当前位置:文档之家› 直流电动机控制的发展历史及研究现状

直流电动机控制的发展历史及研究现状

直流电动机控制的发展历史及研究现状
直流电动机控制的发展历史及研究现状

直流电动机控制的发展历史及研究现状

摘要:电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的

各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如

电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在

所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分

之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电

动机的调速控制一般采用模拟法,对电动机的简单控制应用比较多。简单控制是

指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,

可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。

关键词:电动机;自动化;发展历史

一、直流电动机控制的发展历史

常用的控制直流电动机有以下几种:第一,最初的直流调速系统是采用恒定

的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。这

种方法简单易行设备制造方便,价格低廉。但缺点是效率低、机械特性软、不能

在较宽范围内平滑调速,所以目前极少采用。第二,三十年代末,出现了发电机-电动机(也称为旋转变流组),配合采用磁放大器、电机扩大机、闸流管等控制

器件,可获得优良的调速性能,如有较宽的调速范围(十比一至数十比一)、较

小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容

易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。但发电机、电动机调速系统的主要缺

点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大,维修困难等。第三,自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。特别是它的系统快速响应性是发电机、电动机系统不能比拟的。但是汞弧变流器仍存在一些缺点:维修还是不太方便,特别是水银蒸汽对维护人员会造成一定的危害等。第四,1957年世界上出现了第一只晶闸管,与其它变流元件相比,晶闸管具有许多独特的优越性,因而晶

闸管直流调速系统立即显示出强大的生命力。由于它具有体积小、响应快、工作

可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统

经济指标上和可靠性有所提高,而且在技术性能上也显示出很大的优越性。晶闸

管变流装置的放大倍数在10000以上,比机组(放大倍数10)高1000倍,比汞

弧变流器(放大倍数1000)高10倍;在响应快速性上,机组是秒级,而晶闸管

变流装置为毫秒级。

从20世纪80年代中后期起,以晶闸管整流装置取代了以往的直流发电机电

动机组及水银整流装置,使直流电气传动完成一次大的跃进。同时,控制电路也

实现了高度集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速

系统的性能指标大幅提高,应用范围不断扩大,直流调速技术不断发展。

随着微型计算机、超大规模集成电路、新型电子电力开关器件和新型传感器

的出现,以及自动控制理论、电力电子技术、计算机控制技术的深入发展,直流

电动机控制也装置不断向前发展。微机的应用使直流电气传动控制系统趋向于数

字化、智能化,极大地推动了电气传动的发展。近年来,一些先进国家陆续推出

并大量使用以微机为控制核心的直流电气传动装置,如西门子公司的SIMOREG K

直流电动机控制系统

煤炭工程学院课程设计 题目:直流电动机转速控制系统 专业班级: 学生姓名: 学号: 指导教师: 日期:

摘要 当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 电机在各行各业发挥着重要的作用,而电机转速是电机重要的性能指标之一,因而测量电机的转速和电机的调速,使它满足人们的各种需要,更显得重要,而且随着科技的发展,PWM调速成为电机调速的新方式。 随着数字技术的迅速发展,微控制器在社会的各个领域得到了广泛的应用,由于数字系统有着模拟系统所没有的优势,如抗干扰性强、便于和PC机相联、系统易于升级维护。 本设计是以单片机AT89S52和L298控制的直流电机脉宽调制调速系统。利用AT89S52芯片进行低成本直流电动机控制系统的设计,能够简化系统构成、降低系统成本、增强系统性能、满足更多应用场合的需要。系统实现对电机的正转、反转、急停、加速、减速的控制,以及PWM的占空比在LCD上的实时显示。 关键词:直流电机;AT89S52;PWM调速;L298

直流电动机调速系统

创新设计创新设计名称: 直流电动机调速系统设计

目录 目录 (1) 1 引言 (2) 1.1 设计背景 (2) 1.2 系统可实现的功能 (2) 2 总体方案设计 (3) 2.1 单片机选型方案 (3) 2.2 转速测量方案选择 (4) 2.3直流电机驱动电路介绍 (5) 2.4 PWM调宽方式的选择 (6) 2.5键盘的选择 (6) 2.6整体方案设计框图 (6) 3 硬件电路设计 (7) 3.1 系统的整体硬件框图 (7) 3.2 按键模块电路设计 (7) 3.3数码管显示模块电路设计 (8) 4系统软件设计 (10) 4.1 PWM输出程序设计 (10) 4.2 数字PID算法程序设计 (11) 4.3速度采集模块程序设计 (12) 4.4 按键设定程序设计 (13) 4.5 速度显示模块程序设计 (15) 5 总结 (16) 6参考文献 (17) 附录A系统原理图 (18)

