当前位置:文档之家› 入侵探测器EN50131-2-4

入侵探测器EN50131-2-4

入侵探测器EN50131-2-4
入侵探测器EN50131-2-4

D r

a f t f o r E n

q u

i r y

DRAFT

EUROPEAN STANDARD pr EN 50131-2-4

NORME EUROPéENNE

EUROP?ISCHE NORM

September 2002

CENELEC

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europ?isches Komitee für Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

? 2002 CENELEC -All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Project: 4949

Ref. No. prEN 50131-2-4:2002 E

ICS

English version

Alarm systems - Intrusion systems

Part 2-4: Requirements for combined passive infrared and microwave

detectors

Systèmes d'alarme - Systèmes d'alarme intrusion

Partie 2-4: Exigences pour détecteurs combinés à infrarouge passif et àhyperfréquences

Alarmanlagen - Einbruchmeldeanlagen Teil 2-4: .............

This draft European Standard is submitted to CENELEC members for CENELEC enquiry.Deadline for CENELEC: 2003-03-07

It has been drawn up by Technical Committee CENELEC TC 79.

If this draft becomes a European Standard, CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

This draft European Standard was established by CENELEC in three official versions (English, French,German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Czech Republic,Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, Malta,Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and United Kingdom.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a European Standard.

D r

a f t f o r E n

q u

i r y

prEN 50131-2-4:2002– 2 –

Foreword

This draft European Standard was prepared by the Technical Committee CENELEC TC 79, Alarm systems. It is submitted to the CENELEC enquiry.

__________

D r

a f t f o r E n

q u

i r y

– 3 –prEN 50131-2-4:2002

Contents

Introduction (6)

1Scope (7)

2Normative references (73)

Definitions and abbreviations............................................................................................73.1Definitions...............................................................................................................73.2Abbreviations . (94)

Functional requirements...................................................................................................94.1Indication signals or messages................................................................................94.2

Detection...............................................................................................................104.2.1Detection performance ..............................................................................104.2.2Indication of detection ...............................................................................114.2.3Significant reduction of specified range .....................................................114.3Operational requirements.. (12)

4.3.1Time interval between intrusion signals or messages.................................124.3.2Switch on delay.........................................................................................124.3.3Fault condition signals...............................................................................124.3.4Power supply faults ...................................................................................124.3.5Self tests...................................................................................................124.4Immunity of the individual technologies to incorrect operation . (12)

4.4.1Immunity to air flow ...................................................................................134.4.2Immunity to visible and near infrared radiation...........................................134.4.3Immunity to microwave signal interference by fluorescent lights ................134.5Tamper security.. (13)

4.5.1Prevention of unauthorised access to the inside of the detector through

covers and existing holes (13)

4.5.2Detection of removal from the mounting surface........................................134.5.3Resistance to re-orientation of adjustable mountings.................................134.5.4Immunity to magnetic field interference......................................................134.5.5Resistance to masking...............................................................................134.6Electrical requirements (14)

4.6.1Detector current consumption....................................................................144.6.2Slow input voltage rise and input voltage range limits................................144.6.3Input voltage ripple....................................................................................154.6.4Input voltage step change..........................................................................154.6.5Total loss of supply....................................................................................154.7Environmental classification and conditions.. (15)

4.7.1Environmental classification ......................................................................154.7.2Immunity to environmental conditions.. (155)

Marking, identification and documentation (15)

5.1Marking and/or identification..................................................................................155.2Documentation (156)

Testing (16)

6.1

General test conditions..........................................................................................166.1.1Standard laboratory conditions for testing..................................................166.1.2General detection testing environment and procedures (16)

D r

a f t f o r E n

q u

i r y

prEN 50131-2-4:2002– 4 –

6.2

Basic detection test...............................................................................................176.2.1Basic detection targets ..............................................................................176.2.2Basic test of passive infrared detection capability......................................176.2.3Basic test of microwave detection capability..............................................186.3Walk testing . (18)

6.3.1The walk test targets .................................................................................186.3.2Walk test target calibration ........................................................................196.4Verification of detection performance .. (19)

6.4.1Detection within and across the detection boundary...................................206.4.2Detection at high velocity and with intermittent movement .........................206.4.3Verify the close-in detection performance..................................................216.4.4Verify the effect of control adjustments on detection..................................216.4.5Verify the significant reduction of specified range......................................216.5Switch-on delay, time interval between signals, and indication of detection...........226.6Fault condition signals or messages: self tests......................................................226.7Immunity of individual technologies to incorrect operation . (22)

6.7.1Immunity to airflow ....................................................................................226.7.2Immunity to visible and near infrared radiation...........................................236.7.3Immunity to microwave signal attenuation by fluorescent lights..................236.8Tamper security.. (24)

6.8.1Prevention of unauthorized access to the inside of the detector through

covers and existing holes (24)

6.8.2Detection of removal from the mounting surface........................................246.8.3Resistance to re-orientation of adjustable mountings.................................246.8.4Resistance to magnetic field interference ..................................................246.8.5Resistance to detector masking.................................................................256.9Electrical tests. (25)

6.9.1Detector current consumption....................................................................266.9.2Slow input voltage rise and input voltage range limits................................266.9.3Input voltage ripple....................................................................................266.9.4Input voltage step change..........................................................................276.9.5Total loss of power supply .........................................................................276.10Environmental classification and conditions...........................................................276.11Marking identification and documentation.. (28)

6.11.1Marking and/or identification......................................................................286.11.2Documentation (28)

Annex A (normative) Format of standard test magnets (29)

Annex B (normative) General testing matrix........................................................................30Annex C (informative) Walk test diagrams..........................................................................32Annex D (normative) Procedure for calculation of the average temperature difference

between the standard target and the background ...........................................................35Annex E (informative) Basic detection target for the basic test of detection capability ........37Annex F (informative) Calibration heat source and microwave target. (38)

Annex G (normative) Calibration of the standard walk test targets......................................39Annex H (informative) Equipment for walk test velocity control. (41)

Annex I (informative) Immunity to visible and near infrared radiation: notes on

calibration of the light source..........................................................................................42Annex J (informative) Immunity to microwave signal attenuation by fluorescent lights .. (43)

D r

a f t f o r E n

q u

i r y

– 5 –prEN 50131-2-4:2002

Annex K (informative) List of small tools suitable for testing immunity of casing to

unauthorised access (44)

Annex L (informative) Test for resistance to re-orientation of adjustable mountings (45)

D r

a f t f o r E n

q u

i r y

prEN 50131-2-4:2002– 6 –

I ntroduction This European Standard is a specification for combined passive infrared and microwave detectors (to be referred to here as the combined detector) used as part of intrusion detection systems installed in buildings. It includes four security grades and the first three environmental classes.

The purpose of a combined detector is to detect the broad spectrum infrared radiation emitted by an intruder and, at the same time, to emit microwave radiation over the area being protected, and analyse signals that are returned. An intrusion signal or message is only generated when both technologies register a positive indication of the presence of an intruder, thus reducing incorrect operation. The combined detector shall provide the necessary range of signals or messages to be used by the rest of the intrusion detection system.

The number and scope of these signals or messages will be more comprehensive for systems that are specified at the higher grades.

If a combined detector can be operated in each technology individually, it shall also meet the grade-dependant requirements of the standards having relevance to those technologies.

This standard is only concerned with the requirements and tests for the combined detector. Other types of detector are covered by other documents identified as prEN 50131-2-x.

The requirement in EN 50131-1 that grade 3 and 4 combined detectors shall include means to detect significant reductions in range is met by the requirements and tests referring to self tests (4.3.5) and resistance to masking (4.5.5). In addition, for grade 4, significant range reduction shall be recognised by suitable system design, or by combined detectors having the appropriate function (4.2.3).

D r

a f t f o r E n

q u

i r y

– 7 –prEN 50131-2-4:2002

1 Scope

This European Standard provides for security grades 1 - 4 (see EN 50131-1), specific or non-specific wired or wire-free combined passive infrared and microwave detectors, and is covered by environmental classes 1 – 3 (see EN 50130-5).

A function designated in the standard as not required for a particular grade may be provided by the manufacturer. If provided, it will be tested, and shall meet all relevant requirements of that grade. If it passes, the manufacturer may claim it as an extra feature, which is ungraded.The standard does not apply to system interconnections.

2 Normative references

This European Standard incorporates by dated or undated reference, provisions from other publications.These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

Publication

Year

Title

EN 50130-4+ A119951998Alarm systems – Part 4: Electromagnetic compatibility – Product family standard: Immunity requirements for components of fire, intruder and social alarm systems

EN 50130-51998Alarm systems – Part 5: Environmental test methods

EN 50131-11997Alarm systems – Intrusion systems – Part 1: General requirements EN 50131-6

1997Alarm systems – Intrusion systems – Part 6: Power supplies

EN 60068-11994Environmental testing – Part 1: General and guidance (IEC 60068-1:1988 + corrigendum Oct. 1988 + A1:1992)

EN 60068-2-52

1996

Environmental testing – Part 2: Tests – Test Kb: Salt mist, cyclic (sodium chloride solution) (IEC 60068-2-52:1996)

3 Definitions and abbreviations

For the purpose of this standard. the following definitions and abbreviations apply in addition to those given in EN 50131-1:3.1 Definitions

3.1.1

alert/set mode

state of operation in which a detector will generate an intrusion signal in response to stimulation by a human being or a standard target

3.1.2

basic detection target

heat source and/or microwave reflector designed to verify the operation of a detector 3.1.3

ceiling mount detector

detector capable of sensing human movement from a mounting position on the ceiling

D r

a f t f o r E n

q u

i r y

prEN 50131-2-4:2002– 8 –

3.1.4

combined passive infrared and microwave detector

detector of the broad-spectrum infrared emitted by a human being, with an active microwave emitter and detector installed in the same casing

3.1.5

curtain detector

detector capable of sensing human movement through a continuous layer of detection zones

3.1.6

local memory

storage medium situated on board the detector, and having the capability to record signals or messages generated by the detector

3.1.7

long range detector

detector capable of sensing human movement in an extended field of view with horizontal angular coverage less than 10°

3.1.8masking

interference with the detector input capability by the introduction of a physical barrier such as metal,plastic, paper or sprayed paints or lacquers in close proximity to the detector

3.1.9

microwave detector

detector having an active microwave emitter and detector installed in the same casing 3.1.10

passive infrared detector

detector of the broad-spectrum infrared radiation emitted by a human being

3.1.11

simulated walk test target

non-human or synthetic heat source or microwave reflector designed to simulate the standard walk test target

3.1.12

incorrect operation

physical condition that causes an inappropriate signal from a detector

3.1.13

standard walk test target

human being of standard weight and height clothed in close fitting clothing appropriate to the simulation of an intruder

3.1.14

standby/unset mode

state of operation in which a detector is not required to generate an intrusion signal or message in response to stimulation by a human being or a standard target.

