呼吸作用的生理意义。

答:(1)呼吸作用提供了植物生命活动所需的大部分能量,释放到的ATP供生命活动所需。

(2)呼吸作用为细胞内其他物质的合成提供原料。呼吸作用中过程中产生许多中间产物,是进一步合成蛋白质、核酸、脂肪、激素、维生素、等重要生命物质的原料。

(3)呼吸作用在植物的抗病免疫方面也具有重要作用。植物染病时,呼吸增强,有利于氧化分解病原菌毒素,消除病害;呼吸途径改变主要是PPP加强,可导致产生多种抗菌物质,阻止病原菌的侵染。

2.在呼吸作用中,糖的分解代谢有几条途径?分别发生于哪个部位?

答:有三种条途径:糖酵解、三羧酸循环和戊糖磷酸途径。

糖酵解和戊糖磷酸途径是在细胞质中进行的;三羧酸循环在线粒体中进行。

3.呼吸作用与光合作用有何联系?

答:(1)光合作用所需的ADP和辅酶NADP+与呼吸作用所需的ADP和NADP+是相同的。这两种物质在光合和呼吸作用中可共用。

(2)光合作用的碳循环与呼吸作用的戊糖磷酸途径基本上是正反反应的关系。它们的中间产物同样是三碳糖、四碳糖、五碳糖、六碳糖及七碳糖等。光合作用和呼吸作用之间有许多糖类是可以交替使用的。

(3)呼吸作用产生的CO2给光合作用所利用,而光合作用产生的O2和有机物则供呼吸作用利用。

4.陆生高等植物无氧呼吸过久就会死亡,为什么?

答:(1)无氧呼吸产生酒精,酒精使细胞质的蛋白质变性;

(2)无氧呼吸产生的能量很少,植物要维持正常的生理需要,就要消耗更多的有机物,这样,植物体内养料耗损过多;

(3)没有丙酮酸氧化过程,许多由这个过程的中间产物形成的物质就无法继续合成。作物受涝死亡,主要原因就在于无氧呼吸时间过久。

5.粮食贮藏时要降低呼吸速率还是要提高呼吸速率?为什么?

答:降低呼吸速率。原因:呼吸速率高会大量消耗有机物;呼吸放出的水分会使粮堆湿度增大,粮食“出汗”,不利于贮藏;呼吸放出的热量又使粮温增高,反过来又促使呼吸增强,同时高温高湿使微生物迅速繁殖,最后导致粮食变质。

6.三羧酸循环(TCA)的要点和生理意义是什么?

答:(1)三羧酸循环是植物的有氧呼吸的重要途径。

(2)三羧酸循环一系列的脱羧反应是呼吸作用释放CO2的来源。三羧酸循环中释放的CO2是来自于水和被氧化的底物。

(3)在三羧酸循环中有5次脱氢,再经过一系列呼吸传递体的传递,释放出能量,最后与氧结合成水。因此,氢的氧化过程,实际是放能过程。

(4)三羧酸循环是糖、脂肪、蛋白质和核酸及其他物质的共同代谢过程,相互紧密相连。

7.试述氧化磷酸化作用的机理。

答:氧化磷酸化的机理有很多假说,目前得到较多支持的是化学渗透学说。该学说认为,氧化磷酸化的动力是呼吸电子传递产生的跨线粒体内膜的质子电化学梯度,在质子电化学势梯度推动下合成ATP。

8、简述植物的抗氰呼吸及其生理意义

在氰化物存在下,某些植物呼吸不受抑制,把这种呼吸称为抗氰呼吸。抗氰呼吸电子传递途径在某些条件下与正常的NADH电子传递途经交替进行,因此抗氰呼吸又称交替呼吸途径。

其生理意义为:(1)促进开花、授粉。抗氰途径的氧化释放的热量少,从而有助于某些植物花粉的成熟及授粉、受精过程,有利于挥发引诱剂,吸引昆虫授粉。

(2)增加抗性。植物在逆境胁迫时抗氰呼吸增强,抗氰呼吸的强弱与植物的抗性有密切联系。

(3)能量溢流。当植物细胞富含糖,而糖酵解和三羧酸循环进行的很快,提供的电子无法完全经细胞色素途经传递时,交替途经可作为一种溢出途径将过量的电子放出去。

(4)增加乙烯生成,促进果实成熟、促进衰老。随着植物年龄的增长、果实的成熟,抗氰呼吸随着提高。同时乙烯与抗氰呼吸上升有平行关系。乙烯刺激抗氰呼吸,诱发呼吸突变产生,促进果实成熟和植物组织衰老。

9、种子储藏过程中应注意些什么?

种子储藏过程中,很多因素如温度、水分、氧气等都直接和间接的与种子呼吸代谢有关,从而影响种子的储藏寿命和发芽力。

在种子储藏中通常主要通过降低种子的含水量来抑制呼吸作用,减少种子内储藏物质的消耗,以延长种子的寿命。同时配以低温、干燥、通风等条件,抑制种子呼吸作用,以延长种子的储藏时间。

植物代谢受基因的控制,而代谢又对基因表达具控制作用,基因在不同时空的有序表现即为植物的生长发育过程,高等植物呼吸代谢的多条途径使其能适应变化多端的环境条件。

10、说明植物呼吸代谢的多样性及其意义

植物为了适应环境和生理活动的需要,其呼吸作用具有多样性,主要表现为底物降解的多途径、呼吸电子传递的多途径和末端氧化酶的多样性三方面。

(1)呼吸底物降解的多途径。在植物体内存在EMP-TCA(糖酵解-三羧酸循环)、PPP(磷酸戊糖途径)、无氧呼吸、乙醛酸循环等呼吸途径。一般情况下,植物以EMP-TCA途径为主,只有当环境条件变化使EMP-TCA途径受阻时,其他途径的比例才有所增大。这种呼吸途径的多样性增强了植物对环境的适应能力。

(2)呼吸电子传递的多途径。植物体内有多条呼吸电子传递途径,如细胞色素途径、交替途径,通常是以细胞色素途径为主。

(3)末端氧化酶的多样性。植物体内有多种呼吸电子传递的末端氧化酶,其中细胞色素氧化酶位于呼吸主链的末端,其主导作用,其他氧化酶只起辅助作用。

1、试述植物体中同化物装入和卸出筛管的机理。

答:同化物装入筛管有质外体途径和共质体途径,即糖从共质体(细胞质)经胞间连丝到达韧皮部的筛管,或在某些点进入质外体(细胞壁),后到达韧皮部。

同化物从筛管中卸出也有共质体和质外体途经。共质体途径是指筛管中的同化物通过胞间连丝输送到接受细胞筛管中。同化物也可先运出到质外体,然后再通过质膜进入接受细胞。

2、解释筛管运输学说有几种?每一种学说的主要观点是什么?

答:有3种,分别是压力流动学说,胞质泵动学说和收缩蛋白学说。

压力流动学说:主张筛管液流是靠源端和库端的压力势差建立起来的压力梯度来推动的。

胞质泵动学说:认为筛分子内腔的细胞质呈几条长丝,形成胞纵连束,纵跨筛分子反复地、有节奏地收缩和张驰,就产生一种蠕动,把胞质长距离泵走,糖分就随之流动。

收缩蛋白学说:认为筛管腔内有许多具有收缩能力的韧皮蛋白(P蛋白),P蛋白的收缩运动将推动筛管汁液的移动。

3.试说明有机物运输分配的规律。

答:同化物的分配是指植物体内光合同化物有规律地向各种器官输送,是从源到库的运输。其运输规律:(1)优先分配给生长中心:生长中心是指一定时期内正在旺盛生长的器官或部位,是对营养组分竞争最强。

(2)就近运输:叶片的光合产物主要运至邻近的生长部位,随着源库之间距离的加大,库得到的同化物减少。

(3)同侧运输:叶片优先向与其有直接维管束联系的、同侧的库运送同化物。

4. 如何证明高等植物的同化物长距离运输的通道是韧皮部?

答:(1)环割试验剥去树干上的一圈树皮(内有韧皮部),这样阻断了叶片形成的光合同化物通过韧皮部向下运输,而导致环割上端韧皮部组织因光合同化物积累而膨大,环割下端的韧皮部组织因得不到光合同化物而死亡。

(2)放射性同位素示踪法让叶片同化14CO2,数分钟后将叶柄切下并固定,对叶柄横切面进行放射性自显影,可看出14CO2标记的光合同化物位于韧皮部。

5、简述“树怕剥皮,不怕烂心”的生理学原理

韧皮部主要分布在树皮中,韧皮部是植物有机物质运输的主要部位,若树皮剥掉了将切断地上部分制造的有机物向根部的运输。时间久了,根系得不到地上部分提供的同化物和微量活性物质,而本身贮藏的消耗殆尽,根部就会饿死,从而使根无法吸收水肥等,致使整棵植株死亡。

所谓烂心主要是指树木的木髓部坏死,其不包括木质部和韧皮部,既不含有导管和筛管,不影响水分和有机物质的运输,因此不影响植物的正常生命活动。

1.简述生长素的主要生理作用

答:生长素主要的生理功能为:

(1)促进离体胚芽鞘或幼茎段细胞的伸长生长,及促进根、茎的伸长生长

(2)促及维管束分化,低浓度IAA促进韧皮部的分化,高浓度促进木质部的分化

(3)促进侧根和不定根的发生

(4)影响花和果实的发育,促进雌花增加,刺激子房发育形成果实(促进单性结实)

(5)诱导叶原基的发生,从而调控叶片和叶序的形成,调控叶片的脱落

(6)维持顶端优势

2.比较生长素(IAA)与赤霉素(GA)的异同点。

1) 相同点:a.促进细胞的伸长生长 b.诱导单性结实 c.促进坐果

2) 不同点:诱导雌花分化,GA诱导雄花分化对整株效果明显,而IAA对离体器官效果明显有双重效应,而GA没有类似效应

3.简述生长素(IAA)促进细胞伸长生长的酸生长学说

答:(1)生长素诱导激活质膜上的H+-ATP水解酶;