1 引言 1.1 设计背景 现代工业生产中,电动机是主要的驱动设备,目前在直流电动机拖动系统中已大量采用晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度发展,促使直流电机调速逐步从模拟化向数字化转变,特别是单片机技术的应用,使直流电机调速技术又进入到一个新的阶段,智能化、高可靠性已成为它发展的趋势。直流电机调速基本原理是比较简单的(相对于交流电机),只要改变电机的电压就可以改变转速了。改变电压的方法很多,最常见的一种PWM脉宽调制,调节电机的输入占空比就可以控制电机的平均电压,控制转速。本设计主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。 1.2 系统可实现的功能 设计一个直流电机调速系统,要求系统具有如下功能:通过按键设定转速的大小,然后由单片机产生PWM控制信号,控制直流电机驱动器L298N,使电动机以一定的转速旋转,为实现闭环控制,通过外围器件为单片机提供测量转速的电平变化信号,单片机测得转速后,与设定的转速值相比较,通过数字PID算法产生控制信号,改变PWM输出的占空比,从而改变电动机转速,从而实现闭环控制,使电动机在一个转速值上较稳定的旋转。

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

直流电动机转速控制

直流电动机转速控制 王文玺 (北京交通大学机械与电子控制工程学院,北京) 摘要:通过对直流电动机控制系统的建模,再利用Matlab对建模后的系统进行分析,来加深对自动控制系统的理解。找到系统的输入、输出,理清经历各环节前后的信号变化,找出系统传递函数。 关键词:直流电动机、Matlab、建模、传递函数 1、直流电动机动态数学模型建立 1.1直流电机数字PID闭环速度控制,系统实现无静差控制。 这是一个完整的带PID算法的直流电动机控制系统。目标值为给定的期望值,期望值与被测输出结果形成的反馈做比较,得到误差信号。误差信号经过PID控制环节得到控制信号。继而经历驱动环节得到操作量,驱动量作用与对象即电动机然后得到输出信号即转速。转速通过传感器得到反馈信号。 1.2PID控制环节 1.3被控对象(直流电动机)的统一数学模型 信号类型一次为,输入信号为电压,然后电流、电流、转矩、转速,反馈信号为电压。

各环节的比例函数为: 1.3.1额定励磁条件下,直流电机的电压平衡关系: (Ud为外加电压,E 为感应电势,R a为电枢电阻 ,La为电枢电感,i a为电枢电流。) 拉氏变换后: (ra—L /R ,为电枢时间常数) 1.3.2直流电机的转矩平衡关系及拉氏变换: (Te 为电磁转矩,Tl 为负载转矩,B为 阻尼系数,J 为转动惯量,w为电机机 械转速,rm=J/B,为机械时间常数) 1.3.3电动机传递函数 可见直流电动机本身就是一个闭环系统,假设电机工作在空载状态,且机械时间常数远大于电枢时间常数,则电机传递函数可近似为: 1.4具体实例 电枢控制直流电动机拖动惯性负载的原理图,涉及的参数有:电压U为输入,转速为输出,R、L为电枢回路电阻、电感,K 是电动机转矩系数,K 是反电动势系数,K 是电动机和负载折合到电动机轴上的黏性摩擦系数,.厂是电动机和负载折合到电动机轴上的转动惯量。已知:R一2.0 Q,L:==0.5 H ,K = Kb一0.015,Kf一0.2 Nms,J— o.02kg.m 。 ( 取电压U为输入,转速叫为输出,由已知条件和原理图,根据直流电机的运动方程可以求出电动机系统的数学模型为:

直流电动机调速系统设计方案

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 直流电动机调速系统设计 初始条件: 采用MC787组成触发系统,对三相全控桥式整流电路进行触发,通过改变直流电动机电压来调节转速。 要求完成的主要任务: (1)设计出三相全控桥式整流电路拓扑结构; (2)设计出触发系统和功率放大电路; (3)采用开环控制、转速单闭环控制、转速外环+电流内环控制。 (4) 器件选择:晶闸管选择、晶闸管串联、并联参数选择、平波和均衡电抗 器选择、晶闸管保护设计 参考文献: [1] 周渊深.《电力电子技术与MATLAB仿真》.北京:中国电力出版社, 2005:41-49、105-114 时间安排: 2011年12月5日至2011年12月14日,历时一周半,具体进度安排见下表 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1概述 0 2转速、电流双闭环直流调速系统的组成及其静特性 0 2.1转速、电流双闭环直流调速系统的组成 0 2.2 稳态结构框图和静特性 (1) 3双闭环直流调速系统的数学模型与动态过程分析 (2) 3.1双闭环直流调速系统的动态数学模型 (2) 3.2双闭环直流调速系统的动态过程分析 (3) 4转速电流双闭环直流调速系统调节器的工程设计 (5) 4.1转速和电流两个调节器的作用 (5) 4.2调节器的工程设计方法 (5) 4.2.1设计的基本思路 (6) 4.3 触发电路及晶闸管整流保护电路设计 (6) 4.3.1触发电路 (6) 4.3.2整流保护电路 (7) 4.3.2.1 过电压保护和du/dt限制 (7) 4.3.2.2 过电流保护和di/dt限制 (8) 4.4 器件选择与计算 (8) 5心得体会 (13) 参考文献 (14) 附录:电路原理图 (15)

直流电动机转速控制系统设计

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。特别是在直流电动机广泛应用的电气传动领域,起到至关重要的作用。直流电动机因为具有良好的调速性能和比较大的起动转矩,一直被应用在电气领域,尤其是在需要调速性能很高的场所。在制造业、工农业自动化、铁路与运输等行业都被广泛的应用,随着市场的竞争力,对直流电动机的需求也越来越高,同时对直流电动机的调速性能也有了更高的要求。因此,研究直流电动机转速控制系统的调速性能有着很重要的意义。 在本次的设计中采用PWM控制直流电动机转速。PWM脉冲受到PID算法的控制,被用来控制直流电动机的转速。同时利用安装在直流电动机转轴上的光电式传感器,将直流电动机的转速转换成脉冲信号,反馈到单片机,形成闭环反馈控制系统,改变不同占空比的PWM脉冲就可以实现直流电动机转速控制。 本论文对每一个方案的选择都进行详细的论述,在软件和硬件部分都进行了模块化。硬件部分首先给出一个以AT89S52单片机为核心的整体结构图,并对驱动电路、显示电路等模块进行详细的阐述。在软件部分给出整体程序流程图,对PWM 程序、PID算法程序、显示程序等模块详细的阐述。本次系统设计的具有抗干扰能力强、性价比高、维修简单方便等优点。 关键词:PWM;单片机;直流电动机;转速控制

Abstract Nowadays, automatic control system has been widely used and greatly developed in all walks of life. As the dominant part of electric drive, direct current (DC) control plays an important role in modern production, especially in the DC motor is widely used in the field of electric transmission. DC motor because of its good speed control performance and relatively large starting torque, has been applied in the electrical field, especially in the high speed performance requirements of the occasion. Is widely used in the manufacturing industry, industry and trade of agricultural automation, rail and transit industry, with the competitiveness of the market, the demand of DC motor is also more and more high, also of the DC motor speed performance also has the higher requirements. Therefore, it is very important to study the speed control performance of the DC motor speed control system. In this design, using PWM control DC motor speed. PWM pulse is controlled by the PID algorithm, PWM is used to control the speed of DC motor. At the same time, the hall sensor mounted on the rotational shaft of the DC motor, the DC motor speed is converted into a pulse signal, feedback to the microcontroller, form a closed loop feedback control system, changing the duty ratio of the PWM pulse can realize DC motor speed control. In this paper, the choice of each program are discussed in detail, in both the software and hardware parts are modular. In the part of hardware, we first give a whole structure diagram with AT89S52 single chip microcomputer as the core, and elaborate the driving circuit, display circuit and other modules in detail. In the software part gives the overall program flow chart, the PWM program, PID algorithm program, display program, and other modules are described in detail. The system design has the advantages of strong anti-interference ability, high cost performance, easy maintenance and so on. Key Words: PWM; microcomputer; DC motor; speed control