NOTE

For environmental reasons, the microwave emitter may be switched off.

D r

a f t f o r E n

q u

i r y

– 9 –prEN 50131-2-4:2002

3.1.15test mode

state of operation in which a detector will activate an intrusion indicator in response to stimulation by a human being or a standard walk test target

3.1.16

volumetric detector

detector capable of sensing human movement in a volume such as a room with a field of view with horizontal angular coverage greater than 45°

3.1.17walk test

operational test during which a detector is stimulated by the standard walk test target in a controlled environment

3.1.18

walk test attitude, upright

upright attitude shall consist of the standard walk test target standing and walking with arms held at the sides of the body. The standard walk test target begins and ends a traverse with feet together

3.1.19

walk test attitude, crawling

crawling attitude shall consist of the standard walk test target moving with hands and knees in contact with the floor

3.1.20

wire free detector

detector connected to the control and indicating equipment by non-physical means such as radio frequency signals 3.2 Abbreviations 3.2.1 HDPE - high density polyethylene 3.2.2 PIR - passive infrared

3.2.3 EMC - electromagnetic compatibility 3.2.4 SWT - standard walk test target 3.2.5 BDT - basic detection target 3.2.6

FOV - field of view

4 Functional requirements

4.1 Indication signals or messages

All detectors shall have an alert/set mode. Grades 3 and 4 shall also have an unset mode. If a detector has only one mode of operation, then it shall always be in the alert/set mode. Tamper detection shall be active in all modes.

D r

a f t f o r E n

q u

i r y

prEN 50131-2-4:2002– 10 –

Each possible mode of operation is determined by the status of the intrusion detection system with which the detector communicates. The detector signals or messages in these modes of operation shall function in accordance with Table 1. All signals or messages apply to all modes of operation unless stated otherwise. Where a memory display is provided on board the detector, it shall not function in the alert/set mode.

Table 1 – Indication signals or messages

Event

Grades Intrusion signal or message Tamper signal or

message Fault signal or message Intrusion 1 – 4Required

a

Not permitted

Not permitted No stimulus 1 – 4Not permitted Not permitted Not permitted Masking

1 – 2Not required Not required Not required 3 – 4

Required

b

Not required Required

b

Tamper

1 – 4Not required Required Not required Low supply voltage (external)

1 – 2Not required

Not required Not required 3 – 4

Not required Not required Required

Total loss of external power supply

1

Not required Not required Not required 2 – 4

c

Required

Not required Not required Local self test pass 1 – 4Not permitted

Not permitted Not permitted Local self test fail

1 – 2

Not permitted

Not permitted Not required 3 – 4Not permitted Not permitted Required Remote self test pass 1 – 2

Not required Not permitted Not required 3 – 4

Required

Not permitted Not permitted Remote self test fail 1 – 2Not permitted

Not permitted Not required 3 – 4Not permitted

Not permitted

Required

NOTE For internal power supplies, see EN 50131-6.

a Not required in unset/standby mode: required in test mode.

b An independent masking signal or message may be provided instead.c

Not required for bus systems.

4.2 Detection

4.2.1 Detection performance

The combined detector shall generate an intrusion signal or message when the SWT or simulated walk test Target moves within the boundary for a distance of 3 m or across the manufacturers claimed boundary of detection. An intrusion signal or message shall only be generated when both technologies register a positive indication of the presence of an intruder.The variety of velocities and attitudes are as specified in Table 2.

D r

a f t f o r E n

q u

i r y

– 11 –prEN 50131-2-4:2002

Table 2 – General walk test velocity and attitude requirements

Test Grade 1Grade 2Grade 3Grade 4

Detection at the boundary :Required Required Required Required Velocity (m/s)

1,01,01,0

1,0

Attitude

Upright Upright Upright

Upright

Detection within the boundary :Required Required Required Required Velocity (m/s)0,30,30,2

0,1Attitude:

Upright Upright

Upright

Upright Detection at high velocity :Not required

Required Required Required Velocity (m/s)2,0

2,5

3,0Attitude:

Upright Upright Upright Close-in detection performance:(m)2,02,0

0,5

0,5Velocity (m/s)0,50,4

0,3

0,2Attitude

Upright

Upright

Crawling

Crawling Intermittent movement detection

performance

a

Not required

Not required

Required Required Velocity (m/s)1,01,0Attitude

Upright

Upright Effect of control adjustments b

Not required

Required Required Required Velocity (m/s)0,3

0,2

0,1Attitude:

Upright

Upright

Crawling Significant reduction of specified range Not required Not required

Required

Required Velocity (m/s)a 1,0Attitude

a

Upright

The intermittent movement shall consist of the SWT moving a distance of 1 m by taking two 0,5 m steps (at 1,0 m/s), pausing for 5 s then continuing for a further 1 s.

If means for continuous adjustment of detection sensitivity is provided, the effect of any setting shall be indicated with a tolerance of less than 25 % of the maximum reading.

a

See the requirement in 4.2.3

4.2.2 Indication of detection

An indicator shall be provided at the detector to indicate when detection causes an intrusion signal or message. This indicator shall only have this function, shall not function in the event of power failure, and be capable of being enabled/disabled. This operation shall only be performed locally after removal of the cover or remotely at the control and indicating equipment.

4.2.3 Significant reduction of specified range

If the facility to detect reduction in specified range is provided, then range reduction along the principal axis of detection of more than 50 % for grade 4 shall generate an alarm or fault signal or message within a maximum period of 180 s, according to the requirements given in Table 2. For grade 3 combined detectors, the requirements of 4.3.5 (self test) and 4.5.5 (resistance to masking) provide range reduction detection.

D r

a f t f o r E n

q u

i r y

prEN 50131-2-4:2002– 12 –

If additional equipment is required to detect significant reduction in range, reference shall be made to the manufacturers documentation.4.3 Operational requirements 4.3.1

Time interval between intrusion signals or messages

Wired detectors shall be able to provide an intrusion signal or message not more than 15 s after the end of the preceding intrusion signal or message. Wire free detectors shall perform the same function in a time as follows:

grade 1: 300 s

grade 2: 300 s grade 3: 30 s grade 4: 15 s

NOTE See EN 50131-1 for amendment.

4.3.2

Switch on delay

The detector shall meet all functional requirements within 180 s of the power supply reaching its nominal voltage.4.3.3

Fault condition signals

When a detector suffers a fault, a fault signal or message shall be generated in accordance with the manufacturer's specification, and the provisions of Table 1.4.3.4

Power supply faults

Detectors of all grades shall signal complete power failure according to the provisions of Table 1.Additionally, detectors of grades 3 and 4 shall signal when the supply voltage moves below the manufacturers specified range according to the provisions of Table 1.4.3.5 Self tests

Grade 3 and Grade 4 detectors shall monitor the function of the sensor and associated on-board signal processing circuitry. A self-test shall be performed under the control of the detector.

When a remote self-test is initiated a signal or message shall be generated between 1 s and 5 s later, and shall be signalled within 5 s of that initiation. The test duration shall not exceed 10 s. After the test is completed, the detector shall resume it’s previous state within 5 s. Fault indication requirements appear in Table 1.

Where normal operation of the detector is inhibited during a local test of function monitoring the inhibition time shall be limited to a maximum of 15 s in a period of 1 h.4.4

Immunity of the individual technologies to incorrect operation

The detector shall be considered to have sufficient immunity to incorrect operation if the following requirements have been met. No intrusion signal or message shall be generated during the tests.

D r

a f t f o r E n

q u

i r y

– 13 –prEN 50131-2-4:2002

4.4.1 Immunity to air flow

The PIR component of the detector shall not generate an intrusion signal or message when air is blown over the face of the detector.

4.4.2 Immunity to visible and near infrared radiation

The PIR component of the detector shall not generate an intrusion signal or message when visible and near infrared radiation from a light source such as when a car headlamp is directed on to the front window or lens through a pane of glass.

4.4.3 Immunity to microwave signal interference by fluorescent lights

The microwave component of the detector shall not generate an intrusion signal or message due to the operation of a fluorescent light source mounted nearby.4.5 Tamper security

Tamper security requirements for each grade of detector are shown in Table 3.4.5.1

Prevention of unauthorised access to the inside of the detector through covers and existing holes

Access holes shall not allow interference with the operation of the detector by probing with commonly available tools. Damage shall not be caused that would be visible to a person with normal eyesight viewing from a distance of 1 m with the detector illuminated at a level of 2 000 lx.

A tool shall be required to open the unit. All covers giving access to components which could affect adversely the operation of the detector shall be fitted with a tamper detection device in accordance with Table 3. A tamper signal or message shall be generated before access is gained with any tool.4.5.2

Detection of removal from the mounting surface

A tamper detection device shall be fitted which signals a tamper if the detector is removed from the mounting surface in accordance with Table 3. Mounting screws shall only be accessible from within the unit. Operation of the device shall not be preventable by external means. This device shall activate before access can be gained to it.4.5.3

Resistance to re-orientation of adjustable mountings

Where the orientation of a detector can be adjusted, resistance to re-orientation of the mounting shall be provided in accordance with Table 3.

The alignment of the boundary of detection shall not have changed by more than 5° due to a grade-dependent applied torque. Alternatively a tamper detection device shall signal before the alignment of the boundary of detection has moved by 5°.

If a detector provides a means to adjust the orientation of its coverage pattern, the access to this means shall be protected by a tamper detection device.4.5.4

Immunity to magnetic field interference

It shall not be possible to inhibit any signalling devices with a magnet of grade dependent remanence,according to Table 3. The form of standard magnets is described in Annex A.

4.5.5

Resistance to masking

Means shall be provided to detect inhibition of the operation of the detector by covering it's sensing area and sensor, in the unset mode. The maximum response time for the masking detection device shall be

D r

a f t f o r E n

q u

i r y

prEN 50131-2-4:2002– 14 –

180 s. Intrusion and fault signals or messages or a dedicated masking signal or message shall be generated. The signals or messages shall remain latched until a SWT is performed successfully at 2 m range. Grade dependency appears in Table 3.

No anti-masking signal shall be generated by normal human movement at 1 m/s at a distance greater than 1 m in the unset condition.