(2)H+-ATP水解酶利用水解ATP释放的能量,使细胞内的H+外运,导致细胞壁的酸化;

(3)在酸性条件下,细胞壁中的扩张蛋白被活化,活化扩张蛋白促进连接木葡聚糖与纤维素微纤丝间的键断裂,细胞壁松弛;

(4)细胞的压力势下降,导致细胞水势下降,细胞吸水,从而促进细胞伸长生长。

4、植物体内哪些因素决定组织中IAA的含量﹖

答:①IAA生物合成;

②可逆不可逆地形成束缚IAA;

③IAA的运输(输入、输出);

④IAA的酶促氧化或光氧化;

⑤IAA在生理活动中的消耗。

5、试讨论植物生长发育过程中激素间的相互作用

在植物的生长发育过程中,激素间的相互作用和协调平衡调控所有过程

(1)种子萌发和休眠:生长素、细胞分裂素促进种子萌发,ABA(脱落酸)促进休眠,抑制种子萌发,赤霉素可打破休眠,促进萌发。生长素、细胞分裂素、赤霉素与脱落酸比例高促进萌发,反之促进休眠。

(2)营养生长:生长素(IAA)、细胞分裂素(CTK)、赤霉素(GA)与脱落酸的相互作用调控营养生长,IAA、CTK、GA与ABA比例高促进生长。

(3)顶端优势:乙烯(Eth)、CTK和IAA调控顶端优势,IAA、乙烯诱导顶端优势,促进顶芽生长;CTK抑制顶端优势,促进侧芽发育。

(4)器官分化:IAA和CTK调控器官分化,IAA比例高诱导生根,CTK高诱导长芽。

(5)成花诱导:GA促进多种LDP(长日照植物)在短日照条件下成花,IAA可促进一些LDP成花,但抑制SDP(短日照植物)成花。细胞分裂素能促进一些SDP和LDP成花,ABA可代替短日照促使一些SDP在长日条件下成花

(6)性别分化: IAA和乙烯促进雌花分化,GA促进雄花分化;

(7)成熟、衰老:IAA、CTK能延缓衰老,乙烯促进成熟、衰老;

(8)叶片脱落:乙烯促进叶片脱落,IAA浓度梯度影响叶片脱落。

2、解释一年生被子植物的整个生活史中激素的作用,包括每一阶段上激素执行的功能,包括种子萌发,营养生长,果实成熟,叶片脱落及休眠等生理过程。

答:种子萌发:原来一些束缚型的激素迅速转变为生长素类,同时胚细胞也会产生新的激素,提供新器官形成时所需的物质和能量。

营养生长:这个阶段主要是IAA、GA、CTK,它们促进细胞的分裂、伸长、分化,延缓植物的衰老,保证各种代谢的顺利进行。

果实成熟:未成熟的果实能合成乙烯,加快呼吸作用,使果实达到可食程度。

叶片脱落:日照变短诱导ABA的合成,与乙烯一起使叶柄产生离层区,导致叶柄脱落。

休眠:ABA含量增多,导致光合呼吸下降,叶绿素分解,叶片脱落。一年生的植物体逐步进入衰亡。

由于果实中含有生长抑制物质如ABA,则种子休眠过冬。到了来年,种子中的ABA逐步分解,取而代之的是促进生长的激素物质的合成,故种子萌发。

6.试述生长素极性运输的机理。

生长素的极性运输机理可用化学渗透极性扩散假说解释。这个学说的要点是:植物形态学上端的细胞的基部有IAA-输出载体,细胞中的IAA-首先由输出载体输出到细胞壁,IAA与H+结合成IAAH,IAAH再通过下一个细胞的顶部扩散透过质膜进入细胞,或通过IAA-—H+共向转运体运入细胞质。如此重复下去,即形成了极性运输。

1. 种子萌发过程中有哪些生理生化变化?

答:(1) 种子的吸水:3个阶段:急剧吸水、吸水停止、重新迅速吸水,快、慢、快的特点。

(2)呼吸作用的变化和酶的形成:1)呼吸的变化:在胚根突出种皮之前,种子的呼吸主要是无氧呼吸,在胚根长出之后,以有氧呼吸为主。2)酶的形成:萌发种子中酶的来源有两种:A. 从已经存在的束缚态的酶释放或活化而来,B. 通过蛋白质合成而形成的新酶。

(3) 有机物的转变:种子中贮存着大量的有机物,主要有淀粉、脂肪和蛋白质等,萌发时,将其分解,分解产物参与种子的代谢活动。(淀粉转化为糖;脂肪分解为甘油和脂肪酸,进一步转化为糖或氨基酸;蛋白质分解为氨基酸)

2. 种子的萌发必需的外界条件有哪些?种子萌发时吸水可分为哪三个阶段?第一、三阶段细胞靠什么方式吸水?

答:种子萌发必须有足够的水分、充足的氧气和适宜的温度。此外,有些种子萌发还受光的影响。种子吸水分为三个阶段:1)急剧吸水阶段。2)吸水停止阶段。3)胚根长出后重新迅速吸水阶段。第一阶段细胞主要靠吸胀作用。第二、三阶段是靠渗透性吸水。

3.试述生长、分化与发育三者之间的区别与关系?

①在生命周期中,生物细胞、组织和器官的数目、体积或干重等不可逆增加的过程称为生长;②从一种同质的细胞类型转变成形态结构和功能与原来不相同的异质细胞类型的过程成为分化;③发育则指在生命周期中,生物组织、器官或整体在形态结构和功能上的有序变化;④三者紧密联系,生长是基础,是量变;分化是质变。发育包含了生长和发育。

4.简述引起种子休眠的原因有哪些?生产上如何打破种子休眠?

(1) 引起种子休眠的原因:种皮障碍、胚休眠、抑制物质

(2) 生产上打破种子休眠方法:机械破损、层积处理、药剂处理

5.植物地上部分与地下部分的相关性(常言道:“根深叶茂”是何道理?)

答:根和地上部分的关系是既互相促进、互相依存又互相矛盾、互相制约的。根系生长需要地上部分供给光合产物、生长素和维生素等,而地上部分生长又需根部吸收的水分、矿物质、根部合成的多种氨基酸和细胞分裂素等,这是两者相互依存、互相促进的一面,所以说“树大根深、根深叶茂”。但两者又有相互矛盾、相互制约的一面,例如过分旺盛的地上部分生长会抑制地下部分的生长,只有两者的比例比较适当,才可获得高产。在生产上,可用人工的方法加大或降低根冠比,一般说来,降低土壤含水量、增施磷钾肥、适当减少氮肥,或进行适当修剪等,都有利于加大根冠比,反之则降低根冠比。

2.试述光敏素与植物成花诱导的关系。

光敏素的两种类型Pr和Pfr的可逆转化在植物成花中起着重要的作用:当Pfr/Pr的比值高时,促进长日植物的开花;当Pfr/Pr的比值低时,促进短日植物的开花。

3、水稻是短日植物,把原产在东北的水稻品种引种到福建南部可以开花结实吗?如果把原产在福建南部水稻品种引种到东北,是否有稻谷收获,为什么?

答:原产在东北的水稻引种到福建南部,可以开花结实,但生育期缩短,无法形成产量。原产在福建南部的水稻引种到东北,当东北有适宜的短日照适宜水稻开花时,温度已过低,不适宜水稻开花结实,因此没有稻谷收获

4、植物的成花诱导有哪些途径?

答:植物的成花诱导有4条途径。

一是光周期途径。依赖光周期诱导,光敏色素和隐花色素参与这个途径。

二是自主/春化途径。依赖生理年龄或春化诱导

三是糖类或蔗糖途径。依赖糖类或蔗糖浓度升高

四是赤霉素途径。赤霉素诱导

5、如何使菊花提前在6~7月份开花?又如何使菊花延迟开花?

菊花是短日照植物,原在秋季(10月)开花,可用人工进行遮光处理,使花在6~7月份也处于短日照,从而诱导菊花提前在6~7月份开花。如果延长光照或晚上闪光使暗间断,则可使花期延后。

6、如何用试验证明植物的某一生理过程与光敏色素有关?

答:光敏色素有红光吸收型Pr和远红光吸收型Pfr两种存在形式,这两种形式可在红光和远红光照射下发生可逆反应,互相转化。依据这一特征,可用红光与远红光交替照射的方法,观察其所引起的

生理反应,从而判断某一生理过各是否有光敏色素参与。例如莴苣种子的萌发需要光,当用660nm的红光照射时促进种子萌发,而用725nm的远红光照射时,则抑制萌发,当红光照射后再照以远红光,则红光的效果被消除,当用红光和远红光交替照射时,种子的萌发状况决定于最后照射的是红光还是远红光,前者促进萌发,后者抑制萌发。

1、何谓休眠?植物休眠有何生物学意义﹖为什么休眠器官的抗逆力较强﹖

大多数种子在成熟后,只要在合适的外界环境中,就能很快萌发,但有些种类的植物种子即使有适于萌发的条件也不萌发,需要经过一定时间后才能萌发,这种现象称为种子的休眠。

其生物学意义为:种子休眠时,植物发育过程出现的暂停现象,是植物经过长期演化而获得的一种对环境条件及季节性变化的生物学适应性,有利于种的生存与繁衍:通过休眠,度过不良环境;保证种族的繁衍。

休眠器官抗逆力较强的原因:①贮藏物质积累;②原生质含水量降低;③代谢水平低;④抗逆激素(ABA)和抗逆蛋白产生。

2、简述种子休眠的原因,及解除休眠的方法

答:(1)种皮限制。种胚外的种皮、果皮以及一些其他附属物对种子萌发有抑制作用,有些种皮有蜡质或角质层或由于坚硬而厚的种皮阻止胚对水和氧气的吸收;

(2)胚未完全发育。有些植物如人参、当归等的种子或果实离开母体后,胚尚未发育完全,在湿润和适当低温条件下,胚继续从胚乳中吸取营养完成发育后,才能萌发。

(3)种子未完全成熟。有些种子的胚已经发育完全,但在适宜的条件下仍不萌发,他们一定要经过一段时间休眠,在胚内发生一些生理生化变化才能萌发,通常称之为后熟过程。

(4)抑制物质的存在。许多种子中存在萌发抑制物质,如HCN、NJ3等。

解除休眠的方法有:机械破损、层积处理、清洗处理、化学处理、光照处理(需光作物)。

3、肉质果实成熟时有哪些生理生化变化?