直流电动机开环调速MATLAB系统仿真

东北石油大学MATLAB电气应用训练 2013年 3 月 8日

MATLAB电气应用训练任务书 课程 MATLAB电气应用训练 题目直流电动机开环调速系统仿真 专业电气信息工程及其自动化姓名赵建学号 110603120121 主要内容: 采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的MATLAB /SIMULINK 仿真模型。分析系统起动的转速和电流的仿真波形,并进行调试,使双闭环直流调速系统趋于合理与完善 基本要求: 1.设计直流电动机开环调速系统 2.运用MATLAB软件进行仿真 3.通过仿真软件得出波形图 参考文献: [1] 陈伯时. 电力拖动自动控制系统—运动控制系统第3版[M]. 北京:机械工业出版社, 2007. [2] 王兆安, 黄俊. 电力电子技术第4版[M]. 北京:机械工业出版社, 2000. [3] 任彦硕. 自动控制原理[M]. 北京:机械工业出版社, 2006. [4] 洪乃刚. 电力电子和电力拖动控制系统的MATLAB仿真[M]. 北京:机械工业出版社, 2006. 完成期限 2013.2.25——2013.3.8 指导教师李宏玉任爽 2013年 2 月25 日

目录 1课题背景 (1) 2直流电动机开环调速系统仿真的原理 (2) 3仿真过程 (5) 3.1仿真原理图 (5) 3.2仿真结果 (9) 4仿真分析 (12) 5总结 (13) 参考文献 (14)

1课题背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。 由于对模型建立和仿真实验研究较少,因此建模通常需要很长时间,同时仿真结果的分析也必须依赖有关专家,而对决策者缺乏直接的指导,这样就大大阻碍了仿真技术的推广应用。 MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。 Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型,如现实世界中的摩擦、空气阻力、齿轮啮合等自然现象;它可以仿真到宏观的星体,至微观的分子原子,它可以建模和仿真的对象的类型广泛,可以是机械的、电子的等现实存在的实体,也可以是理想的系统,可仿真动态系统的复杂性可大可小,可以是连续的、离散的或混合型的。Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代起,就开始

直流电动机控制系统设计

X X X X X学院 题目:直流电动机控制系统 学 院 XXXXXX学院 专 业 自动化 班 级 XX班 姓 名 XXX 学 号 XXXXX 指导老师 XXX 2012年 12 月 25 日 1、 设计题目:直流电动机控制系统 1、前言 近年来,随着科技的进步,电力电子技术得到了迅速的发展,直流电机得到了越来越广泛的应用。直流它具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;需要能满足生产过程自动化系统各种不同的特殊运行要求,从而对直流电机的调速提出了较高的要求,改变电枢回路电阻调速,改变电枢电压调速等技术已远远不能满足要求,这时通过PWM方式控制直流电机调速的方法应运而生。 采用传统的调速系统主要有以下缺陷:模拟电路容易随时间漂移,会产生一些不必要的热损耗,以及对噪声敏感等。而在用了PWM技术后,避免了以上的缺陷,实现了用数字方式来控制模拟信号,可以大幅度降低成本和功耗。另外,由于PWM 调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得平稳的直流电流,低速特性好;同样,由于开

关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高。PWM 具有很强的抗噪性,且有节约空间、比较经济等特点。 2、系统设计原理 脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需 要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 直流电动机的转速n和其他参量的关系可表示为 (1) 式中 Ua——电枢供电电压(V); Ia ——电枢电流(A); Ф——励磁磁通(Wb); Ra——电枢回路总电阻(Ω); CE——电势系数, ,p为电磁对数,a为电枢并联支路数,N为导体数。 由式(1)可以看出,式中Ua、Ra、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra;;(2)改变电枢供电电压Ua;(3)改变励磁磁通Ф。 3、方案选择及论证 3.1、方案选择 3.1.1、改变电枢回路电阻调速 可以通过改变电枢回路电阻来调速,此时转速特性公式为 n=U-【I(R+Rw)】/KeФ (2)式中Rw为电枢回路中的外接电阻(Ω)。 当负载一定时,随着串入的外接电阻Rw的增大,电枢回路总电阻R= (Ra+Rw)增大,电动机转速就降低。Rw的改变可用接触器或主令开关切换来实现。 这种调速方法为有级调速,转速变化率大,轻载下很难得到低速,