Table 3 – Tamper security requirements

Requirement

Grade 1Grade 2Grade 3

Grade 4

Resistance to access to the inside of the detector Required Required Required

Required

Removal from the mounting surface

Not required Required

a

Required

Required Resistance to reorientation Not required

Required

Required

Required Applied Torque (Nm)

2

510

Magnetic field

Not required Required Required:Required:Immunity (T)0,15

0,3

1,2Anti-masking capability

Not required

Not Required

Required Required

a

Required for wire free detectors only.

4.6 Electrical requirements

These requirements do not apply to detectors having internal power supplies. For these detectors refer to EN 50131-6. For a detector having an external power supply, the requirements appear in Table 4.

Table 4 – Electrical requirements

Test

Grade 1

Grade 2

Grade 3

Grade 4Detector power consumption Required

Required

Required Required Input voltage range and slow input voltage rise Not required Required Required Required Input voltage ripple

Not required Required Required Required Input voltage step change Not required Required Required Required Total loss of supply

Not required

Required

Required

Required

4.6.1 Detector current consumption

The detector's quiescent and maximum current consumption shall not exceed the figures claimed by the manufacturer at the nominal input voltage.

4.6.2

Slow input voltage rise and input voltage range limits

The detector shall meet all functional requirements when the input voltage lies between ± 25 % of the nominal value, or between the manufacturer's range limits if greater. When the supply voltage is raised slowly, the detector shall function normally at the specified range limits.

D r

a f t f o r E n

q u

i r y

– 15 –prEN 50131-2-4:2002

4.6.3 Input voltage ripple

The detector shall meet all functional requirements during the sinusoidal variation of the Input voltage by ± 10 % of nominal, at a frequency of 100 Hz .

4.6.4 Input voltage step change

No signals or messages shall be caused by a step in the input voltage between the maximum and minimum values of the input voltage.4.6.5

Total loss of supply

An intrusion signal or message shall be caused by the total loss of the supply voltage.4.7

Environmental classification and conditions

4.7.1 Environmental classification

The environmental classification is laid down in EN 50131-1. All the relevant environmental tests shall be carried out at the appropriate level for all security grades, as detailed in EN 50130-5.4.7.2

Immunity to environmental conditions

All detectors shall meet the requirements of the relevant environmental class and security grade as specified by the manufacturer.

Impact tests shall not be carried out on delicate detector components such as LCDs, optical windows or lenses.

For operational tests, the detector shall not generate unintentional intrusion, tamper, fault or other signals or messages when subjected to the specified range of environmental conditions.

For endurance tests, the detector shall continue to meet the requirements of this standard after being subjected to the specified range of environmental conditions.

5 Marking, identification and documentation

5.1

Marking and/or identification

Marking and/or identification shall be applied to the product in accordance with the requirements of EN 50131-1.

5.2 Documentation

The product shall be accompanied with clear and concise documentation conforming to the main systems document EN 50131-1. The documentation shall additionally state:

1) a list of all options, functions, inputs, signals or messages indications and their relevant

characteristics;2) the manufacturer’s diagram of the detector and its claimed detection boundary showing top

and side elevations superimposed upon a scaled 2 m squared grid. The size of the grid shall be directly related to the size of the claimed detection boundary;3) the recommended mounting height, and the effect of changes to it on the claimed detection

boundary;4) the effect of adjustable controls on the detector’s performance or on the claimed detection

boundary;5) any disallowed field adjustable control settings or combinations of these;

D r

a f t f o r E n

q u

i r y

prEN 50131-2-4:2002– 16 –

6) where alignment adjustments are provided, these shall be labelled as to their function;

7) a warning to the user not to obscure partially or completely the detector's field of view with

large objects such as furniture;

8) the manufacturers quoted nominal operating voltage, and the maximum and quiescent

detector current consumption at that voltage;

9) for the use of the combined detector in a grade 4 system, the method of detecting a 50 %

reduction in range.

6 Testing

The tests are intended to be primarily concerned with verifying the correct operation of the detector to the specification provided by the manufacturer. All the test parameters specified shall carry a general tolerance of ± 10 % unless otherwise stated. A list of tests appears as a general test matrix in Annex B.6.1 General test conditions

6.1.1

Standard laboratory conditions for testing

The general atmospheric conditions in the measurement and tests laboratory shall be those specified in 5.3.1 of EN 60068-1, unless stated otherwise.

Temperature: 15 °C - 35 °C

Relative humidity: 25 % RH - 75 % RH Air pressure: 86 KPa - 106 KPa 6.1.2

General detection testing environment and procedures

Manufacturers documented instructions regarding mounting and operation shall be read and applied to all tests.

6.1.2.1 Testing environment

The detection tests require an enclosed, unobstructed and draught-free area at least 25 % larger in the three dimensions than the manufacturers claimed field of view, with the detector mounted in the as-used position on a wall or ceiling, or on a free-standing test rig.

To standardize the test area walls and floor for IR tests, they shall each be covered with uniform materials having an infrared emissivity of at least 80 % in the 8 μm to 14 μm wavelength band, at least directly behind the SWT, and in the FOV of the detector.

To standardise the test area walls and floor for microwave tests, they shall be constructed from materials having low microwave reflection.

Volumetric, curtain, and long-range detectors shall be mounted on the centre line of the vertical surface constituting the back wall of the test area, or on a free-standing test rig, at a height of 2,0 m unless otherwise specified by the manufacturer. Ceiling mounted detectors shall be mounted in an appropriate orientation permitting at least half the field of view to be verified.

Annex C provides example diagrams for the range of walk tests for one format of detection pattern. Many others are possible.

D r

a f t f o r E n

q u

i r y

– 17 –prEN 50131-2-4:2002

6.1.2.2 Testing procedures

The detector shall be connected to the nominal supply voltage, placed in the alert/set mode, and connected to the monitoring system that is appropriate to the test. Unless otherwise stated, both technologies shall operate together normally. The detector shall be allowed to stabilize for 180 s. The intrusion signal or message output shall be monitored. If multiple sensitivity modes such as pulse counting are available, any non-compliant modes shall be identified by the manufacturer. All compliant modes shall be tested.

The following SWT temperature conditions shall apply during the test and shall be recorded at intervals sufficient to ensure consistent measurement.

a) The temperature of the background surface immediately behind the target shall be in the

range 15 °C to 25 °C, and shall be horizontally uniform over that area to ± 2 °C during calibration of the SWT. Over the whole background area it shall be measured at ten points.b) The average temperature difference between the background temperature and the SWT

temperature shall be 3 °C with a relative tolerance of 10 %. If it is greater, attenuation filters shall be placed directly over the detector lens or window to reduce the energy received by the detector. The procedure appears in Annex G, Clause G.1.

c) The microwave SWT reflection shall be established and shall be compared with that of the

standard microwave target, and the SWT adjusted to bring it’s reflectivity within 20 % of that of the standard microwave target. If it is greater, attenuation filters shall be attached to the SWT to reduce the energy received by the detector. The procedure appears in Annex G,Clause G.2.

6.2 Basic detection test

6.2.1

Basic detection targets

The manufacturer shall provide, for testing purposes only, methods for placing either technology permanently in a state where the other technology may cause an intrusion signal or message.

The purpose of the BDT is to verify that a detector is still operational after a test or tests has been carried out. The BDT verifies only the qualitative performance of a detector.

The passive infrared BDT shall consist of a heat source with equivalent heat emission to that of the human hand, that can be moved across the field of view of the detector.

The microwave reflective BDT shall be a metal plate having equivalent microwave reflectivity to that of the human hand, that can be moved across the field of view of the detector.

BDTs may be used separately or together. Informative descriptions appear in Annex E. The temperature of the heat source shall not be less than 3 °C above the background.

NOTE A close-in walk test may be carried out as an alternative to using the BDT.

6.2.2

Basic test of passive infrared detection capability

Activate the microwave technology; the unit shall not generate an intrusion signal or message. A stimulus that is similar to that produced by the SWT is applied to the detector using the PIR BDT. Move the BDT perpendicularly across the centre line of the detection field at a distance of not more than 1 m from the detector, and at a height where the manufacturer claims detection will occur.

Move the BDT a distance of 1 m at a velocity of 0,5 m/s to 1,0 m/s. The detector shall produce an intrusion signal or message when exposed to the stimulus both before and after being subjected to any test that may adversely affect its performance.

D r

a f t f o r E n

q u

i r y

prEN 50131-2-4:2002– 18 –

6.2.3 Basic test of microwave detection capability

Activate the passive infrared technology; the unit shall not generate an intrusion signal or message. A stimulus that is similar to that produced by the SWT is applied to the detector using the microwave BDT.

Move the BDT along the centre line of the detection field from a distance of 2 m to a distance of 1 m from the detector, at a height where the manufacturer claims detection will occur.

The BDT is to be moved a distance of 1 m at a velocity of 0,5 m/s to 1,0 m/s. The detector shall produce an intrusion signal or message when exposed to the stimulus both before and after being subjected to any test that may adversely affect its performance.6.3 Walk testing

Walk testing is accomplished by the controlled movement of a SWT across the field of view of the detector. The grade-dependent velocities and attitudes to be used by the SWT are specified in Table 2.Walk tests shall not be repeated before a time interval of at least 20 s (or greater if specified by the manufacturer) has elapsed.

General Pass/fail criteria for all walk tests

An intrusion signal or message shall be generated during each walk test to register a pass. If an individual walk test has failed, it shall be repeated twice more. Two passes out of the three tests shall constitute a passed test. For a complete test series, 95 % or more of the tests shall be passed.6.3.1

The walk test targets

6.3.1.1

The standard walk test target

The SWT shall have the physical dimensions of 160 cm to 185 cm in height, shall weigh 70 kg ± 10 kg and shall wear close fitting clothing having a heat emissivity of greater than 80 % in the 8 μm to 14 μm wavelength band, and a microwave reflectivity that is within 20 % of the microwave calibration target. No metallic objects shall be worn or carried by the SWT, except any material that may be attached to the SWT's clothing to adjust reflectivity, or incorrect microwave reflection will result.The average temperature difference between the SWT and the background shall be established.

Temperatures shall be measured at five points on the body of the SWT, on the surface facing perpendicularly to the axis of the detector, and the background temperature close to each point measured at the same time:1. head;

2. upper torso side;

3. hand at body side;

4. legs at knee;

5. feet.

Temperatures shall be measured using a non-contact thermometer, or equivalent equipment, which shall be verified against the calibration heat source (6.3.3.1).

The temperature differences with the background at each body point are calculated, weighed and averaged. The informative detail calculation of the SWT temperature difference is given in Annex D,Clause D.1.