答:(1)果实变甜。果实成熟后期,淀粉可以转变成为可溶性糖,使果实变甜。

(2)酸味减少。未成熟的果实中积累较多的有机酸。在果实成熟时,有机酸含量下降,有的转变为糖;有的被氧化为二氧化碳和水;有些则被钙离子、钾离子等中和。

(3)涩味消失。果实成熟时,单宁可被过氧化物酶氧化成无涩味的过氧化物,或单宁凝结成不溶于水的胶状物质。

(4)香味产生。主要是一些芳香族和脂肪族的酯,还有一些特殊的醛类。

(5)由硬变软。这与果肉细胞壁中层的果胶质水解为可溶性的果胶有关。

(6)色泽变艳。果皮由绿色变为黄色,是由于果皮中叶绿素逐渐破坏而失绿,类胡萝卜素仍存在,呈现黄色,或因花色素形成而呈现红色

(8)呼吸变化:果实成熟中,某些果实的呼吸速率最初降低,至成熟末期突然升高,随后再下降,这种现象成为呼吸突变。呼吸突变的出现通常标志着果实成熟。但有些果实不出现呼吸突变,据此果实可分为突变性和非突变性。呼吸突变产生的主要原因是内源乙烯含量的增加。突变型果实有大量乙烯产生,非突变性果实乙烯含量维持在较低水平。

4、植物衰老时发生了哪些生理生化变化?

答:植物衰老在外部特征上的表现是:生长速率下降、叶色变黄。在衰老过程中,内部也发生一些生理变化:1)光合速率下降。整株植物的光合速率降低。叶绿素含量减少、叶绿素a/b比值减少。2)呼吸速率降低。先下降、后上升,又迅速下降,但降低速率较光合速率降低为慢。3)核酸、蛋白质合成减少。降解加速,含量降低。4)酶活性变强。如核糖核酸酶,蛋白酶等水解酶类活性增强。5)激素变化。促进生长的植物激素如IAA、CTK、GA等含量减少,而诱导衰老和成熟的植物激素ABA和乙烯含量增加。6)细胞膜系统破坏。透性加大,最后细胞解体,保留下细胞壁。

5、植物器官脱落与植物激素的关系如何?

答:(1)生长素:当生长素含量降至最低时,叶片就会脱落。

(2)脱落酸:幼果和幼叶的脱落酸含量低,当接近脱落时,它的含量最高。)脱落酸可促进分解细胞壁的酶的活性,抑制叶柄内生长素的传导。

(3)乙烯:脱落前乙烯生成量增多,感病植株,乙烯释放量增多,促进脱落。

(4)赤霉素:促进乙烯生成,也可促进脱落。

(5)细胞分裂素:延缓衰老,抑制脱落。

6、试述光对植物生长的影响。

①光合作用的能源;②参与光形态建成;③与一些植物的开花有关;④影响植物生长与休眠;⑤影响一些植物的种子萌发;⑥影响叶绿素的生物合成;⑦影响植物细胞的伸长生长;⑧调节气孔开闭;

⑨影响植物的向性运动、感性运动等。

7、简述环境条件对种子萌发的影响

(1)水分:是种子萌发的首要条件,种子萌发的第一阶段是吸胀,干燥的种子必须吸收足够的水分才能恢复细胞的各种代谢功能。

(2)温度:温度影响种子萌发过程各种水解酶类的合成和分泌。

(3)氧气:从吸胀早期开始伴随着呼吸的增加,因此需要有足够的氧气供应才能保证有氧呼吸的进行。

(4)光照:需光种子的萌发需要光照。

8 啤酒生产中可用什么方法使不发芽的大麦种子完成糖化过程?为什么?

答:可用GA(赤霉素)处理大麦种子使其不发芽即可完成糖化过程,由于大麦种子萌发时由胚中形成GA运至糊粉层α-淀粉酶,蛋白酶等水解酶形成,分泌至胚乳使淀粉糖化等,因此外加GA即可诱导未萌发大麦种子形成α-淀粉酶,完成淀粉的糖化。

1、经过抗旱锻炼的植物在抗旱性增强的同时对其他逆境的抗性也增强,为什么?

植物对逆境的抗性具有交叉适应性,即经历某种逆境后,能提高对另外一些逆境的抵抗能力。植物对逆境的交叉适应是由于其对多种逆境具有某些共同的防御和抵御机制。如干旱、低温、盐害等多种逆境都能诱导植物逆境激素(ABA、乙烯),逆境蛋白,提高细胞渗透调节物质,增加膜保护物质,增加氧自由基的清除酶等,以抵御逆境的胁迫,这些也是植物应对逆境的几种主要机制。因此,干旱锻炼在增强抗寒性的同时,也能增强了植物对其他逆境的抵抗能力。

2、冬季到来之前,树木发生了哪些适应低温生理变化?

温度是和休眠相关的重要因子。内部的生理变化:

(1)细胞含水量降低,束缚水的相对含量增高

(2)呼吸减弱,整个代谢强度降低

(3)ABA含量增加,GA含量减少,生长停止,进入休眠

(4)保护性物质增大,细胞浓度增加,冰点降低。

若在秋末进行灌水,施肥等,使植物生长过旺,不能进入休眠或休眠不深,一遇严寒即受冻害,因此要注意入秋的栽培措施。

3、植物的冻害主要原因是什么?植物如何产生对低温的抗性?抗性增强的原因

答:冻害主要原因:⑴结冰伤害:细胞间、细胞内结冰伤害;⑵蛋白质被损害;⑶膜伤害。

对低温的抗性:⑴植株含水量下降;⑵呼吸减弱;⑶ABA含量增多;⑷生长停止,进入休眠;⑸保护物质增多

抗性增强的可能原因:⑴温度逐渐降低:植物进入休眠的主要条件之一。⑵光照长短、强度的变化:短日照促进休眠,增强抗性;长日照阻止休眠。⑷土壤含水量:土壤含水量降低,提高抗寒性。

⑸土壤营养元素:充足,增强抗寒性;缺乏,抗寒力降低

4. 干旱对植物的伤害作用及作物的抗旱性机制

答:干旱对植物最直接的影响是引起原生质脱水,原生质脱水是旱害的核心。其伤害主要有以下几个方面:(1)破坏膜结构。膜透性增加,引起胞内物质外渗;(2)代谢失调。光合作用显着下降。干旱使水解酶的活性加强,合成酶活性降低。蛋白质分解加强,脯氨酸大量积累。(3)引起植物激素变化。ABA含量增加,细胞分裂素、生长素含量减少。(4)水分重新分配。干旱使植物组织间按水势大小竞争水分,一般幼叶向老叶吸水。(5)植物生长受抑。(6)呼吸作用先升后降。

抗旱性强的植物具有一些形态和生理特征:(1)形态特征:根系发达,根冠比较大,叶片细胞小,叶脉密,表皮绒毛多,角质化程度高,可减少水分的散失。(2)生理特征:细胞原生质具有较高的亲水性、粘性和弹性,束缚水含量高,自由水含量低;较强同化能力。蛋白质、淀粉等物质的合

成仍能维持在一定水平,糖代谢方面相对稳定;渗透调节物质增加,脯氨酸、甜菜碱和ABA等物质累积;有些植物可以通过生育周期的调整逃避干旱的干扰,降低受旱害程度。

提高抗旱性的途径:(1)抗旱锻炼(2)化学诱导(3)合理施肥(4)使用生长延缓剂或抗蒸腾剂(5)发展节水、集水旱作农业。

1、简述G蛋白在参与跨膜信号转换过程中的作用?

当细胞受到刺激,配体与受体结合后,受体构象发生变化,与G蛋白结合形成受体-G蛋白复合体,使G蛋白a亚基发生变化,排斥GDP,结合GTP而活化。而后a亚基脱离其它两个亚基与下游组分,如腺苷酸环化酶结合,活化酶并通过ATP水解产生cAMP分子。此后,与GDP结合的a亚基又回到其它两个亚基上,完成一个循环。

2、简述细胞信号转导的过程。

细胞信号转导可以分为4个步骤:

一是信号分子与细胞表面的受体结合;

二是通过受体将信号转导进入细胞内,即跨膜信号转换过程;

三是通过胞内的信号分子或第二信使进一步传递和放大;

四是导致细胞的生理生化反应。

3、什么叫植物的向光性?向光性生长的机理如何?

答:植物随光方向弯曲的能力,称为向光性。植物的向光弯曲与生长素在向光面与背光面的不均匀分布有关。单方向的光照会引起生长素向背光面移动,以致引起背光面比向光面生长快,而表现向光弯曲。生长素向背光面移动的原因可能与光照引起器官尖端的不同部位产生电势差有关。向光面带负电荷、背光面带正电荷,弱酸性的生长素阴离子被正电荷吸引移向背面。

4.粮食贮藏为什么要降低呼吸速率?