直流小电动机调速系统

题目直流小电机测速系统 一.题目要求 设计题目:直流小电动机调速系统 描述:采用单片机、uln2003为主要器件,设计直流电机调速系统,实现电机速度开环可调。 具体要求:1、电机速度分30r/m、60r/m、100r/m共3档; 2、通过按选择速度; 3、检测并显示各档速度。 实验器件: 实验板、STC89C52、直流电机、晶振(12MHz)、电容(30pFⅹ2、10uFⅹ2)、)uln2003、小按键、按键(4个)、、数码管、以及 电阻等 二.组分工

摘要 在电气时代的今天,电动机在工农业生产与人们日常生活中都起着十分重要的作用。直流电机作为最常见的一种电机,具有非常优秀的线性机械特性、较宽的调速围、良好的起动性以及简单的控制电路等优点,因此在社会的各个领域中都得到了十分广泛的应用。 本文设计了直流电机测速系统的基本方案,阐述了该系统的基本结构、工作原理、运行特性及其设计方法。本系统采用PWM 测量电动机的转速,用MCS-51单片机对直流电机的转速进行控制。本设计主要研究直流电机的控制和测量方法,从而对电机的控制精度、响应速度以及节约能源等都具有重要意义。 ·关键词:直流电机单片机 PWM 转速控制 硬件部分 1.时钟电路 系统采用12M晶振与两个30pF电容组成震荡电路,接STC89C52的XTAL1与XTAL2引脚

2.按键电路 三个按键分别控制电机的不同转速,采用开环控制方法 3.电机控制与驱动部分 电机的运行通过PWM波控制。PWM波通过STC89C52的P2.4口输出。

显示部分 采用4位共阳极数码管实现转速显示。数码管的位选端1~4分别接STC89C52的P2.0~P2.3管脚。 完整仿真电路图

双闭环直流电动机调速系统设计及MATLAB仿真

目录 1、引言 (2) 二、初始条件: (2) 三、设计要求: (2) 四、设计基本思路 (3) 五、系统原理框图 (3) 六、双闭环调速系统的动态结构图 (3) 七、参数计算 (4) 1. 有关参数的计算 (4) 2. 电流环的设计 (5) 3. 转速环的设计 (6) 七、双闭环直流不可逆调速系统线路图 (8) 1.系统主电路图 (8) 2.触发电路 (9) 3.控制电路 (13) 4. 转速调节器ASR设计 (13) 5. 电流调节器ACR设计 (14) 6. 限幅电路的设计 (14) 八、系统仿真 (15) 1. 使用普通限幅器进行仿真 (15) 2. 积分输出加限幅环节仿真 (16) 3. 使用积分带限幅的PI调节器仿真 (17) 九、总结 (20)

一、设计目的 1.联系实际,对晶闸管-电动机直流调速系统进行综合性设计,加深对所学 《自动控制系统》课程的认识和理解,并掌握分析系统的方法。 2.熟悉自动控制系统中元部件及系统参数的计算方法。 3.培养灵活运用所学自动控制理论分析和解决实际系统中出现的各种问题 的能力。 4.设计出符合要求的转速、电流双闭环直流调速系统,并通过设计正确掌 握工程设计的方法。 5.掌握应用计算机对系统进行仿真的方法。 二、初始条件: 1.技术数据 (1)直流电机铭牌参数:P N =90KW, U N =440V, I N =220A, n N=1500r/min,电枢电阻Ra=0.088Ω,允许过载倍数λ=1.5; (2)晶闸管整流触发装置:Rrec=0.032Ω,Ks=45-48。 (3)系统主电路总电阻:R=0.12Ω (4)电磁时间常数:T1=0.012s (5)机电时间常数:Tm =0.1s (6)电流反馈滤波时间常数:Toi=0.0025s,转速率波时间常数:Ton=0.014s. (7)额定转速时的给定电压:Unm =10V (8)调节器饱和输出电压:10V 2.技术指标 (1)该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作错误!未指定书签。; (2)系统静特性良好,无静差(静差率s≤2); (3)动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤8-10%,调速系统的过渡过程时间(调节时间)ts≤1s; (4)调速系统中设置有过电压、过电流等保护,并且有制动措施。三、设计要求: (1)根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图; (2)调速系统主电路元部件的确定及其参数计算。 (3)动态设计计算:根据技术要求,用Mrmin准则设计转速环,确定ASR 调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳 定,并满足动态性能指标的要求; (4)绘制V-M双闭环直流不可逆调速系统线路图(主电路、触发电路、控