D r

a f t f o r E n

q u

i r y

– 19 –prEN 50131-2-4:2002

The microwave reflection of the SWT shall be compared with that of the standard microwave target, and the target speed and generated Doppler shift for the different microwave operating frequencies calculated. The informative detail calculation of the SWT Doppler shift is given in Annex D, Clause D.2.There shall be a means of calibration and control of the desired velocity at which the SWT is required to move.

NOTE The use of a simulator/robot in place of the SWT is permitted, provided that it meets the specification of the SWT with regard to temperature and/or microwave spectrum. It is known as the simulated target. In case of conflict, a human walk test shall be the primary reference.

6.3.2 Walk test target calibration

6.3.2.1 A calibration heat source

A heat source that has an absolutely constant temperature close to that of the human body is described in Annex F, Clause F.1.6.3.2.2

A calibration microwave target

A microwave reflector that has a reflectivity close to that of the human body is described in Annex F,Clause F.2.

6.3.2.3

Standard walk test target temperature difference

The equivalent average temperature difference Dt e between the background temperature and the SWT temperature shall be 3 °C with a relative tolerance of 10 %.

Since the human target is variable in the amount of heat emitted in the 8 μm to 14 μm wavelength band, it may be necessary to adjust the signal received from the SWT to achieve the required equivalent average temperature difference.

The real average temperature difference Dt r is measured, and it's value shall be greater than 2,7 °C,(3,0 °C less a tolerance of 10 %). As is described in Annex G, attenuation filters shall be used to reduce the thermal radiation from the SWT by a factor Dt e /Dt r (± 10 %). If Dt r is less than 3,3 °C, no filter will be required.6.3.2.4

Standard walk test target microwave reflectivity

The microwave reflection of the SWT for a given microwave frequency is referenced to a standard transceiver and adjusted for effective reflecting area by the addition of microwave reflectors or absorbers attached to the clothing of the SWT. The RMS output voltage of the transceiver shall be within 20 % of its calibration value.6.3.2.5

Control of the standard walk test target velocity

This equipment provides a means whereby the SWT can move at a desired velocity. The system produces an apparent movement or audible signal, which may be matched by the SWT. The SWT begins and ends a traverse with feet together, matching movement with the velocity control system. The system can employ any desired means provided that the SWT velocity can be monitored to a tolerance of better than ± 10 %.

The informative description of two such systems appears in Annex H.

6.4

Verification of detection performance

The general test conditions of 6.1.2 apply to all tests in this series.

D r

a f t f o r E n

q u

i r y

prEN 50131-2-4:2002– 20 –

Detection performance shall be tested against the manufacturers documented claims. Any variable controls shall be set to the values recommended by the manufacturer to achieve the claimed performance.

Combined PIR/microwave detectors of all types shall be assessed in the specified test environment. If the dimensions of the detection pattern exceed the available test space, it may be tested in sections rather than as a whole.

Lay out the test area according to the provisions of the diagrams in Annex C, and the manufacturers performance claims.

The diagrams in Annex C show an example of the detection boundary. A detector reference line is drawn through the detector, at right angles to the detector axis.

The SWT or a suitable simulated target, with it's temperature difference with the background and/or microwave reflectivity adjusted according to Annex D, shall be used.Grade-dependent velocities and attitudes are specified in Table 2.6.4.1

Detection within and across the detection boundary

The tests assess detection of intruders moving within and across the boundaries of the detection area.The diagrams in Annex C show an example of the detection boundary, superimposed where appropriate on a scaled 2 m-squared grid. A variety of boundary formats are possible and can be tested.6.4.1.1

Verify the extent of the detection boundary

The diagram in Figure C.1 shows an example of a manufacturers claimed detection boundary. Select test points on the boundary, as detailed in Figure C.1.

Place test points at 2 m intervals around the entire boundary of the detection pattern, starting from the detector, and finishing with a final point where the boundary crosses the detector axis, if omission of this point would leave a gap greater than 2 m wide. Repeat for the opposite side of the detection pattern.Each test point is connected to the detector by a radial line. At each test point, two alternative test directions are available, beginning at a distance of 1,5 m from the test point and finishing 1,5 m after it.The SWT shall move at either + 45° or – 45° to the radial line.6.4.1.2

Verify detection within the boundary

The diagram in Figure C.2 shows an example of a manufacturers claimed detection boundary superimposed on a 2 m-squared grid. Select test points within the boundary, as detailed in Figure C.2.Starting at the detector, place the first test point at 4 m along the detector axis. Using the 2 m-squared grid, place further test points at every alternate grid intersection, on both sides of the detector axis. No point shall be less than 1 m from, or lie outside, the claimed boundary.

Each test point is connected to the detector by a radial line. At each test point, two test directions are defined at + 45° or – 45° to that line. The SWT shall start at a distance of 1,5 m from the test point, and finish 1,5 m after it.

6.4.2

Detection at high velocity and with intermittent movement

The tests assess detection of intruders moving at high velocity, and moving intermittently across the protected area.

探测器原理大全

探测器原理大全 (2) 激光入侵探测器 激光与一般光源相比有如下特点: a.方向性好,亮度高。一束激光的发散角可做到小于10-3~10-5弧度,即使在几公里以外激光光束的直径也仅扩展到几毫米或几厘米。由于激光光束发散角小,几乎是一束平行光束,光束能聚集在一个很小的平面上,产生很大的光功率密度,其亮度很高。 激光光源和其它光源的亮度比较: 光源亮度(w/Sr?cm2) 蜡烛0.5 电灯470 太阳表面0.165M 氦-氖激光15M 红宝石激光10亿兆~37亿兆 b.激光的单色性和相干性好。 激光是单一频率的单色光,如氦氖激光器的波长为6328?,在其频率范围内谱线宽度ΔU=10-1Hz,而其他一般光的ΔU = 107-109 Hz。光的相干性取决于其单色性。 光的相干长度δm与谱线宽度的关系是: δm=c/ΔU,其中c为光速。 一般光源的相干长度为几个毫米。单色光源氦-86灯,λ=6057?,相干长度 δm=38.6cm;而氦氖激光器λ= 6328?,δm=40km。

按激光器的工作物质来分,激光器可分为如下几种: 固体激光器:它的工作物质为固体,如钕玻璃、红宝石等。 液体染料激光器:它的工作物质为液体染料,如若丹明香豆素等。 气体激光器:它的工作物质是二氧化碳、氦-氖、氮分子等。 半导体激光器:它的工作物质是半导体材料,如砷化镓。 激光探测器与主动红外式探测器有些相似,也是由发射器与接收器两部分构成。发射器发射激光束照射在接收器上,当有入侵目标出现在警戒线上,激光束被遮挡,接收机接收状态发生变化,从而产生报警信号。 激光探测器的作用距离: 式中 P1——激光功率; QT——光束发散角; M——调制光速调制度; SR——接收面积; PR——接收到的功率。 由上式可以看出,要提高探测器的作用距离,应增大激光源的发射光率,增加光学系统的透过率,减少发射装置的发散角,也可采用高灵敏的光电传感器。 激光具有高亮度,高方向性,所以激光探测器十分适用于远距离的线控报警装置。由于能量集中,可以在光路上加装反射镜,围绕成光墙,从而可以用一套激光器来封锁场地的四周,或封锁几个主要通道路口。

入侵探测器基本介绍培训资料

入侵探测器基本介绍

入侵探测器基本介绍 入侵探测器是用来探测入侵者的移动或其他动作的电子及机械部件所组成的装置。包括主动红外入侵探测器、被动红外入侵探测器、微波入侵探测器、微波和被动红外复合入侵探测器、超声波入侵探测器、振动入侵探测器、音响入侵探测器、磁开关入侵探测器、超声和被动红外复合入侵探测器等。 1、入侵探测器的功能原理 每一种入侵探测器都具有在保安区域内探测出入员存在的一定手段,装置中执行这种任务的部件称为探测器或传感器。 理想的入侵探测器仅仅响应人员的存在,而不响应如狗、猫及老鼠等动物的活动,也不响应室内环境的变化,如温度、湿度的变化及风、雨声音和振动等。要做到这一点不很容易,大多数装置不但响应了人的存在,而且?对一些无关因素的影响也产生响应。对报警器的选择和安装也要考虑使它对无关因素不作响应,同时信号的重复性要好。 设计报警装置时首先要掌握和分析各种入侵行动的特点。入侵者在进入室内时首先要排除障碍,他必须打开门窗,或在墙上、地板和顶棚上开洞。因此可以安装一些开关报警器,使入侵者刚开始行动时就触发开关。另一个应考虑的特点是光和红外线不能透过人体,因此可以利用安装光电装置的方法来探测入侵活动。 还有一个十分重要的特点是人体正常体温能发射红外线,利用红外线传感器就可探测出人体辐射的热量。此外,入侵者在行窃时不可避免的要发出声响,使用声控传感器便可探测室内发出的异常声响。利用超声波和微波入侵探测器是根据人体的移动会干扰超声波或电磁场的原理而工作的。 各种探测器有各自不同的工作原理,它们各有优缺点。要使探测器在任何场合都能有效地发挥作用,就应该进行精心选择、精心安装,安装时应尽可能考虑到对探测器的保护措施。 由于家庭、商店、团体和企业等部门各自的情况不同,使用的入侵探测器也不尽相同。为了获得最佳保安效果,通常需要根据用户的实际情况对报警系统进行裁剪,这样才能使探测器更好地发挥作用。 没有入侵行为时发出的报警叫做误报。误报可能由于元件故障或某些外界影响而造成,它所产生的恶劣后果是不堪设想的,最轻的后果是因为增加了许多不必要的麻烦而使人感到厌烦,从而大大降低报警器的可信度。可以设想,如果商店和库房管理人员经常由于误报而被从床上叫起,他们就不会愿意使用这种报警装置。最坏的后果是它使警察或保安人员毫无必要地火速赶到现场,这样他们本身的安全和周围人们的安全都会受到危害。因此,误报是报警器的致命弱点。

激光入侵探测器

周界报警系统方案 选型手册 1.报警主机系列

2.周界报警系统方案 2.1 概述 DS7400Xi-CHI总线式报警主机是一款性能优异、功能强大、操作简便、稳定可靠的大型总线式系统主机,该产品被广泛应用在保安监控、周界防范、小区家庭联网报警等项目中,受到广大用户和工程商的好评。 总线式报警主机的技术特点是稳定可靠、报警快捷、设计简单、施工便利。本方案根据周界总平面设计图纸,结合周界地型走势,以DS7400总线式报警主机为核心,采用双总线系统,55对单光束激光对射探测器和一套报警管理软件,为用户组建一套功能先进、价格合理、质量稳定的周界报警安防系统。系统可实现: 2周界全面设防,无盲区和死角; 2探测设备抗不良天气环境干扰能力强; 2防区划分适于报警时准确定位; 2报警中心具备语音/警笛/警灯提示; 2翻越区域现场报警,可实现同时发出警笛/警灯、警告; 2报警中心可控制前端设备状态的恢复; 2报警联动; 2进行报警中心报警状态、报警时间记录; 2电子地图显示; 2事件记录打印。 2.2 系统方案 系统主要由以下几个主要部分组成:

2前端山东飞天激光XD系列激光对射探测器 2德国BOSCH DS7400Xi-CHI大型总线制报警主机(支持双总线,支持248个防区) 2CMS7000报警管理软件(电子地图管理软件,可选) 前端对射探测器安装在周界围墙上,通过合理排布,将周界划分为若干功能相同的独立防区,系统布线采用两芯总线方式,使用DS7457I单防区模块,将所有的周界主动红外探测器并接在一条总线上,报警信号传送到总的系统平台,在中心计算机显示报警的准确位置,还可以通过联动模块实现视频联动。 根据该周界的特点及围墙的长度,系统设计采用双总线结构,每路总线长度均可达到 1600米。 第一路总线连接东南面围墙上25对对射,组成25个防区;第二路总线连接西北面围墙上30对对射,组成30个防区。两路总线分别汇总在报警管理中心的双总线驱动模块的A、B总线接口,DS7400Xi-CHI 通过串口模块与PC机相连,主机实时监测总线上各个防区的状态,当某个防区的探测器发现有人非法攀登和跨越时,探测器发出报警信号,通过数据总线传送给报警主机,实时的将本防范区域的报警信号、警情类型显示到报警主机键盘上,并触发声光报警,同时报警管理软件弹出电子地图并进行报警显示,使操作人员能及时、准确地掌握警情,及时调动保安人员进行处理。 2.3 主要设备介绍 11.3.1前端单光束激光对射探测器 飞天激光XD系列单光束主动激光对射探测器

双鉴红外探测器工作原理

微波—被动红外复合的探测器,它将微波和红外探测技术集中运用在一体。在控制范围内,只有二种报警技术的探测器都产生报警信号时,才输出报警信号。它既能保持微波探测器可靠性强、与热源无关的优点又集被动红外探测器无需照明和亮度要求、可昼夜运行的特点,大大降低探测器的误报率。这种复合型报警探测器的误报率则是单技术微波报警器误报率的几百分之一。简单的说,就是把被动红外探测器和微波探测器做在了一起,主要是提高探测性能,减少误报。除此之外,市场上也有把微波和主动红外、振动探测器、声音探测器等组合的产品,大家可参考说明书了解。 被动红外探测技术是一探测人体红外辐射与背景物体(墙、家具、树木、地形等)红外辐射相比较而产生的差异部分依据的,背景红外辐射量往往是微弱而稳定的。入侵者(包括各种动物在内)的红外辐射量往往是大的,可以引起警报信号。如果只用一种技术进行探测,各种动物(如狗、猫、老鼠等)及各种非动物的红外辐射源(如暖气、强灯光、太阳光等)往往也会引起警报的,这种报警是符合工作原理的,专门从事双技术探测器研究的科研人员,将微波探测技术和被动红外探测技术组合在一个机壳里构成一种入侵探测器。组成的这种双技术探测器,都选用了不同的工作原理的两种技术组合在一起,使从工作原理上无法避免的误报警的到了抑制。因为双技术探测器要求两种技术都提供报警信息时,才提供一个触发报警信息。其中任何一种提供报警信息,都不触发报警。因此使误报问题得到有效的控制,同时也扩大了探测器的使用范围 微波红外复合探测器的内部结构 下图中是一款有线红外微波复合探测器,其中最上端部分为信号接收、信号处理、信号输出部分;中间为微波探测,下端为红外探测;

报警探测器常识及其线尾电阻接法

目录 1、报警系统由哪几部分组成? (2) 2、报警系统按信息传输方式不同,可分哪几种? (2) 3、探测器分为哪几种类型?市面上常见的有哪些类型? (2) 4、主动红外探测器的工作原理? (2) 5、被动红外探测器工作原理? (2) 6、微波探测器工作原理? (2) 7、什么是双元红外探测器?什么是四元红外探测器? (2) 8、什么是双鉴探测器?市面上常见的双鉴探测器有哪些? (2) 9、什么是三鉴探测器?什么是四鉴探测器? (3) 10、什么是震动探测器? (3) 11、常见震动探测器有哪几种?其工作原理是什么? (3) 12、玻璃破碎探测器工作原理? (3) 13、探测器标准输出信号是什么? (3) 14、入侵探测器,什么是温度补偿? (3) 15、什么是线尾电阻? (3) 16、报警主机中的末端电阻工作原理 (4) 17、关于线尾电阻的接法 (4) 浅谈防盗报警器中报警信号的拾取原理及线尾电阻的作用 (4) 单线尾电阻和双线尾电阻的接线方法 (6) 双线尾电阻的接法 (7)

1、报警系统由哪几部分组成? 简单的报警系统由前端探测器、中间传输部分和报警主机组成。大一些的系统也可将探测器和报警主机看做是前端部分,从报警主机到接警机之间是传输部分,中心接警部分看做是后端部分。 2、报警系统按信息传输方式不同,可分哪几种? 按信息传输方式不同,从探测器到主机之间可分为有线和无线2种。从主机到中心接警机之间也可分为有线和无线2种,其中有线系统还可分为基于电话线传输和基于总线传输2种类型。 3、探测器分为哪几种类型?市面上常见的有哪些类型? 红外、微波、震动、烟感、气感、玻璃破碎、压力、超声波等等。其中红外探测器还可分为主动红外和被动红外,烟感还可分为离子式和光电式。市面上常见的有红外探测器(被动红外)、对射、栅栏(主动红外)、双鉴探测器、震动探测器、玻璃破碎探测器。 4、主动红外探测器的工作原理? 主动红外探测器由红外发射器和红外接收器组成。红外发射器发射一束或多数经过调制过的红外光线投向红外接收器。发射器与接收器之间没有遮挡物时,探测器不会报警。有物体遮挡时,接收器输出信号发生变化,探测器报警。 5、被动红外探测器工作原理? 被动红外探测器中有2个关键性元件,一个是菲涅尔透镜,另一个是热释电传感器。自然界中任何高于绝对温度(-273o)的物体都会产生红外辐射,不同温度的物体释放的红外能量波长也不同。人体有恒定的体温,与周围环境温度存在差别。当人体移动时,这种差别的变化通过菲涅尔透镜被热释电传感器检测到,从而输出报警信号。 6、微波探测器工作原理? 微波探测器应用的是多普勒效应原理。在微波段,当以一种频率发送时,发射出去的微波遇到固定物体时,反射回来的微波频率不变,即f发=f收,探测器不会发出报警信号。当发射出去的微波遇到移动物体时,反射回来的微波频率就会发生变化,即f发≠f收,此时微波探测器将发出报警信号。 7、什么是双元红外探测器?什么是四元红外探测器? 把2个性能相同,极性相反的热释电传感器整合在一起的探测器是双元探测器。把4个性能相同,极性相反的热释电传感器整合在一起的探测器就是四元探测器。 8、什么是双鉴探测器?市面上常见的双鉴探测器有哪些?

入侵报警系统模拟试题(卷)

入侵报警系统模拟试题 一、选择题 1、入侵报警系统是由多个()组成的点、线、面、空间及其组合的综合防护报警体系。 A.探测器B.控制器C.报警器D.监控器 2、通常在安全技术防范系统中,是以()子系统为核心。 A.电视监控B.入侵报警C.出入口控制D.报警通信 3、检测、延迟、反应这三个基本防范要素之间的相互联系可以用()公式表示。A.T反应≥T探测十T延迟B.T反应十T探测≥T延迟 C.T反应≤T探测十T延迟D.T反应十T探测≤T延迟 13.入侵探测器在正常气候环境下,连续()工作应不出现误报、漏报。 A.1天B.3天C.5天D.7天 4、报警系统紧急报警、入侵报警及防破坏报警响应时间应不大于()。 A.2s B.3 s C.4 s D.5 s 5、入侵探测报警系统在正常工作条件下平均无故障工作时分为A、B、C、D四级,各类产品的指标不应低于A级的要求,A级要求的平均无故障工作时间为()小时。A.1000 B.2000 C.5000 D.10000 6专用线串行信号传输方式,又称()传输方式。 A.二线制B.四线制C.总线制 7、当一个或多个设防区域产生报警时,分线制入侵报警系统的响应时间不大于()s。 A.1 B.2 C.3 D.4

8、在入侵报警系统的传输功能中,应有与远程中心进行有限和/或无线通信接口,并能对通信线路的()进行监控。 A.信号B.数据C.声音D.故障 9、下列属于报警器的主要技术性能指标的有()。 A.探测率 B.分辨率 C.实时性 10、探测器的有效性可用()来表示。 A.可靠性B.探测范围C.误报率D.探测率 11、在下列报警器中选出属于被动式报警器()。 A.振动B.超声波C.微波 D .电场 12、在下列各个探测器中选出可使用于各种不同形状房间的探测器()。 A.微波多普勒B.被动红外C.超声波 13、在下列探测器中选出可用于室内也可用于室外的探测器()。 A.超声波B.主动红外C.被动红外D.平行线电场 14、主动红外报警器的报警时间阈值主要是根据()参数设定的。 A.正常人跑动的速度B.正常人的平均高度 C.正常人的体形D、正常人的体重 15、主动红外探测器在室外使用时,对其作用距离影响最大的有()。 A.雪B.雾C.大风D.大雨 16、对以常闭为警戒状态的磁控开关,舌簧管接点出现粘结现象会造成()。A.误报警B.漏报警C.仍正常工作 17、次声波探测器,检测的次声波来源于()。 A.入侵者走动扰动空气B.室内外温度差