1)呼吸作用过强,消耗大量的有机物,降低了粮食的质量;

2)呼吸作用产生水会使贮藏种子的湿度增加;呼吸作用释放热量又使种子温度升高,反过来促使呼吸加强;高温高湿会使种子发霉变质。

5、试用化学渗透学说解释光合电子传递与磷酸化相偶联的机理。

光合磷酸化是在光合膜上进行的,光合膜上的光系统吸收光能后,启动电子在光合膜上传递。电子传递过程中,质子通过PQ穿梭被泵入类囊体腔内,同时水的光解也在膜内侧释放出质子,因而形成了跨膜的质子梯度差和电位差,即膜内腔电位较正而外侧较负,两者合称为质子动力势差(△PMF)。按照化学渗透学说,光合电子传递所形成的质子动力势是光合磷酸化的动力,质子有从高浓度的内侧返回到低浓度外侧的趋势,当通过偶联因子复合物(CF1—F0)返回到外侧时,释放出的能量被偶联因子捕获,使ADP和无机磷形成ATP。这一学说已经获得越来越多的实验的证实和支持。

2015年工程热力学简答题

2015年工程热力学简答题

2015 年工程热力学简答题 第1 章基本概念 1.闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗? 答:否。当一个控制质量的质量入流率与质量出流率相等时 (如稳态稳流系统) ,系统内的质量将保持恒定不变。 2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。这种观点对不对,为什么? 答:不对。“绝热系”指的是过程中与外界无热量交换的系统。热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。物质并不“拥有”热量。一个系统能否绝热与其边界是否对物质流开放无关。 3.平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。 4.倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式 P P b P e (P P b); P P b P v (P P b ) 中,当地大气压是否必定是环境大气压? 答:可能会的。因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。 “当地大气压”并非就是环境大气压。准确地说,计算式中的P b 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力” ,或被视为不变的“环境大气压力”。 5.温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。它利用了“温度是相互热平衡的系统所具有的一种同一热力性质” ,这一性质就是“温度”的概念。 6.经验温标的缺点是什么?为什么?

植物生理学简答题

简答题 1、简述氧化酶的生物学特性与适应性。 植物体内含有多种呼吸氧化酶,这些酶各有其生物学特性(如对温度的要求和对氧气的反应,所以就能使植物体在一定范围内适应各种外界条件。 以对温度的要求来说,黄酶对温度变化反应不敏感,温度降低时黄酶活性降低不多,故在低温下生长的植物及其器官以这种酶为主,而细胞色素氧化酶对温度变化的反应最敏感。在果实成熟过程中酶系统的更替正好反映了酶系统对温度的适应。例如,柑橘的果实有细胞色素氧化酶、多酚氧化酶和黄酶,在果实末成熟时,气温尚高,呼吸氧化是以细胞色素氧化酶为主;到果实成熟时,气温渐低,则以黄酶为主.这就保证了成熟后期呼吸活动的水平,同时也反映了植物对低温的适应。 以对氧浓度的要求来说,细胞色素氧化酶对氧的亲和力最强,所以在低氧浓度的情况下,仍能发挥良好的作用;而酚氧化酶和黄酶对氧的亲和力弱,只有在较高氧浓度下才能顺利地发挥作用。苹果果肉中酶的分布也正好反映了酶对氧供应的适应,内层以细胞色素氧化酶为主,表层以黄酶和酚氧化酶为主。水稻幼苗之所以能够适应淹水低氧条件,是因为在低氧时细胞色素氧化酶活性加强而黄酶活性降低之故。 2、长期进行无氧呼吸会导致植株死亡的原因是什么? 长时间的无氧呼吸会使植物受伤死亡的原因:第一,无氧呼吸产生酒精,酒精使细胞质的蛋白质变性;第二,因为无氧呼吸利用每摩尔葡萄糖产生的能量很少,相当于有氧呼吸的百分之几(约8%),植物要维持正常的生理需要,就要消耗更多的有机物,这样,植物体内养料耗损过多;第三,没有丙酮酸氧化过程,许多由这个过程的中间产物形成的物质就无法继续合成。作物受涝死亡,主要原因就在于无氧呼吸时间过久。 3.举出三种测定光合速率的方法,并简述其原理及优缺点。 (1)改良半叶法,选择生长健壮、对称性较好的叶片,在其一半打取小圆片若干,烘干称重,并用三氯醋酸对叶柄进行化学环割,以阻止光合产物外运,到下午用同样方法对另一半叶片的相对称部位取相同数目的小圆片,烘干称重,两者之差,即为这段时间内这些小圆片累积的有机物质量。此法简便易行,不需贵重设备,但精确性较差。 (2)红外线CO2分析法原理是:气体CO2对红外线有吸收作用,不同浓度的CO2对红外线的吸收强度不同,所以当红外线透过一定厚度的含CO2的气层之后,其能量会发生损耗,能量损耗的多少与CO2的浓度紧密相关。红外线透过气体CO2后的能量变化,通过电容器吸收

环境地质学试题整理

第二章 1.地质环境地质环境系指岩石圈及其表层风化产物,包括地球岩石圈与表层风化层两部分地质体的组成、结构与各类地质作用与现象。 2.地质环境的容量,即某个特定地质空间可能承受人类社会经济发展的最大潜能。 3.地质环境的质量,在一定程度上由地球物理因素与地球化学因素决定,其好坏对人类的生活与社会经济的发展都会有很大的影响。地质环境质量的好坏,可以由以下几个方面的条件来评定。 4.人地复合系统 2.当前世界环境地质学发展的主要特点与趋向 3.我国的猪哟啊环境地学问题 第三章 1.土地退化就是指土地受到人为因素或自然因素或人为、自然综合因素的干扰、破坏而改变土地原有的内部结构、理化性状,土地环境日趋恶劣,逐步减少或失去该土地原先所具有的综合生产潜力的演替过程。 土壤侵蚀模数单位面积土壤及土壤母质在单位时间内侵蚀量的大小,就是表征土壤侵蚀强度的指标,用以反映某区域单位时间内侵蚀强度的大小。 水土流失就是指人类对土地的利用,特别就是对水土资源不合理的开发与经营,使土壤的覆盖物遭受破坏,裸露的土壤受水力冲蚀,流失量大于母质层育化成土壤的量,土壤流失由表土流失、心土流失而至母质流失,终使岩石暴露。(《中国大百科全书·环境科学》)水土流失可分为水力侵蚀、重力侵蚀与风力侵蚀三种类型。 荒漠化(desertification)就是由于大风吹蚀,流水侵蚀,土壤盐渍化等造成的土壤生产力下降或丧失土地盐渍化 土地次生盐渍化 2、简述荒漠化产生原因及防治对策。 3、简述土地盐渍化产生原因及防治对策。 第四章 1、水体污染源的种类与特性。 2、水资源开发产生的环境效应。 3、我国水资源保护与水污染防治措施。 第五章 1 矿产资源的概念及其特征? 2 露天采矿对地质环境的影响有哪些? 3 地下采矿对地质环境的影响有哪些? 4 矿山地质环境治理的基本原则? 5 外排土露天采空区的1 矿产资源的概念及其特征? 第六章 1、名词解释:温室效应;酸雨;臭氧层空洞;雾霾 2、煤炭开采利用过程对地质环境产生那些影响? 3、简述您熟悉的一种新能源开发利用对地质环境的影响? 第七章 掌握: 1、大型水利水电工程建设活动对地质环境的影响有哪些? 2、南水北调工程产生那些环境地质问题? 了解