直流电机原理与控制方法

专业资料 电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械 能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。 2 直流电动机基本结构与工作原理 2.1 直流电机结构

如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所 示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定

直流电动机双闭环控制系统设计与分析[设计+开题+综述]

开题报告 电气工程与自动化 直流电动机双闭环控制系统设计与分析 一、选题的背景与意义 随着现代工业的快速发展,在调速领域中,双闭环的控制理念已经得到了越来越广泛的认同。由于其动态响应快,静态性能良好,抗干扰能力强,因而在工程设计中被广泛地采用[1]。现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度[2]。 PID(即:比例-积分-微分)控制器是最早发展起来的控制理论之一,由于它具有算法结构简单、鲁棒性好、可靠性高等优点,在工业控制中90%是采用PID控制系统 [3]。然而,在越来越复杂的工业过程中,常常难以确定其精确数学模型,无法从理论上准确设计PID 控制器的相应参数。此外,在实际的生产现场过程中,由于受到现场环境及运行工况的变化等因素的困扰,常规的PID设计方法往往整定欠佳,性能不良,对运行工况的适应性较差,很难满足对生产过程的控制性能和产品质量的要求。 群体智能算法(Swarm Intelligence Algorithm) [4]是近十几年发展起来的智能仿生算法,其基本思想是模拟自然界生物的群体行为来构造随机优化算法。其中由美国学者Kennedy 和Eberha提出的粒子群优化算法(particle swarill optimization,PSO) 计算快速收敛,不易陷入局部最优,而且所需参数少且易于实现。因此,粒子群及改进的粒子群优化算法在PID参数整定中的应用近几年也得到了极大关注和重视。 二、研究的基本内容与拟解决的主要问题: 1、基本内容 本课题主要研究直流电动机双闭环控制系统设计与分析,并通过粒子群优化算法(PSO)用于双闭环PID调节控制的方法对系统进行设计和仿真。 双闭环PID控制系统设置了转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流, 两者实行串级连接, 且都带有输出限幅电路。由于调速系统的主要被控量是转速, 故把转速环作为外环, 以抑制电网电压扰动对于转速的影响, 把由电流环作为内环, 以实现在最大 电流约束下的转速过渡过程最快最优控制。直流电动机双闭环控制系统原理见图1所示。 III

直流电机原理与控制方法

电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将 直流电能转换成机械能(直流 电动机)或将机械能转换成直 流电能(直流发电机)的旋转 电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。

2 直流电动机基本结构与工作原理 2.1 直流电机结构 如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果 转子转到如上图(b)所

示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电动机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 发电机的原理则是电机的逆过程:原动机提供转矩,利用法拉第电磁感应产生直流电流。 如下图,比较清晰的说明了直流电动机的原理。 3直流电机重要特性 如下图,更加清晰的揭示了直流电机电流电压与转速转矩之间的关系。 我们可以得到直流电机的四个基本方程:

一种无刷直流电动机控制系统设计1

一种无刷直流电动机控制系统设计1

一种无刷直流电动机控制系统设计 摘要:介绍了MOTORALA公司专门用于无刷直流电机控制的芯片MC33035和 MC33039的特点及其工作原理,系统设计分为控制电路与功率驱动电路两大部分,控制电路以MC33035/33039为核心,接收反馈的位置信号,与速度给定量合成,判断通电绕组并给出开关信号。在驱动电路设计中,采用三相Y 联结全控电路,使用六支高速MOSFET开关管组成。通过实验,电机运行稳定。 关键词:无刷直流电机;MC33035/33039;控制电路;驱动电路 Design of control system for Brushle ss DC Motors SUN GuanQun;SHI Ming;TONG LinYi; XU YiPing Abstract:It introduces the MOTORAL A company used for the characteristi cs of the chip MC33035 and MC3303 9 which control the brushless direc t current motor exclusively and its w ork principle. The system design divi