入侵探测器的功能原理

入侵探测器的功能原理 入侵探测器是用来探测入侵者的移动或其他动作的电子及机械部件所组成的装置。包括主动红外入侵探测器、被动红外入侵探测器、微波入侵探测器、微波和被动红外复合入侵探测器、磁开关入侵探测器等。 1、入侵探测器的功能原理 每一种入侵探测器都具有在保安区域内探测出入员存在的一定手段,装置中执行这种任务的部件称为探测器或传感器。 传感器是入侵探测器的核心,它是一种物理量转换器件,可以将入侵时所产生的力、压力、位移、振动、温度、声音、光强等物理量转化为易于处理的电信号和电参量,如电压、电流、电阻、电容等。 传感器的输出电信号有两种,一种是连续变化的信号,我们称之为模拟量。如光电二极管输出的电流随光照强度大小而变化就是一种连续变化的物理量。但报警控制器通常只接收入侵行为是否发生的有无信号来决定相应的防范措施。这就需要将连续变化的模拟信号转换成只有“有"和“无"两种状态的数字量,通常用“1"表示“有",用“0"表示“无"。这种转换可以在探测器中完成,也可以在报警控制器中完成。通常是将传感器探测到的模拟信号与一予先确定的基准信号相比较,小于基准信号可认为该信号为干扰引入而非入侵信号,判定为“0",超过基准值时的信号则只能在入侵行为发生时产生,判定为“1"。 也有少数的传感器产生并输出的信号只有两种状态,如干簧继电器的“通"与“断",已经是数字信号而不需转换和比较,可直接被控制器接收。 理想的入侵探测器仅仅响应人员的存在,而不响应如狗、猫及老鼠等动物的活动,也不响应室内环境的变化,如温度、湿度的变化及风、雨声音和振动等。要做到这一点不很容易,大多数装置不但响应了人的存在,而且.对一些无关因素的影响也产生响应。对报警器的选择和安装也要考虑使它对无关因素不作响应,同时信号的重复性要好。 设计报警装置时首先要掌握和分析各种入侵行动的特点。入侵者在进入室内时首先要排除障碍,他必须打开门窗,或在墙上、地板和顶棚上开洞。因此可以安装一些开关报警器,使入侵者刚开始行动时就触发开关。另一个应考虑的特点是光和红外线不能透过人体,因此可以利用安装光电装置的方法来探测入侵活

入侵探测器的分类

2. 入侵探测器的分类 入侵探测器有多种多样,进行分类将有助于从总体上对入侵探测器的认识和掌握。 入侵探测器通常可按传感器的种类、工作方式、警戒范围、传输方式、应用场合来区 分。 1) 按传感器种类分类 按传感器的种类,即按传感器探测的物理量来区分,通常有:磁控开关探测器、振动探测器、超声入侵探测器、次声入侵探测器、红外入侵探测器、微波入侵探测器和视频移动 探测器等等。 探测器的名称大多是按传感器的种类来称呼的。 2) 按入侵探测器工作方式来分类 按入侵探测器工作方式分类,有:主动式入侵探测器和被动式入侵探测器两种。 被动入侵探测器在工作时不需向探测现场发出信号,而依靠对被测物体自身存在的能量进行检测。平时,在传感器上输出一个稳定的信号,当出现入侵情况时,稳定信号被破坏,输出带有报警信息,经处理发出报警信号。例如,被动红外入侵探测器利用了热电传感器能检测被测物体发射的红外线能量的原理。当被测物体移动时,把周围环境温度与移动被测物体表面温度差的变化检测出来,从而触发探测器的报警输出。所以,被动红外入侵探测器是 被动式入侵探测器。 主动式探测器是在工作时,探测器要向探测现场发出某种形式的能量,经反射或直射在接收传感器上形成一个稳定信号,当出现入侵情况时,稳定信号被破坏,输出带有报警信息,经处理发出报警信号。例如,微波入侵探测器,由微波发射器发射微波能量,在探测现场形成稳定的微波场,一旦移动的被测物体入侵时,稳定的微波场便遭到破坏,微波接收机接收这一变化后,即输出报警信号。所以,微波入侵探测器是主动式探测器。主动式探测器其发射装置和接收传感器可以在同一位置,如,微波入侵探测器。也可以在不同位置,如, 对射式主动红外入侵探测器。 被动式入侵探测器有:被动红外入侵探测器、振动入侵探测器、声控入侵探测器、视频移动探测器等等。主动式入侵探测器有:微波入侵探测器、主动红外入侵探测器、超声波 入侵探测器等等。 3) 按警戒范围分类 按警戒范围可分成点控制探测器、线控制探测器、面控制探测器和空间控制探测器。 点控制探测器是指警戒范围仅是一个点的探测器。当这个警戒点的警戒状态被破坏时,即发出报警信号。如安装在门窗、柜台、保险柜的磁控开关探测器,当这一警戒点出现危险情况时,即发出报警信号。磁控开关和微动开关探测器、压力传感器常用作点控制探测 器。

《入侵探测器通用技术条件》

1. 主题内容与适用范围 本标准规定了入侵探测器的通用技术要求和试验方法,是设计、制造入侵探测器及各类入侵探测器技术条件的基本基础。 本标准适用于防盗报警系统中使用的各类入侵探测器,也适用于防盗、防火复合系统中的入侵探测器。 2.引用标准 GB4208 外壳防护等级的分类 GB6833.1 电子测量仪器的电磁兼容性试验规范总则 GB6833.3 电子测量仪器电磁兼容性试验规范静电放电敏感度试验 GB6833.4 电子测量仪器电磁兼容性试验规范电源瞬间敏感度试验 GB6833.5 电子测量仪器电磁兼容性试验规范辐射敏感度试验 3.术语 3.1 入侵探测器intrusion detectors 用来探测入侵者的移动或其他动作的电子及机械部件所组成的装置。 3. 2 电路high voltage circuit 交流电压有效值大于30V、直流电压大于42.4V,且交流电压小于600V并具有过压限制的电路。 3. 3 压电路low voltage circuit 交流电压有效值不大于30V,直流电压不大于42.4V,且输出功率不大于100W的电路。 3.4 安全电路safety circuit 用来避免引起火灾、触电或因无意碰到活动部件而发生危险的电路。 3.5 警戒状态standby condition 入侵探测器接通电源后,能探测到入侵者并转入报警状态。 3.6 报警状态alarm condition 输出信号表明入侵已经发生的状态。

3.7 故障状态failure condition 探测器不能正常工作的状态。 3.8 误报警false alarm 没有入侵者,而由于入侵探测器本身的原因或操作不当或环境影响而触发报警。 3.9 漏报警leakage alarm 入侵已经发生,而入侵探测器没有给出报警信号。 3.10 参考目标reference target 体重为60±20kg的正常人或模拟物体。 3.11 探测范围area of detection coverage 由入侵探测器所防护的区域 3.12 探测距离detection range 在给定方向从探测器到探测范围边界的距离。 3.13 可探测速度detectable speed 探测器应能探测到的参考目标的移动速度,一般为0.3-3m/s。 4.技术要求 4.1.1 外观 入侵探测器的外壳尺寸应与图纸相符。塑料外壳表面应无裂纹、退色及永久性污渍,也无明显变形和划痕。金属壳表面涂覆不能露出底层金属,并无起泡、腐浊、缺口、毛刺、蚀点、划痕、涂层脱落和沙孔等。控制机构灵活,标志清晰。 4.1.2 外壳 4.1.2.1 外壳的防护等级应符合GB4208的规定。 4.1.2.2 外壳和框架应有足够的机械强度和刚度。装与高压电路的外壳应能承受按5.2.3.2所规定的冲击强度试验而不产生永久性变形和损坏。 4.1.2.3 外壳应有防触电防护:处于暴露状态的部件不应有使人触电的危险。为连接外部天线的外接天线端子应有电阻连接到电源电路的地端,其阻值为5.1MΩ,额定功率大于或等于0.5W。

感烟探测器常识

感烟探测器常识 (1)烟感报警器是如何工作的? 烟雾是上升运动的,到达天花底下。烟感报警器通过烟发现火灾。在您没有看到火苗或闻到烟味的时候,烟感器已经知道了。它不停工作,一年365天,每天24小时,从不间断。在报警时,它发出尖啸刺耳的声音,直到烟雾散去。在真实的火灾中它一直工作到被烧毁。 民用住宅的独立式烟感报警器共有两种传感器可供选择:一种是离子传感器,一种是光电传感器。 离子传感器是通过测量空气中的正负电荷的平衡来工作的。在传感器内部,有一小片放射性物质,这种物质能在感应室内流动的空气中产生一股微小的电流。在线路板上,有一个电脑芯片用来监测这股电流。当烟雾粒子进入到感应室后,就会扰乱那里的正负电荷的平衡,同时也会使这股电流发生变化。当烟雾逐渐加重,正负电荷的不平衡性就会加强。当这种平衡性达到一定的限度,喇叭就会响起。 光电传感器是通过一束光和一个光的感应器来测量烟的浓度的。该装置设计的时候,光束是偏离感应器的。当烟雾进入到感应室后,烟雾粒子会将部分光束散射到感应器上。当烟雾的浓度逐渐加重,就会有更多的光束被散射到感应器上。当到达传感器的光束达到一定的程度,蜂鸣器就会响起。 (2)如何减少误报 误报是一个很严重的问题。当火灾没有发生的时候,烟雾报警器却不断地发出警报,您可能会将它撤去,那么当火灾确实发生的时候就不会发出警报了。 误报的原因,依次排序如下:1.烹饪 2 蒸气或湿气的影响 3 香烟产生的烟雾 4 电源5灰尘 1 许多对烹饪产生的烟雾的误报是由离子报警器发出的。因为这种传感器对极微小的烟雾粒子较敏感,即使是对人的肉眼无法看到的粒子。而烹饪高温产生的烟雾粒子是人的肉眼无法看到的。 有两种基本的解决办法。移动报警器的位置。将报警器安在离烹饪处较远的地方会使烹饪产生的烟雾在到达报警器的时候已经变得很稀薄,从而减少误报。但这种方法不一定总是管用,尤其当空气的流动将烹饪产生的烟雾带到报警器的时候也会产生误报。所以当移动报警器的时候一定要先弄清楚空气的流向。 第二个解决问题的办法是替换报警器,a是买一个新的带有静音按钮的离子报警器。只要一摁按钮报警器就会停止报警15分钟,这样就有足够的时间让烹饪产生的烟雾扩散掉。b 选择是买一个光电烟感报警器。光电报警器对微小的烟雾粒子不太敏感,所以对烹饪产生的烟雾粒子不会产生误报。 2 蒸汽或者湿气会浓缩在传感器和线路板上,如果浓缩太多的水汽的话就会发出报警的声