植物生理学简答题

简述细胞膜的功能。农谚讲“旱长根,水长苗”是什么意思﹖请简述其生理原因。 分室作用,生化反应场所,物质运输功能,识别与信息传递该农谚是一种土壤水分供应状况对根冠比调节的形象比喻。 功能。植物地上部分生长和消耗的水分完全依靠根系供应,土壤含 光合作用的生理意义是什么。水量直接影响地上部分和根系的生长。一方面,当土壤干旱,把无机物变成有机物,将光能转变为化学能,放出O2保持大 水分不足时,根系的水分供应状况比地上部分好,仍能较好 气成分的平衡。地生长,而地上部分因为缺水生长受阻,根冠比上升,即为 简述气孔开闭的无机离子泵学说。旱长根;另一方面,土壤水分充足时,地上部分生长旺盛, 白天:光合→ATP增加→K离子泵打开→细胞内K离子浓度上 消耗大量光合产物,使输送给根系的有机物减少,削弱根系 升→细胞浓度增加,水势下降→吸水→气孔开放;晚上相反。生长。如果土壤水分过多,则土壤通气不良,严重影响根系 简述IAA 的酸生长理论。 的生长,根冠比下降,即为“水长苗”。 质膜H+ATP酶被IAA 激活→细胞壁H离子浓度上升→多糖水 农谚讲“旱长根,水长苗”是什么意思?道理何在? 解酶活化→纤维素等被水解→细胞松弛水势降低→吸水→伸这是指水分供应状况对植物根冠比调节的一个形象比喻。植 长生长物地上部生长和消耗的大量水分,完全依靠根系供应,土壤 外界环境因素是如何影响植物根系吸收矿质元素的?有效水的供应量直接影响枝叶的生长,因此凡是能增加土壤1).PH 值2) .温度3) .通气状况4) .土壤溶液浓度 有效水的措施,必然有利地上部生长;而地上部生长旺盛, 粮食贮藏为什么要降低呼吸速率?消耗耗大量光合产物,使输送到根系扔机物减少,又会削弱 1)呼吸作用过强,消耗大量的有机物,降低了粮食的质量; 2)呼吸产生水会使贮藏种子的湿度增加;呼吸释放的热又使 根系的生长,加之如果水分过多,通气不良,也会限制根系 活动,这些都将使根冠比减少。干旱时,由于根系的水分环 种子温度升高,反过来促使呼吸加强;严重时会使种子发霉境比地上部好,根系仍能较好地生长;而地上部则由于抽水, 变质。枝叶生长明显受阻,光合产物就可输入根系,有利根系生长,比较IAA 与GA的异同点。 使根冠比增大。所以水稻栽培中,适当落干晒田,可对促进 1) 相同点:a.促进细胞的伸长生长 b. 诱导单性结实 c. 促进 根系生长,增加根冠比。 坐果2) 不同点:a.IAA 诱导雌花分化,GA 诱导雄花分化;NO3-进入植物之后是怎样运输的?在细胞的哪些部分、在什 b.GA 对整株效果明显, 而IAA 对离体器官效果明显; c.IAA 有双重效应, 而GA没有类似效应么酶催化下还原成氨? 植物吸收NO3-后,可以在根部或枝叶内还原,在根内及枝叶 试说明有机物运输分配的规律。 总的来说是由源到库,植物在不同生长发育时期,不同部位内还原所占的比值因不同植物及环境条件而异,苍耳根内无硝酸盐还原,根吸收的NO3-就可通过共质体中径向运输。即 组成不同的源库单位,以保证和协调植物的生长发育。总结根的表皮→皮层→内皮层→中柱薄壁细胞→导管,然后再通 其运输规律:(1)优先运往生长中心;(2)就近运输;(3) 纵向同侧运输(与输导组织的结构有关);(4)同化物的再 过根流或蒸腾流从根转运到枝叶内被还原为氨,再通过酶的 催化作用形成氨基酸、蛋白质,在光合细胞内,硝酸盐还原 分配即衰老和过度组织(或器官)内的有机物可撤离以保证为亚硝酸盐是在硝酸还原酶催化下,在细胞质内进行的,亚 生长中心之需。硝酸还原为氨则在亚硝酸还原酶催化下在叶绿体内进行。在 引起种子休眠的原因有哪些?生产上如何打破种子休眠?农作物中,硝酸盐在根内还原的量依下列顺序递减;大麦> 1) 引起种子休眠的原因:种皮限制、种子未成熟后熟、胚休 眠、抑制物质(2) 生产上打破种子休眠方法:机械破损、 向日葵>玉米>燕麦。同一植物,在硝酸盐的供应量的不同 时,其还原部位不同。例如在豌豆的枝叶及根内硝酸盐还原 层积处理、药剂处理的比值随着NO3-供应量的增加而明显升高。 水分在植物生命活动中的作用有哪些?简述气孔开闭的主要机理。 1)水是原生质重要组分;2)水是植物体内代谢的反应物质; 气孔开闭取决于保卫细胞及其相邻细胞的水势变化以及引起 3)水是对物质吸收和运输的溶剂;4)水能保持植物固有姿 态;5)水的理化性质为植物生命活动带来各种有利条件。 这些变化的内、外部因素,与昼夜交替有关。在适温、供水 充足的条件下,把植物从黑暗移向光照,保卫细胞的渗透势 试述光敏素与植物成花诱导的关系。显著下降而吸水膨胀,导致气孔开放。反之,当日间蒸腾过 光敏素的两种类型Pr 和Pfr 的可逆转化在植物成花中起着重 多,供水不足或夜幕布降临时,保卫细胞因渗透势上升,失 要的作用:当Pfr/Pr 的比值高时,促进长日植物的开花;当 水而缩小,导致气孔关闭。气孔开闭的机理复杂,至少有以 Pfr/Pr 的比值低时,促进促进短日植物的开花。下三种假说:(1)淀粉——糖转化学说,光照时,保卫细胞 试述生长、分化与发育三者之间的区别与关系?内的叶绿体进行光合作用,消耗CO2,使细胞内PH值升高,①在生命周期中,生物细胞、组织和器官的数目、体积或干促使淀粉在磷酸化酶催化下转变为1-磷酸葡萄糖,细胞内的重等不可逆增加的过程称为生长;②从一种同质的细胞类型葡萄糖浓度高,水势下降,副卫细胞的水进入保卫细胞,气转变成形态结构和功能与原来不相同的异质细胞类型的过程孔便张开。在黑暗中,则变化相反。(2)无机离子吸收学说,成为分化;③而发育则指在生命周期中,生物组织、器官或保卫细胞的渗透系统亦可由钾离子(K+)所调节。光合磷酸 整体在形态结构和功能上的有序变化。④三者紧密联系,生化产生ATP。ATP使细胞质膜上的钾-氢离子泵作功,保卫细 长是基础,是量变;分化是质变。一般认为,发育包含了生胞便可逆着与其周围表皮细胞之间的离子浓度差而吸收钾离 长和发育子,降低保卫细胞水势,气孔张开。(3)有机酸代谢学说,植物体内哪些因素决定组织中IAA 的含量﹖ 淀粉与苹果酸存在着相互消长的关系。气孔开放时,葡萄糖 ①IAA 生物合成;②可逆不可逆地形成束缚IAA;③IAA 的运 增加,再经过糖酵解等一系列步骤,产生苹果酸,苹果酸解 输(输入、输出);④IAA 的酶促氧化或光氧化;⑤IAA 在生离的H+可与表皮细胞的K+交换,苹果酸根可平衡保卫细胞理活动中的消耗。所吸入的K+。气孔关闭时,此过程可逆转。总之,苹果酸与 试述光对植物生长的影响。K+在气孔开闭中起着互相配合的作用。①光合作用的能源;②参与光形态建成;③与一些植物的开呼吸代谢的多条途径对植物生存有何适应意义?花有关;④日照时数影响植物生长与休眠;⑤影响一些植物植物代谢受基因的控制,而代谢(包括过程、产物等)又对的种子萌发;⑥影响叶绿素的生物合成;⑦影响植物细胞的基因表达具控制作用,基因在不同时空的有序即表现为植物伸长生长;⑧调节气孔开闭;⑨影响植物的向性运动、感性的生长发育过程,高等植物呼吸代谢的多条途径(不同底物、运动等等。 呼吸途径、呼吸链及末端氧化等)使其能适应变化多端的环植物休眠有何生物学意义﹖为什么休眠器官的抗逆力较强﹖境条件。如植物遭病菌浸染时,PPP增强,以形成植保素,木

工程热力学简答题

1.何谓状态何谓平衡状态何为稳定状态 状态:热力学系统所处的宏观状况 平衡状态:在不受外界影响的条件下,系统的状态不随时间而变化 稳定状态:系统内各点参数不随时间而变化 2.说明状态参数的性质。 (1)状态参数是状态的函数。对应一定的状态。状态参数都有唯一确定的数位。 (2)状态参数的变化仅与初、终状态有关,而与状态变化的途径无关。当系统经历一系列状态变化而恢复到初态时。其状态参数的变化为零,即它的循环积分为零 (3)状态参数的数学特征为点函数,它的微分是全微分。 3.何谓热力过程 热力学状态变化的历程 4.何谓准静态过程实现准静态过程的条件是什么 准静态过程:热力学系统经历一系列平衡状态,每次状态变化时都无限小的偏离平衡状态。 条件:状态变化无限小,过程进行无限慢。 5.非准静态过程中,系统的容积变化功可否表示为 ?=-21 2 1 d v p w 为什么 不可以。在非准静态过程中pv的关系不确定,没有函数上的联系。 6.何谓可逆过程 经历一个热力学过程后,热力学系统逆向沿原过程逆向进行,系统和有关的外界都返回到原来的初始状态,而不引起其他的变化。 7.何谓热力循环 系统由初始状态出发,经过一系列中间状态后重新回到初始状态所完成的一个封闭式的热力过程称为热力循环。 8.何谓正循环,说明其循环特征。 在状态参数坐标图上,过程按照顺时针循环的为正循环,其目的是利用热产生机械功,动力循环,顺时针,循环净功为正。 9.何谓逆循环,说明其循环特征。 在状态参数坐标图上,过程按照逆时针循环的为逆循环,其目的是付出一定代价使热量从低温区传向高温区,制冷循环,逆时针,循环净功为负。 10.何谓热量何谓功量 热量:仅仅由于温度不同,热力学系统与外界之间通过边界所传递的能量 功量:热力学系统和外界间通过边界而传递的能量,且其全部效果可表现为举起重物。 11.热量和功量有什么相同的特征两者的区别是什么 相同特征:都是系统与外界间通过边界传递的能量,都是过程量,瞬时量。

植物生理学简答题问答题

绪论 1.植物生理学的发展大致经历了哪几个阶段? 2.21世纪植物生理学的发展趋势如何? 3.近年来,由于生物化学和分子生物学的迅速发展,有人担心植物生理学将被其取代,谈谈你的观点。 参考答案 1.答:植物生理学的发展大致经历了以下三个阶段: 第一阶段:植物生理学的奠基阶段。该阶段是指从植物生理学学尚未形成独立的科学体系之前,到矿质营养学说的建立。 第二阶段:植物生理学诞生与成长阶段。该阶段是从1840年Liebig建立营养学说时起,到19世纪末植物生理学逐渐形成独立体系。 第三阶段:植物生理学的发展阶段。从20世纪初到现在,植物生理学逐渐在植物学科中占中心地位,所有各个植物学的分支都离不开植物生理学。 2.答:.①与其他学科交叉渗透,从研究生物大分子到阐明个体生命活动功能、生产应用,并与环境生态相结合等方面。微观方面,植物生命活动本质方面的研究向分子水平深入并不断综合。在宏观方面,植物生理学与环境科学、生态学等密切结合,由植物个体扩大到群体,即人类地球-生物圈的大范围,大大扩展了植物生理学的研究范畴。 ②对植物信号传递和转导的深入研究,将为揭示植物生命活动本质、调控植物生长发育开辟新的途径。在21世纪,对光信号、植物激素信号、重力信号、电波信号及化学信号等所诱导的信号传递和转导机制的深入研究,将会揭开植物生理学崭新的一页。 ③植物生命活动过程中物质代谢和能量转换的分子机制及其基因表达调控仍将是研究的重点。在新世纪里,对植物生命活动过程中物质代谢和能量代谢转换的深入研究占有特别重要的位置。目前,将光和能量转换机制与生理生态联系起来进行研究正在走向高潮,从而将光和能量转换机制研究与解决人类面临的粮食、能源问题紧密联系起来,以便在生产中发挥更大的指导作用。 第一章植物的水分代谢 问答题 1、土壤里的水从植物的哪部分进入植物,双从哪部分离开植物,其间的通道如何?动力如何? 2、植物受涝后,叶片为何会萎蔫或变黄? 3、低温抑制根系吸水的主要原因是什么? 4、简述植物叶片水势的日变化 5、植物代谢旺盛的部位为什么自由水较多? 6、简述气孔开闭的主要机理。 7、什么叫质壁分离现象?研究质壁分离有什么意义? 8、简述蒸腾作用的生理意义。 9、解释“烧苗”现象的原因。 10、在农业生产上对农作物进行合理灌溉的依据有哪些? 参考答案 1、土壤里的水从植物的哪部分进入植物,双从哪部分离开植物,其间的通道如何?动力如何? 水分进入植物主要是从根毛——皮层——中柱——根的导管或管胞——茎的导管或管胞——叶的导管或管胞——叶肉细胞——叶细胞间隙——气孔下腔——气孔,然后到大气中去。 在导管、管胞中水分运输的动力是蒸腾拉力和根压,其中蒸腾拉力占主导地位。在活细胞间的水分运输主要靠渗透。 2、植物受涝后,叶片为何会萎蔫或变黄? 植物受涝后,叶子反而表现出缺水现象,如萎蔫或变黄,是由于土壤中充满着水,短时期内可使细胞呼吸减弱,根压的产生受到影响,因而阻碍吸水;长时间受涝,就会导致根部形成无氧呼吸,产生和累积较多的乙醇,致使根系中毒受害,吸水更少,叶片萎蔫变质,甚至引起植株死亡。 3、低温抑制根系吸水的主要原因是什么?