良,而且具有体积更小、可靠性更高、控制更容易、应用范围更广泛、制造维护更方便等优点,使无刷电机的研究具有重大意义。 本系统设计是利用调压调速,根据调整供电PWM电源的占空比进而调整电压的方式实现。本设计采用无刷直流电机专用控制芯片MC33 035,它能够对霍尔传感器检测出的位置信号进行译码,它本身更具备过流、过热、欠压、正反转选择等辅助功能, 组成的系统所需外围电路 简单,设计者不必因为采用分立元件组成庞大的模拟电路,使得系统的设计、调试相当复杂,而且要占用很大面积的电路板。 MC33035和MC33039这两种集成芯片也可以方便地完成无刷直流电动机的正反转、运转起动以及动态制动、过流保护、三相驱动信号的产生、电动机转速的简易闭环控制等。利用专用集成芯片构成的无刷直流电机控制系统,具有集成度高、速度快及完善的保护功能等特点。驱动电路结构简单,因而整个线路外围元件少、走线简单,可大大减小逆变器体积。 2.系统原理

直流电动机调速

直流电动机调速 在直流传动系统中,人为地或自动地改变电动机的转速以满足工作机械不同转速地要求,称之为调速。可以通过改变电动机的参数或外加电压等方法,来改变电动机的机械特性,从而改变电动机的稳定转速。 电动机的转速由操作工给定,不能自动纠正转速偏差的方式称为开环控制。在很多情况下,希望转速稳定,即转速不随负载及电网电压等外界扰动而变化,此时电动机的转速应能自动调节,为此构成的调速系统称为闭环系统。 一、电动机调速的分类及静态指标 1、 直流电动机调速的分类 1) 无级调速和有级调速: a ) 无级调速:又称连续调速,是指电动机的转速可以平滑地调节。其特点为 转速变化均匀,适应性强而且容易实现调速自动化,因此在工业装置中被广泛采用。 b ) 有级调速:又称间断调速或分级调速。它的转速只有有限的几级,调速范 围有限且不易实现调速自动化。 2) 向上调速和向下调速(调速的方向性): 电动机未作调速时的固有转速,通常即为电动机额定负载时的额定转速,也称为基本转速或基速。一般在基速方向提高转速的调速称为向上调速,例如直流电动机改变磁通进行调速,其调速极限受电动机的机械强度和换向条件限制。在基速方向降低转速的调速称为向下调速,例如直流电动机改变电枢电压进行调速,调速的极限即最低转速主要受转速稳定性的限制。 3) 恒转矩调速和恒功率调速: a) 恒转矩调速:有很大一部分工作机械,其负载性质属于恒转矩类型,即在调速过程中不同的稳定速度下,电动机的转矩为常数。如果选择的调速方法能使=I ∝T 常数,则在恒转矩负载下,电机不论在高速和低速下运行,其发热情况是一样的,这就使电动机容量能被合理而充分地利用。这种调速方法称为恒转矩调速。例如,当磁通一定时调节电枢电压或电枢回路电阻的方法,就属于恒转矩调速方法。 b)恒功率调速:具有恒功率特性的负载,是指在调速过程中负载功率P L =常数, 负载转矩T L =n a 1 。对于直流电动机,当电枢电压一定时减弱磁通的调速方法就属于此种类型。用恒功率调速方法去带动恒转矩性质的负载是不合理的,在高速时电机将会过载。 因此,对恒功率负载,应尽量采用恒功率调速方法;而对恒转矩负载,应尽量采用 恒转矩调速方法。这样,电机容量才会得到充分利用。 2、 直流电动机调速的静态指标 1) 调速范围: 生产机械要求电动机能提供的最高转速n max 和最低转速n min 之比叫做调速范围,通常用D 表示,即 min max n n D =

直流电动机转速自动控制系统实验报告

设计报告正文 第一章直流电动机转速自动控制系统的组成原理1.1 广义对象的组成原理 1.1.1 被控对象直流电动机工作原理和被控制量 1、被控对象:电动机 被控量:电动机的转速 2、直流电动机的原理:基于电磁感应定律,即:运动导体切割磁力线,在导体中产生切割电势;或者说匝线链线圈的磁通发生变化,在线全中产生感应电势。