主动红外入侵探测器原理与应用

主动红外入侵探测器原理与应用 主动红外入侵探测器由主动红外发射机和主动红外接收机组成,当 发射机与接收机之间的红外光束被完全遮断或按给定百分比遮断时能产生报警状态的装置,叫主动红外入侵探测器。 主动红外发射机通常采用红外发光二极管作光源,其主要优点是体积小、重量轻、寿命长,交直流均可使用,并可用晶体管和集成电路直接驱动。现在的主动红外入侵探测器多数是采用互补型自激多谐振荡电路作驱动电源,直接加在红外发光二级管两端,使其发出经脉冲调制的、占空比很高的红外光束,这既降低了电源的功耗,又增强了主动红外入侵探测器的抗干扰能力 主动红外接收机中的光电传感器通常采用光电二极管、光电三极管、硅光电池、硅雪崩二极管等,按GBl0408.4—2000《入侵 探测器第 4 部分:主动红外入侵探测器》规定:“探测器在制造厂商 规定的探测距离工作时,辐射信号被完全或按给定百分比遮光的持续时间大于40ms时,探测器应产生报警状态。”目前市售的主动红外入侵探测器均给出最短遮光时间范围,例如:某品牌的主动红外入侵探测器最短遮光时间范围是30m—600ms为什么要给出一个范围呢?原因是不同的使用部位可以设定(调节)不同的最短遮光时间,这有益于减少系统的误报警。例如:将主动红外入侵探测器构成电子篱笆警戒时,就应将最短遮光时间调至30ms附近;用在围墙上或围墙内侧警戒时,就应将 最短遮光时间调至600ms附近。具体数值使用者可通过试验确定主动红外发射机所发红外光束定发散角,在GBI0408.4 —2000 标准中规定:“室内使用时,发射机与接收机经正确安装和对准,并工

作在制造厂商规定的探测距离,辐射能量有75%。被持久地遮挡时,接收机不应产生报警状态。”从另一角度理解这句话的意思就是:当接收机接收的能量小于25%时,系统就要产生误报警。为了减少由此引起的误报警,安装使用中应让发射机与接收机轴线重合。 目前,除单光束主动红外入侵探测器外,还有双光束和4光束的。工作原理是:当两光束完全或按给定百分比同时被遮断时,探测器即可进入报警状态。这种主动红外入侵探测器可以减少小鸟、落叶等引起系统的误报警。市售的双光束主动红外入侵探测器有两类,一类是采用双边凹透镜结构的,此结构的探测器两光束之间距离较近,一般只在10cm左右。若上下各用一组双边凹透镜,即构成了4光束主动红外入侵探测器。再一类就是采用两对红外发射和红外接收装置构成的双光束主动红外入侵探测器。该探测器上下两光束距离可达20cm—25cm又称同步型双光束主动红外入侵探测器。 应用探讨:

各种探测器介绍说明

报警系统由哪几部分组成? 简单的报警系统由前端探测器、中间传输部分和报警主机组成。大一些的系统也可将探测器和报警主机看做是前端部分,从报警主机到接警机之间是传输部分,中心接警部分看做是后端部分。 报警系统按信息传输方式不同,可分哪几种? 按信息传输方式不同,从探测器到主机之间可分为有线和无线2种。从主机到中心接警机之间也可分为有线和无线2种,其中有线系统还可分为基于电话线传输和基于总线传输2种类型。 探测器分为哪几种类型?市面上常见的有哪些类型? 红外、微波、震动、烟感、气感、玻璃破碎、压力、超声波等等。其中红外探测器还可分为主动红外和被动红外,烟感还可分为离子式和光电式。市面上常见的有红外探测器(被动红外)、对射、栅栏(主动红外)、双鉴探测器、震动探测器、玻璃破碎探测器。 主动红外探测器的工作原理? 主动红外探测器由红外发射器和红外接收器组成。红外发射器发射一束或多数经过调制过的红外光线投向红外接收器。发射器与接收器之间没有遮挡物时,探测器不会报警。有物体遮挡时,接收器输出信号发生变化,探测器报警。 被动红外探测器工作原理? 被动红外探测器中有2个关键性元件,一个是菲涅尔透镜,另一个是热释电传感器。自然界中任何高于绝对温度(-273o)的物体都会产生红外辐射,不同温度的物体释放的红外能量波长也不同。人体有恒定的体温,与周围环境温度存在差别。当人体移动时,这种差别的变化通过菲涅尔透镜被热释电传感器检测到,从而输出报警信号。 微波探测器工作原理? 微波探测器应用的是多普勒效应原理。在微波段,当以一种频率发送时,发射出去的微波遇到固定物体时,反射回来的微波频率不变,即f发=f收,探测器不会发出报警信号。当发射出去的微波遇到移动物体时,反射回来的微波频率就会发生变化,即f发≠f收,此时微波探测器将发出报警信号。 什么是双元红外探测器?什么是四元红外探测器?

常见入侵探测器的特点及安装设计要点

常见入侵探测器的特点及安装设计要点 ①开关式入侵探测器 a.磁控开关 主要用于各类门、窗的警戒,其安装设计要点: *注意所防护门窗的质地,一般普通的磁控开关仅能用于木质的门窗上,钢、铁门窗应采用专用型磁控开关。 *所选用磁控开关的控制距离至少应为被控制门、窗缝隙的2倍。 *滋控开关应安装在距门窗拉手边15cm 的位置;舌簧管安装在门.1 窗框上,磁铁安装在门、窗扇上,两者间对准,间距0.5cm 左右。 *一般情况下,特别是人员流动性较大的场合最好采用暗装磁开关,引出线也要加以伪装。 *设防部位位于强磁场中,或有可能经常性遭受振动以及门窗缝隙过大或不易固定的场所,不宜使用磁控开关。 b.微动开关 *常用于放在被保护物体的下面(也可用于门、窗合页侧),物体被移开时发出 报警。 *可用于任意质地的物体,且防震性能好,但开关机械触点抗氧化、腐蚀及动作灵活程度较磁控开关要差。 c.水银触点开关. *可用于防范保险柜等大型物体被非法搬运。 d.用金属丝、金属箔等导电体的断裂代替开关 *绑扎在物品上,用于防范非法移动或取走物品。 *粘贴在门、窗、展柜等部位,用于防范非法开启。 *宜加以伪装,如经常活动部位应采取防护措施。 e.压力垫;通常放在窗户、楼梯和保险柜周围的地毯下面,形成通往 被防护目标通道上的一道防线。 ②被动红外入侵探测器 a.常用于室内防护目标的空间区域警戒。 b.主要特点: *功耗低、隐蔽性好(被动式)。 *同一室内可安装多台,探测区任意交叉互不干扰。 *灵敏度随室温升高而下降,探测范围也随之减小。 *探测区内有热变化或热气流流过易造成误报。 *x 红外线穿透性差,遇遮挡造成盲区。 c.宜含有如下防误报、漏报技术措施: *自动温度补偿技术。 *抗小动物干扰技术。 *抗强光干扰技术。 *防遮挡技术。 d.安装设计要点: *壁挂式被动红外探测器,安装高度距地面2.2m 左右,视场与可能入侵方向 最好成90 度角,探测器与墙壁的倾角视防护区域覆盖要求确定。吸顶式被动红外探测器,一般安装在重点防范部位上方附近的天花板上,应水平安装。

红外对射报警器

红外对射报警器 一.引言 随着时代的不断进步,人们对自己所处环境的安全性提出了更高的要求,尤其是在家居安全方面,不得不时刻留意那些不速之客。现在很多小区都安装了智能报警系统,因而大大提高了小区的安全程度,有效保证了居民的人身财产安全。由于红外线是不可见光,有很强的隐蔽性和保密性,因此在防盗、警戒等安保装置中得到了广泛的应用。为了防止各种偷盗和暴力事件的发生和危害,确保大厦的安全,生命和财产不受损害,智能保安系统的设置是必要的。 随着科技的发展,新的犯罪手段对保安系统也提出了新的要求,在信息时代的今天,对钱、财物、人身安全的保护是一方面,而对储存在计算机里的大量的重要文件、数据,更需要保护。 在一个智能化大厦内,不仅对外部人员要防范,对内部人员也需要加强治理;对某些重要的地点、物品,以及重要的人物也需要非凡的保护。因此,对现代化的大厦,需要设置多层次、立体化的保安系统。 防盗报警器的作用防盗报警系统就是用探测器对建筑物内外重点区域、重要地点布防,在探测到非法入侵者时,信号传输到报警控制器:声光报警,显示地址,有关值班人员接到报警后,根据情况采取措施,以控制事态的发展。因此,红外对射报警器以其独特的优点被广泛的应用。红外线具有隐藏性,在露天防护的地方设计一束或多束红外线可以方便地检测到是否有人出入。红外线对射报警器独特的优点是:其一、能有效判断是否有人员进入;其二、能尽可能大地增加防

护范围。并且,系统工作稳定、可靠,报警可采用声光信号,非常适用于解决周围围栏防翻越问题,大大提高工作效率与安全性。红外线对射报警器通常有四大部分组成:电源部分、发射部分、接收部分、报警部分。其基本工作原理是:首先,发射部分发射红外光线(不可见光)与接收部分连通,当有人翻越围栏时身体阻挡红外线,发射部分与接收部分连接断开,在系统控制下报警器报警,最终在人为复位下,报警器停止工作,以此循环。其中,电源部分采用LM7805集成稳压器为主体,为系统提供5V直流电压;发射部分采用555元件作为发射振荡器;接收部分以CD4011集成模块为核心,控制报警部分报警,报警部分采用扬声器报警。 此类设计的要点在于红外线信号的发射与接收部分,由于目前市场上常用的红外线发射器件和接收器将都具有频率选择性,因此要得到较好的传输距离和稳定的性能,必须将驱动红外线发射管工作的震荡电路频率调整在红外发射器件的工作频率附近,现在大部分产品的频率为38KHz,在设计该电路时,也是让555电路组成的振荡器工作在38KHZ附近。至于接收部分,作为报警工作的话,没有像红外线通讯那样要精确地还原出发射端发射的每一个数据。因此相对而言,要求可以放宽一些,设计时可以通过低通滤波,加倍压整流等措施,将发射的红外线信号转变成用于控制的直流控制电压。可以理解为:当有红外线信号收到时输出一个高电平信号,如果有人阻断了红外信号,输出一个低电平信号,后续电路通过这个低电平信号启动报警。