地质学问答题汇总复习

大关职中2007年19班(国土资源学专业)地质学基础复习题 一、填空题:一、填空题(每空0.5分,共25分) 1、地球内部的圈层结构,地球内部由地壳、地幔、地核三部分组成。 2、自然界的岩石按成因可以分为三类,它们是:岩浆岩、沉积岩和变质岩;其中大理岩属于变质岩,石英岩属于变质岩;玄武岩是属于岩浆岩,石灰岩是属于沉积岩。 3、按岩浆岩中的二氧化硅的含量,可划分为超基性岩、基性岩、中性岩、酸性岩。 4、相对地质年代的四级时代单位依次是宙、代、纪、世。 5、岩层的产状三要素是:走向、倾向和倾角。 6、摩氏硬度计中,硬度为3、4、 7、9的矿物依次为:方解石、萤石、石英和刚玉。在野外,通常用小刀、指甲来粗略测试矿物硬度,小刀的硬度是5.5左右,指甲的硬度是2.5左右。 7、变质作用的方式主要有重结晶作用变质作用交代作用变形和碎裂作用等几种。 8、风化作用可分为物理风化作用、化学风化作用和生物风化作用三种方式,其综合产物是土壤。 9、地层的接触关系整合接触、平行不整合接触、角度不整合接触三种。 10、残积物是风化作用产物,坡积物是片流地质作用产物,河流的沉积物为冲积物,冰川堆积物为冰碛物。 11、根据褶皱的轴面和两翼产状,可将褶皱分为直立褶皱倒转褶皱斜歪褶皱平卧褶皱翻卷褶皱。 12、根据断层两盘相对运动,可将断层分为正断层逆断层平移断层 13、地质学对人类社会担负着两大使命,分别为寻找矿产资源和环境保护。 14、赤道半径为(6,378.2)km,两极半径为(6,356.8)km。赤道周长为(40 075.24)km。 15、决定岩浆性质最重要的化学成分是(SiO2),根据它的百分含量可把岩浆分为(超基性岩(SiO2<45%))、(基性岩(SiO2 45-53%))、(中性岩(SiO2 53-66%))和(和酸性岩(SiO2 >66%))四类。 16、远处发生了一次剧烈地震,地震台首先接收到的是(纵)波,其次是(横)波,最后记录到的是(横)波;说明(纵)波比其它形式的地震波传播速度更快。 17、1912年德国气象学家(魏格纳)正式提出大陆漂移说。 18、地球外部圈层划分为大气圈、水圈、生物圈和岩石圈,内部圈层划分为地幔圈、外核液体圈和固体内核圈。 19、岩浆作用可以划分为侵入作用和喷出作用。 20、在垂向上,风化壳自下而上可分为基岩、半风化层、残积层、土壤层。 21、成岩作用包括压实作用、胶结作用、溶解作用等 22、变质作用类型接触交代变质作用、角岩是接触变质、区域变质作用、混合岩化作用。 23、由早至晚,古生代分为寒武纪,奥陶纪,志留纪,泥盆纪,石炭纪,二叠纪六个纪。 24、岩层产状三要素是指走向、倾向和倾角。 25、地壳中克拉克值最高的元素是(氧);氧化物含量最多的是(二氧化硅)。 26、划分地壳,地幔和地核的两个一级不连续面是(莫霍面)和(古登堡不连续面)。 27、地壳基本上可分为(大陆型)和(海洋)型两种。 28、地壳演化的四个阶段是(冥故宙)(太古宙)(元古宙)(显生宙)。 29、地壳中各元素的丰度:氧(45.2%),硅(27.2%)铝(8%),铁(5.8%),钙(5.06%)镁(2.77%),钠(2.32%),钾(1.68%),钛(0.68%),氢(0.14%),锰(0.10%),磷(0.10%)其它所有元素(0.95%) 30、根据组成集合体矿物的延伸类型,可分为一向延伸,二向延展和三向等长三种类型 31、研究矿物的力学性质主要需掌握的是矿物的硬度、解理、断口、密度和比重 32、矿物的光学性质就是矿物对光的吸收、反射、折射以及光在矿物中传播的性质,主要有矿物的颜色、条痕、光泽和透明度等; 33、矿物的有些特殊性质,如发光性、磁性、压电性、放射性、特殊的味道等仅存在于少数矿物中。这些性质除了可用于鉴定矿物之外,在工业上也具有相当价值。 34、岩浆主要来源于地幔上部的软流层,那里温度高达1300℃,压力约数千个大气压,使岩浆具有极大的活动性和能量,按其活动又分为喷出岩和侵入岩。 35、岩浆岩常见的如在地壳中分布很广的中粗粒结构的侵入岩——花岗岩,气孔构造发育,黑色致密的玄武岩,

植物与植物生理学试题 (11)

植物与植物生理学试题 一、填空(每空0.5分,共20分) 1、成熟的花粉粒有颜色,是因为花粉外壁有。 2、光合作用中被称为同化能力的物质是和。 3、花粉管的萌发除消耗本身的贮藏物质外,还要消耗。 4、花粉中还有合成蛋白质的各种氨基酸,其中含量最高,对维持花粉的育性有重要作用。 5、卡尔文循环中的CO2的受体是,最初产物 是,催化羧化反应的酶是。 6、光敏素在植物体内有两种存在状态和。 7、影响种子萌发的条件有,,,。 8、根茎叶对生长素的最适浓度从高到低的顺序是 9、促进插条生根的激素是,破除休眠的激素是,保绿保鲜的激素是,促进开花的激素是,果实催熟的激素是。 10、植物的抗病途径主要有,,,。 11、长日植物和短日植物的差别不在于他们所需日照时数的绝对值大小,而只要就能开花。 12、光周期诱导中,暗期的长度决定,光期的长度会影响。 13、植物感受光周期的部位是。 14、将短日植物从北方引种到南方,会,应选择品种。 15、春化作用感受的时期是,部位是。春化效应只能通过的传递而传递。

16、种子萌发的标志是,过程可分为三个阶段,,。 17.证明根压存在的证据有和。 18. 缺氮的生理病症首先表现在叶上,缺钙的生理病症首先表现在叶上。 二、名词解释(每2分,共10分) 1、发育 2、去春化作用, 3、能荷调节 4、CO2补偿点 5、蒸腾系数 三、判断题(每1分,共10分) 1、涝害淹死植株,是因为无氧呼吸进行过久,累积酒精,而引起中毒。() 2、随着作物生育时期的不同,源与库的地位也将因时而异。() 3、细胞分裂素在植物体中的运输是无极性的。() 4、ABA促进气孔张开。() 5、根系生长的最适温度,一般低于地上部生长的最适温度。() 6、根的生长部位有顶端分生组织,根没有顶端优势。() 7、将短日植物放在人工光照室中,只要暗期长度短于临界夜长,就可开花。() 8、花粉落在雌蕊柱头上能否正常萌发,导致受精,决定于双方的亲和性。()