N极下到导体中的电流流出纸面,用Θ表示。 S极下到导体中的电流流出纸面,用?表示载流导体在磁场中受到电磁力的作用。如果导体在磁场中的长度为L,其中流过的电流为i,导体所在的磁通密度为B,那么导体受到的磁力的值为 F=BLI 式中,F的单位为牛顿(N);B的单位为韦伯/米2(Wb/m2);L的单位为米(m);I的单位为安(A);力F的方向用左手定则来确定。 1.1.2 功率放大器的组成原理 功放的作用是通过对控制信号的功率放大以产生足够的功率来驱动执行机构。功率放大器的工作原理就是利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率将电源转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数。应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原来的β倍的大信号,这种现象成了功率放大。而场效应管则是栅极变化一毫伏,原极电流变化一安,就成称跨导为1,功率放大器就是利用这些作用来实现小信号来控制大信号,从而使多级放大器实现了大功率输出,并非真的将功率放大了。

1.1.3 测速元件工作原理 因此电刷两端的感应电势与电机的转速成正比,即电势值能表征转速的大小,因此直流测速发电机可以把转速信号转换成电视信号,从而用来测速。 测速装置由电机,光栅盘,等组成。 1.2广义对象数学模型的建立 1.2.1广义对象时间响应特性的测试 1.2.1.1测试实验原理图 G(s)=)()(s s N 输出量 G (s )=Φ(s) - 1Φ(s) Φ(s)=) 输入量(s )(s N (可以消除干扰) 1.2.1.2测试过程与方法 时域法:通过测量对应特定输入信号的系统输出响应,来确定系统的 传递函数。

直流无刷电动机及其调速控制

直流无刷电动机及其调速控制 1.直流无刷电动机的发展概况与应用 有刷直流电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间内一直在运动控制领域占据主导地位。但是,有机械接触电刷-换向器一直是电流电机的一个致命弱点,它降低了系统的可靠性,限制了其在很多场合中的使用。为了取代有刷直流电动机的机械换向装置,人们进行了长期的探索。早在1917年,Bolgior就提出了用整流管代替有刷直流电动机的机械电刷,从而诞生了无刷直流电机的基本思想。 1955年美国的D.Harrison等首次申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,标志着现代无刷直流电动机的诞生。无刷直流电动机的发展在很大程度上取决于电力电子技术的进步,在无刷直流电动机发展的早期,由于当时大功率开关器件仅处于初级发展阶段,可靠性差,价格昂贵,加上永磁材料和驱动控制技术水平的制约,使得无刷直流电动机自发明以后的一个相当长的时间内,性能都不理想,只能停留在实验室阶段,无法推广使用。1970年以后,随着电力半导体工业的飞速发展,许多新型的全控型半导体功率器件(如GTR、MOSFET、IGBT等)相继问世,加之高磁能积永磁材料(如SmCo、NsFeB)陆续出现,这些均为无刷直流电动机广泛应用奠定了坚实的基础。在1978年汉诺威贸易博览会上,前联邦德国的MANNESMANN公司正式推出了MAC无刷直流电动机及其驱动器,引起了世界各国的关注,随即在国际上掀起了研制和生产无刷直流系统的热潮,这业标志着无刷直流电动机走向实用阶段。 随着现代永磁材料和相关电子元器件的性能不断提高,价格不断下降,无刷电动机的到了快速发展,并被广泛应用于各个领域,例如,在数控机床、工业机器人以及医疗器械、仪器仪表、化工、轻纺机械和家用电器等小功率场合,计算机的硬盘驱动和软盘驱动器器中的主轴电动机、录像机中的伺服电动机等。 2.直流无刷电动机的基本结构和工作原理 2.1直流无刷电动机的结构 直流无刷电动机的结构 示意图如图2-1所示。 无刷直流电动机由它是 由电动机本体、位置检测器、 逆变器和控制器组成。无刷 直流电动机最初的设计思想 来自普通的有刷直流电动 机,不同的是将直流电动机 的定子、转子位置进行了互 换,其转子为永磁结构,产 生气隙磁通;定子为电枢, 有多相对称绕组。原直流电 图2-1 无刷直流电机机构示意图 动机的电刷和机械换向器被 逆变器和转子位置检测器所代替。所以无刷直流电动机的电机本体实际上是一种

相关主题
文本预览
相关文档 最新文档