常用家庭防入侵探测器介绍4 之被动红外+微波探测器

常用家庭防入侵探测器介绍4 之被动红外+微波探测器 作者:罗海成luohaicheng 本文首稿发表于:螺旋桨[智能建筑/智能家居专业知识分享博客] 本文感谢:杭州人更电子科技有限公司、我要安居乐技术支持。 昨天我们聊了家用常用防盗探测器中的微波探测技术,微波探测器工作原理以及安装与注意事项,我们也知道家用探测器中单技术微波探测器很少用,一般最常用的是与被动红外一起使用,组成被动红外与微波双技术探测器,也叫双鉴探测器,如下图。双技术复合探测器可以有效降低误报率,是家用探测器中比较理想的探测器,也是使用比较多的探测器。现在很多厂家突出探测器的稳定性,低误报率,推出三技术探测器,甚至四技术探测器,不管采用几种探测技术,我们统称为复合探测器。 什么是被动红外+微波探测器,顾名思义探测器采用了被动红外传感技术与微波探测技术,那么两种技术是如何工作呢?当然之前我们已经知道被动红外与微波探测技术各自独立工作的原理。那么两种技术合在一起到底最后听谁的呢?由谁决定报警信号的输出呢?其实很简单,为了提高探测的准确性,两种技术在使用时采用了相与的关系。简单来理解,就是两个人对一个事情表态,两个人都表决通过,这个事才能通过。也就是说,被动红外探测到有活动人体,微波也探测到有活动人体,这个时候探测器才输出报警信号。 我们知道被动红外的探测特性,最高灵敏度的探测安装位置是与活动物体运动方向成垂直方向,也就是90度,而微波探测器最高灵敏度的探测安装位置是与活动物体成径向运动,也就是0度。那么问题来了,被动红外+微波探测器如何安装探测灵敏度最高。通过分析被动红外探测器的特性与微波探测器的特性,我们可得出结论。被动红外+微波探测器最高灵敏度的探测安装位置,应该是与活动物体运动方向成45度。 被动红外+微波探测器探测安装位置,结合两种探测技术的特点,应该注意如下几点。 1、不宜面对玻璃门窗。被动红外探测器正对玻璃门窗,会有两个问题:一是白光干扰,显然PIR对白光具有很强的抑制功能,但毕竟不是100%的抑制。因此避免正对玻璃门窗,可以避免强光的干扰。二是避免门窗外复杂的环境干扰,比如人群流动、车辆等。 2不宜正对冷热通风口或冷热源。被动红外探测器感应作用是与温度的变化具有密切的关系。冷热通风口和冷热源均有可能引起探测器的误报,对有些低性能的探测器,有时通过门窗的空气对流也会造成误报。 3、微波段的电磁波由于波长较短,穿透力强,玻璃、木板、砖墙等非金属材料都可穿透。所以在安装时不要面对室外,以免室外有人通过引起误报。 4、金属物体对微波反射较强,在探测器防范区域内不要有大面积(或体积较大)物体存在,如铁柜等。否则在后阴影部分会形成探测盲区,造成防范漏洞。

防盗报警探测器分类和功能有哪些

防盗报警探测器分类和用途有哪些? 报警探测器是用来探测入侵者的入侵行为。 需要防范入侵的地方很多,可以是某些特定的点、线、面,甚至是整个空间。 探测器由传感器和信号处理器组成。在入侵探测器中传感器是探测器的核心,是一种物理量的转化装置,通常把压力、震动、声响、光强等物理量转换成易于处理的电量(电压、电流、电阻等)。信号处理器的作用是把传感器转化的电量进行放大、滤波、整形处理,使它能成为一种能够在系统传输信道中顺利转送的信号。 微波探测器分为雷达式和墙式两种 雷达式是一种将微波收、发设备合置的探测器,工作原理基于多普勒效应。微波的波长很短,在1mm~1000mm之间,因此很容易被物体反射。微波信号遇到移动物体反射后会产生多普勒效应,即经反射后的微波信号与发射波信号的频率会产生微小的偏移。此时可认为报警产生。 采用多普勒雷达的原理,将微波发射天线与接收天线装在一起。使用体效应管作微波固态振荡源,通过与波导的组合,形成一个小型的发射微波信号的发射源。探头中的肖基特检波管与同一波导组成单管波导混频器作为接收机与发射源耦合回来的信号混频,从而得到一个频率差,再送到低频放大器处理后控制报警的输出。微波段的电磁波由于波长较短,穿透力强,玻璃、木板、砖墙等非金属材料都可穿透。所以在安装时不要面对室外,以免室外有人通过引起误报。金属

物体对微波反射较强,在探测器防范区域内不要有大面积(或体积较大)物体存在,如铁柜等。否则在其后阴影部分会形成探测盲区,造成防范漏洞。多个微波探测器安装在一起时,发射频率应该有所差异,防止交叉干扰产生误报。另外,如日光灯、水银灯等气体放电光源产生的100Hz调制信号由于在闪烁灯内的电离气体容易成为微波的运动反射体而引起误报。使用微波入侵探测器灵敏度不要过高,调节到2/3时较为合适。过高误报会增多。与超声波一样家庭也可以使用。 探测器对警戒区域内活动目标的探测范围是一个立体防范空间,范围比较大,可以覆盖60°至90°的水平辐射角,控制面积可达几十到几百平方米。雷达式微波探测器的发射能图与所采用的天线结构有关,采用全向天线(如1/4波长的单极天线)可产生近乎圆球形或椭圆形的发射范围,这种能场适合保护大面积的房间或仓库等处。而采用定向天线(如喇叭天线)可以产生宽泪滴形或又窄又长的泪滴形能图,适合保护狭长的地点,如走廊或通道等。 墙式微波探测器 微波墙式探测器利用了场干扰原理或波束阻断式原理,是一种微波收、发分置的探测器。墙式微波探测器由微波发射机、发射天线、微波接收机、接收天线、报警控制器组成。 微波指向性天线发射出定向性很好的调制微波束,工作频率通常选择在9至11GHz,微波接收天线与发射天线相对放置。当接收天线与发射天线之间有阻挡物或探测目标时,由于破坏了微波的正常传播,使接收到的微波信号有所减弱,以此来判断在接收机与发射机之

红外探测器原理

红外探测器原理 安防2007-10-16 10:17:07 阅读888 评论3 字号:大中小订阅 被动红外探测器 凡是温度超过绝对0℃的物体都能产生热辐射,而温度低于1725℃的物体产生的热辐射光谱集中在红外光区域,因此自然界的所有物体都能向外辐射红外热。而任 何物体由于本身的物理和化学性质的不同、本身温度不同所产生的红外辐射的波 长和距离也不尽相同,通常分为三个波段。 近红外:波长范围0.75~3μm 中红外:波长范围3~25μm 远红外:波长范围25~1000μm 人体辐射的红外光波长3~50μm,其中8~14μm占46%,峰值波长在9.5μm。㈠被动红外报警探测器 在室温条件下,任何物品均有辐射。温度越高的物体,红外辐射越强。人是恒温动物,红外辐射也最为稳定。我们之所以称为被动红外,即探测器本身不发 射任何能量而只被动接收、探测来自环境的红外辐射。探测器安装后数秒种已适 应环境,在无人或动物进入探测区域时,现场的红外辐射稳定不变,一旦有人体 红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报 。被动红外入侵探测器形成的警戒线一般可以达到数十米。 被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警 控制器等部分组成。其核心是不见是红外探测器件,通过关学系统的配合作用可 以探测到某个立体防范空间内的热辐射的变化。红外传感器的探测波长范围是8~14μm,人体辐射的红外峰值波长约为10μm,正好在范围以内. 被动式红外探测器(Passive Infared Detector,PIR)根据其结构不同、警 戒范围及探测距离也有所不同,大致可以分为单波束型和多波束型两种。单波束PIR采用反射聚焦式光学系统,利用曲面反射镜将来自目标的红外辐射汇聚在红外传感器上。这种方式的探测器境界视场角较窄,一般在5°以下,但作用距离较远,可长达百米。因此又称为直线远距离控制型被动红探测器,适合保护狭长的走廊、通道以及封锁门窗和围墙。多波束型采用透镜聚焦式光学系统,目前大都采 用红外塑料透镜——多层光束结构的菲涅尔透镜。这种透镜是用特殊塑料一次成

入侵报警系统介绍

入侵报警系统的介绍 组员:谢万意朱丽娟 叶文凤胡超鑫 杨丽坚王燕 胡馨尹陈雅青 时间:2012年11月30日 指导老师:刘桂芝 目录 1. 入侵报警系统概述 (3) 2. 系统基本组成 (3) 3. 入侵报警系统组建模式 (4) 4. 入侵报警系统的基本工作原理 (5) 5. 系统基本功能 (5) 6. 入侵报警系统的主要设备 (7) 7. 国内外产品举例及对比 (10) . 福科斯Focus(胡馨尹1) (10) . 霍尼韦尔Honewell(朱丽娟6) (19) . 对比:各有千秋 (33) . 豪恩(王燕0) (34) . 泰科安防中国(陈雅青2) (43) . 国内国外入侵报警系统的比较 (58)

. 博世安保(谢万意5) (59) . 以色列RSICO(胡超鑫7) (64) . 博世安保与以色列risco产品对比 (68) PPT制作:叶文凤8 WORD制作:杨丽坚9

1.入侵报警系统概述 侵报警系统是指当非法侵入防范区时,引起报警的装置。它是用来发出出现危险情况信号的。入侵报警系统就是用探测器对建筑内外重要地点和区域进行布防。它可以及时探测非法入侵,并且在探测到有非法人侵时,及时向有关人员示警。譬如门磁开关、玻璃破碎报警器等可有效探测外来的人侵,红外探测器可感知人员在楼内的活动等。一旦发生人侵行为,能及时记录入侵的时间、地点,同时通过报警设备发出报警信号。第一代入侵报警器是开关式报警器,它防止破门而入的盗窃行为,这种报警器安装在门窗上。第二代入侵报警器是安装在室内的玻璃破碎报警器和振动式报警器。第三代入侵报警器是空间移动报警器(例如超声波、微波、被动红外报警器等),这类报警器的特点是:只要所警戒的空间有人移动就会引起报警。这些入侵报警系统在报警探测器方面有了较快的发展。 2.系统基本组成 防侵入报警系统负责为建筑物内外各个点、线、面和区域提供巡查报警服务,它通常由前端设备(包括探测器和紧急报警装置)、传输设备、处理/控制/管理设备(报警控制主机)和显示/记录设备(输出设备)构成,如图1所示。 图1 入报警系统的示意图 前端探测部分由各种探测器组成,是入侵报警系统的触觉部分,相当于人的眼睛、鼻子、耳朵、皮肤等,感知现场的温度、湿度、气味、能量等各种物理量的变化,并将其按照一定的规律转换成适于传输的电信号。 操作控制部分主要是报警控制器。 负责接收、处理各子系统发来的报警信息、状态信息等,并将处

相关主题
文本预览
相关文档 最新文档