工程热力学简答题汇总汇编

工程热力学简答题汇 总

1热力系统:被人为分割出来作为热力学分析对象的有限物质系统。 开口系统:热力系统和外界不仅有能量交换而且有物质交换。 闭口系统:热力系统和外界只有能量交换而无物质交换。 孤立系统:热力系统和外界即无能量交换又无物质交换。 2平衡状态:一个热力系统如果在受外界影响的条件下系统的状态能够始终保持不变,则系统的这种状态叫平衡状态。 准平衡过程:若过程进行的相对缓慢,工质在被平衡破坏后自动回复平衡的时间,即所谓弛豫时间又很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就叫做准平衡过程。 可逆过程:当完成了某一过程之后,如果有可能使工质沿相同的路径逆行而回复到原来状态,并且相互作用中所涉及到的外界亦回复到原来状态而不留下任何改变。 3汽化潜热:即温度不变时,单位质量的某种液体物质在汽化过程中所吸收的热量。 4比热的定义和单位:1kg物质温度升高1k所需热量称为质量热容,又称比热容,单位为 J/(kg·K),用c表示,其定义式为c=δq/dT或c=δq/dt。 5湿空气的露点:露点是在一定的pv下(指不与水或湿物料相接触的情况),未饱和湿空气冷却达到饱和湿空气,即将结出露珠时的温度,可用湿度计或露点仪 测量,测的td相当于测定了 pv。 6平衡状态与稳定状态有何区 别和联系,平衡状态与均匀状 态有何区别和联系? 答:“平衡状态”与“稳定状态” 的概念均指系统的状态不随时 间而变化,这是它们的共同 点;但平衡状态要求的是在没 有外界作用下保持不变;而平 衡状态则一般指在外界作用下 保持不变,这是它们的区别所 在。 7卡诺定理:定理一:在相同 温度的高温热源和相同温度的 低温热源之间工作的一切可逆 循环,其热效率都相等,与可 逆循环的种类无关,与采用哪 一种工质也无关。 定理二:在温度同为T1的热 源和同为T2的冷源间工作的 一切不可逆循环,其热效率必 小于可逆循环。 推论一:在两个热源间工作的 一切可逆循环,他们的热效率 都相同,与工质的性质无关, 只决定于热源和冷源的温度, 热效率都可以表示为ηc=1— T2/T1 推论二:温度界限相同,但具 有两个以上热源的可逆循环, 其热效率低于卡诺循环 推论三:不可逆循环的热效率 必定小于同样条件下的可逆循 环 8气体在喷管中流动,欲加速 处于超音速区域的气流,应采 取什么形式的喷管,为什么: 因为Ma>1超声速流动,加速 dA>0气流截面扩张,喷管截面 形状与气流截面形状相符合, 才能保证气流在喷管中充分膨 胀,达到理想加速度过程,采 用渐扩喷管。 9压气机,实际过程与理想过 程的关系,在压气机采取多级 压缩和级间冷却有什么好处: 每级压气机所需功相等,这样 有利于压气机曲轴平衡。每个 汽缸气体压缩后达到的最高温 度相同,这样每个汽缸的温度 条件相同。每级向外排出的热 量相等,而且每级的中间冷却 器向外排除的热量也相等。 (避免压缩因比压太高而影响 容积效率,有利于气体压缩以 等温压缩进行,对容积效率的 提高也有利) 10逆向循环:把热量从低温热 源传给高温热源。 11绝热节流:在节流过程中, 流体与外界没有热量交换就称 绝热节流。 14简述功和热量的区别与联 系:都是过程量,作功有宏观 移动,传热无宏观移动,作功 有能量转化,传热无能量转 化,功变热无条件,热变功有 条件。 12喷管的形状选择与哪些因素 有关?背压对喷管性能有何 影响?温度有何变化规律和 影响?进口截面参数(滞止 压力P0)和背压(P b);Pb ≥Pcr选渐缩喷管,Pb<Pcr 选缩放喷管。 13蒸汽压缩式制冷和空气压缩式制 冷的联系与区别。蒸汽压缩式制冷 的优点,装置上的区别及原因。 答:都是利用压缩气体来制冷,制 冷装置不用,使用的气体不同,前 者使用的是低沸点的水蒸气,后者 使用的是空气。蒸汽压缩式制冷的 优点:1,更接近于同温限的逆向卡 诺循环,提高了经济性;2,单位质 量工质制冷量较大。为了简化设 备,提高装置运行的可靠性,实际 应用的蒸汽压缩制冷循环常采用节 流阀代替膨胀机。 14湿空气温度与吸湿能力的关系 湿含量一定时,温度升高,空气中 水蒸气密度变大,吸湿能力下降 15朗肯循环在T-S图上表示 1-2,绝热膨胀做功 2-3,冷却放热,冷凝的饱和水 3-4,在水泵里绝热压缩 4-1,加热,汽化 循环吸热量q1=h1-h4;循环放热量 q2=h2-h3 对外做功w1=h1-h2;消耗功w2=h4- h3 热效率ηt=Wnet/q1=(h1-h2)-(h4- h3)/h1-h4 16R和Rg的意义及关系:Rg是气体 常数,仅与气体种类有关而与气体 的状态无关;R是摩尔气体常数,不 仅与气体状态无关,也与气体的种 类无关,R=8.3145J(mol·K)。若气 体的摩尔质量为M,则R=MRg 17热量(可用能)的概念:在温 度为T0的环境条件下,系统(T> T0)所提供的热量中可转化为有用 功的最大值是热量,用EX,Q表 示。 18热力学第二定律的表述 仅供学习与交流,如有侵权请联系网站删除谢谢2

地质学基础复习问答题(DOC)

1、岩相:反映沉积环境的沉积岩岩性和生物群的综合特征,称为岩相。包括:海相、陆相和海陆过渡相三类。 2、克拉克值:把地壳中每种元素含量的百分比值称为克拉克值。 3、元素的丰度:根据大陆地壳中(地下16Km以内)的5159个岩石、矿物、土壤和天然水的样品分析数据,于1889年第一次算出元素在地壳中的平均含量数值(平均质量百分比),即元素的丰度。 4、矿物:天然形成的、具有一定化学成分、内部原子排列顺序和物理特征的元素单质和无机化合物。 5、晶体:有三个特征:(1)晶体有一定的几何外形;(2)晶体有固定的熔点;(3)晶体有各向异性的特点。 6、非晶质体:凡内部质点呈不规则排列的物体。 7、岩石:是天然产出的具一定结构构造的矿物集合体,是构成地壳和上地幔的物质基础。按成因分为岩浆岩、沉积岩和变质岩。 8、岩浆岩:是由高温熔融的岩浆在地表或地下冷凝所形成的岩石,也称火成岩; 9、沉积岩:是在地表条件下由风化作用、生物作用和火山作用的产物经水、空气和冰川等外力的搬运、沉积和成岩固结而形成的岩石; 10、变质岩:是由先成的岩浆岩、沉积岩或变质岩,由于其所处地质环境的改变经变质作用而形成的岩石。 11、岩石的碱度即指岩石中碱的饱和程度,岩石的碱度与碱含量多少有一定关系。通常把Na2O K2O的重量百分比之和,称为全碱含量; 12、变质岩是在地球内力作用,引起的岩石构造的变化和改造产生的新型岩石。这些力量包括温度、压力、应力的变化、化学成分。 13、矿物的发光性:指矿物受外加能量激发,能发出可见光的性质。 14、矿物的力学性质:矿物在外力作用下表现出来的性质。其中最重要的是解理和硬度,其次有延展性、脆性、弹性和挠性等。 15、矿物的解理与断口:矿物受外力作用后,沿着一定的结晶方向发生破裂,并能裂出光滑平面的性质称解理。这些平面称解理面。如果矿物受外力作用,在任意方向破裂并呈各种凹凸不平的断面(如贝壳状、锯齿状)则这样的断面称为断口。 16、矿物的脆性:矿物受外力作用容易破碎的性质为脆性。 17、矿物的延展性:是矿物在锥击或引拉下,容易形成薄片或细丝的性质。 18、矿物的弹性:矿物受外力作用发生弯曲变形,但外力作用取消后,则能使弯曲变形恢复原状的性质。 19、矿物的挠性:矿物受外力作用发生弯曲变形,如当外力取消后,弯曲了的形变不能恢复原状的性质。

植物生理学简答题必看

以下观点是否正确为什么⑴将一个细胞放入某一浓度的溶液中,若细胞浓度与外界浓度相等,则体积不变(X)水势相等⑵若Ψp=Ψπ将其放入L溶液中,V不变(X)变小Ψw=0放入纯水中V不变⑶若Ψw=Ψπ,将其放入纯水中,则V不变(X)有Ψp、Ψπ、Ψg的影响⑷有一充分为水饱和的细胞将其放入细胞液浓度低50倍的溶液中,V不变(X)变小。 如何确定一种元素是否为植物必须元素a:溶液培养法:亦称水培法,是在含有全部或部分营养元素的溶液中培养植物的方法。b:砂基培养法:是在洗净的石英砂或玻璃球等基质中加入营养液来培养植物的方法。 判断植物必需的矿质元素的标准 a:不可缺少性:缺乏该元素时不能完成生活史b:不可替代性:有专一缺乏症,加入其它元素不能恢复c:功能直接性:缺素症状是由元素直接作用,并不是通过影响土壤,微生物等的间接作用。 植物必需元素有哪些生理作用一般生理作用:①细胞结构物质的组分②生命活动的调节者③参与植物体内的醇基酯化④电化学作用参与调节,胶体的稳定和电荷的中和等⑤缓冲作用。 N:生命元素:AA,核酸,激素,维生素等。叶片等营养体的生长 P:⑴是磷酸磷脂的组成成分⑵促进物质运输,糖类转移,生殖器官长得好 K:含量最多的金属元素,以离子存在,调节气孔开闭,某些反应中酶的活化剂 Ca:⑴维持膜结构的稳定性⑵信号物质:第二信使⑶中和有机酸:果实成熟时的酸味消失。 植物缺绿病症有的出现在顶端幼嫩枝叶上,有的出现在下部老叶上,为什么举例说明缺绿元素有:N,Mg,Fe,Mn,Cu,Zn,其中既有可再利用元素,也有不可再利用元素。N是可移动元素,缺乏时老叶先出现症状,Ca是不可移动的元素,缺乏时新叶先出现症状。 ATP酶是如何参与矿质元素的主动转运的首先,H+-ATP酶水解ATP释放能量,将H+逆电化学势梯度泵出细胞,形成跨膜的质子驱动力,在质子的驱动力的作用下,启动其它载体和离子通道,将物质运输过膜,除H+向胞外转运直接消耗能量外,其它物质的跨膜都不直接消耗能量,但却依赖于H+转运形成的电化学势梯度,所以其它转运过程间接需要代谢能量。 说明叶绿素a和叶绿素b吸收光谱的特点叶绿素a:蓝绿色,大部分用于补光,少部分用于强化光能叶绿素b:黄绿色,全部用于补光。 试用化学渗透学说解释关合磷酸化机理 根据化学渗透学说,光合电子传递的作用是建立在一个跨类囊体的质子动力势能,在质子动力势能作用下,类囊体摸上的ATP合成酶合成ATP,根据化学渗透学说,光合磷酸化过程可分为两个阶段,一是质子动力势的建立,二是ATP的合成。Pi+ADP--ATP(条件是PMF和ATP合成酶) 简述C4植物与CAM植物在糖代谢途径上的异用相同点:都是低CO2浓度和干旱等逆境条件下形成的光合碳同化的特殊适应类型。不同点:C4两次羧化反应是在空间上分开--叶肉细胞和维管束鞘细胞 CAM两次羧化反应是在时间上分开——白天和晚上。 如何理解蔗糖是高等植物韧皮部光合同化物运输的主要形式最主要原因是蔗糖的运输效率高:(1)蔗糖是光合产物的主要形式(2)蔗糖的溶解度高,在0℃时,100ml 水中可溶解179克蔗糖。在100℃时,可溶解487克(3)蔗糖是还原性糖,化学性质稳定不易分解,也不易与其它物质反应,不会中途终止运输,此外蔗糖的糖苷键水解时所需的能量较多。 试述同化物是如何装载和卸出筛管的装载:同化物以合成部位进入筛管的过程,主动运输途径:质外体途径(主要)共质体途径机理:①装载途径与所运输糖的形式有关②蔗糖装载机理(蔗糖——质子共运输)卸出:光合同化物从SE—CL复合体运出并进入库C(接受C)的过程库端韧皮部的卸出和源端的装载基本上是两个相反的过程途径:①共质体途径:SE—CL 复合体与周围C间有胞间连丝②质外体途径:SE—CL复合体与周围C间缺少胞间连

工程热力学复习重点及简答题

工程热力学复习重点2012. 3 绪论 [1]理解和掌握工程热力学的研究对象、主要研究内容和研究方法 [2]理解热能利用的两种主要方式及其特点 [3]了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 [1]热能:能量的一种形式 [2]来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 [3]利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 [1]过程的方向性:如:由高温传向低温 [2]能量属性:数量属性、,质量属性(即做功能力) [3]数量守衡、质量不守衡 [4]提高热能利用率:能源消耗量与国民生产总值成正比。 第1章基本概念及定义 1. 1 热力系统 一、热力系统 系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。 外界:与系统相互作用的环境。 界面:假想的、实际的、固定的、运动的、变形的。 依据:系统与外界的关系 系统与外界的作用:热交换、功交换、质交换。 二、闭口系统和开口系统 闭口系统:系统内外无物质交换,称控制质量。 开口系统:系统内外有物质交换,称控制体积。 三、绝热系统与孤立系统 绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热) 孤立系统:系统与外界既无能量传递也无物质交换

植物生理学问答题

《植物生理学》问答题 1、试述植物光呼吸和暗呼吸的区别。 答: 比较项目暗呼吸光呼吸 底物葡萄糖乙醇酸 代谢途径糖酵解、三羧酸循环等途径乙醇酸代谢途径 发生部位胞质溶胶、线粒体叶绿体、过氧化物酶体、线粒体 发生条件光、暗处都可以进行光照下进行 对O2、CO2浓度的反应无反应高O2促进,高CO2抑制 2、光呼吸有什么生理意义 答:(1)光呼吸使叶片在强光、CO2不足的条件下,维持叶片内部一定的CO2水平,避免光合机构在无CO2时被光氧化破坏。 (2)光呼吸过程消耗大量O2,降低了叶绿体周围O2浓度和CO2浓度之间的比值,有利于提高RuBP氧化酶对CO2的亲和力,防止O2对光合碳同化的抑制作用。 综上,可以认为光呼吸是伴随光合作用进行的保护性反应。 3、试述植物细胞吸收溶质的方式和机制。 答:(1)扩散: ①简单扩散:简单扩散是指溶质从高浓度区域跨膜移向临近低浓度区域的过程。不 需要细胞提供能量。 ②易化扩散:又名协助扩散,是指在转运蛋白的协助下溶质顺浓度梯度或电化学梯 度的跨膜转运过程。不需要细胞提供能量。 (2)离子通道:离子通道是指在细胞膜上由通道蛋白构成的孔道,作用是控制离子通过细胞膜。 (3)载体:载体是跨膜转运的内在蛋白,在夸膜区域不形成明显的孔道结构。 ①单向运输载体:单向运输载体能催化分子或离子顺电化学梯度单向跨膜转运。 ②反向运输器:反向运输器与膜外的H+结合时,又与膜内的分子或离子结合,两 者朝相反的方向运输。 ③同向运输器:同向运输器与膜外的H+结合时,又与膜外的分子或离子结合,两 两者朝相同的方向运输。 (4)离子泵:离子泵是膜上的ATP酶,作用是通过活化ATP推动离子逆化学势梯度进行跨膜转运。 (5)胞饮作用:胞饮作用是指细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。 4、试述压力流动学说的基本内容。 答:1930年明希提出了用于解释韧皮部光合同化物运输机制的“压力流动学说”,其基本观点是: (1)光合同化物在筛管内随液流流动,液流的流动是由输导系统两端的膨压差引起的。 (2)膨压差的形成机制: ①源端:光合同化物进入源端筛管分子→源端筛管内水势降低→源端筛管分 子从临近的木质部吸收水分→源端筛管内膨压增加。

地质学基础简答题

4、简述确定不整合的识别标志 答:确定不整合的识别标志有: 1、古生物证据 2、发育古风化壳,古土壤等。上覆地层有时有下伏地层的岩块,砾石组成的底砾岩。 3、上下两套地层产状不一致变形程度不同,下伏地层变形强烈。 4、上下两套地层的岩浆作用和变质作用不同,下强上弱。 6、简述张节理与剪节理的特征 答:节理按其形成时的力学性质,分为剪节理和张节理。 剪节理是在剪应力作用下产生的破裂面,特征为: 1)产状稳定,沿走向延伸较远,沿倾向切割较深 2)节理面平直光滑,常见滑动擦痕,节理两壁闭合 3)砂、砾岩中的剪节理,切穿砂粒和砾石,但方向不变 4)常成对出现,常形成“X”共轭节理,表现为棋盘状,将岩石切割为菱形块状。 5)发育羽列现象。即沿主剪切面发育许多羽状微裂面,微裂面走向相同,首尾相接,与主剪切面有一定夹角 张节理是由张应力作用而产生的破裂面,特征为: 1)产状不太稳定,延伸不远,节理面短而弯曲。 2)节理面粗糙不平,无擦痕。 3)砂砾岩中的张节理,节理面常绕过砾石和砂粒,即使切穿,节理面不平整。 4)节理两壁张开,常有岩脉充填。 5)张节理有时呈不规则状,有时也可有一定形态,如追踪“X”剪节理而形成的锯齿状张节理等。 2、简述鲍文反应序列及其用途 答:美国学者N.L.鲍文(1922年)根据人工硅酸盐熔浆的实验发现:岩浆在冷却时,主要造岩矿物的结晶析出遵循一定的顺序,可划分为两个系列,即斜长石的连续反应系列和暗色矿物的不连续反应系列,被称为鲍文反应系列。 根据反应的性质不同,鲍温把岩浆岩中主要造岩矿物分为两个反应系列。连续反应系列为架状的硅铝矿物,矿物成分上有连续渐变关系,内部的结晶格架无质的变化。不连续反应系列为铁镁矿物,矿物成分的变化是不连续的,内部结晶格架发生了质的变化。如橄榄石变为黑云母,其结晶格架由岛状变为层状。 上述两个系列在岩浆结晶过程中,硅铝矿物与铁镁矿物依次对应出现共结关系,最后两个系列演化成一个系列,即钾长石、白云母和石英,它们是岩浆结晶的最终产物。 根据上述反应系列可以解决下列实际问题: (1)确定矿物的结晶顺序。反应系列上部的矿物比下部的矿物早结晶。显然橄榄石、基性斜长石是最早结晶的矿物,石英则是岩浆结晶的最后产物。 (2)解释了岩浆岩中矿物共生组合的一般规律。由于两种反应系列存在着共结关系,当岩浆冷却到一定温度时,必定同时结晶出一种浅色矿物和一种暗色矿物。例如当岩浆降至1550℃时,析出橄榄石、斜方辉石和基性(钙、培)长石而组成超基性岩。岩浆温度降至1270℃时,单斜辉石和拉长石同时析出组成基性岩。 (3)解释了岩浆岩多样性的原因。同一种岩浆可以形成不同类型的岩浆岩。

工程热力学部分简答题

1.均匀系统和单相系统的区别? 答:如果热力系统内部个部分化学成分和物理性质都均匀一致,则该系统成为均匀系统。如果热力系统由单相物质组成,则该系统称为单相系统。可见,均匀系统一定是单相系统,反之则不然。2.试说明稳定、平衡和均匀的区别与联系? 答:稳定状态是指状态参数不随时间变化,但这种不变可能是靠外界影响来维持的。 平衡状态是指不受外界影响时状态参数不随时间变化。 均匀状态是指不受外界影响时不但状态参数不随时间变化,而且状态参数不随空间变化。 均匀→平衡→稳定 3.实现可逆过程的充分条件。 答:(1)过程是准静态过程,即过程所涉及的有相互作用的各物体之间的不平衡势差为无限小。(2)过程中不纯在耗散效应,即不存在用于摩擦、非弹性变形、电流流经电阻等使功不可逆地转变为热的现象。 4.膨胀功、流动功、技术功、轴功有何区别与联系。 答:气体膨胀时对外界所做的功称为膨胀功。 流动功是推动工质进行宏观位移所做的功。 技术功是膨胀功与流动功的差值。 系统通过机械轴与外界所传递的机械功称为轴功。 5.焓的物理意义是什么,静止工质是否也有焓这个参数?

答:焓的物理意义为,当1kg 工质流进系统时,带进系统与热力状态有关的能量有内能u 和流动功pv ,而焓正是这两种能量的总和。因此焓可以理解为工质流动时与外界传递的与其热力状态有关的总能量。但当工质不流动时,pv 不再是流动功,但焓作为状态参数仍然存在。 6.机械能向热能的转变过程、传热过程、气体自由膨胀过程、混合过程、燃烧反应过程都是自发的、不可逆的。 热力学第二定律的克劳修斯表述:热量不可能自动地、无偿地从低温物体传至高温物体。 7.循环热效率公式12 1q q q -=η和121T T T -=η是否完全相同? 答:前者用于任何热机,后者只用于可逆热机。 8.若系统从同一始态出发,分别经历可逆过程和不可逆过程到达同一终态,两个过程的熵变相同吗? 答:对系统来说,熵是状态参数,只要始态和终态相同,过程的熵变就相等。所谓“可逆过程的熵变必然小于不可逆过程的熵变”中的熵变是指过程的总熵变,它应该包括系统的熵变和环境的熵变两部分。在始态和终态相同的情况下,系统的熵变相同,而不可逆过程中环境的熵变大于可逆过程中环境的熵变。 9.g f dS dS dS +=;熵可能大于零,可能等于零,也可能小于零。 T Q dS f δ=----熵流,表示系统与外界交换的热量与热源温差的比 值。 0≥g dS (大于时为不可逆过程,等于时为可逆过程)----熵产,表

相关主题
文本预览
相关文档 最新文档