当前位置:文档之家› 《高分子物理》例题库

《高分子物理》例题库

《高分子物理》例题库
《高分子物理》例题库

例题与习题库

第一章

1. 1 高分子链的近程结构 1.1.1 结构单元的化学组成

例1-1以下化合物,哪些是天然高分子化合物,哪些是合成高分子化合物 (1)蛋白质,(2)PVC ,(3)酚醛树脂,(4)淀粉,(5)纤维素,(6)石墨,(7)尼龙66,(8)PVAc ,(9)丝,(10)PS ,(11)维尼纶,(12)天然橡胶,(13)聚氯丁二烯,(14)纸浆,(15)环氧树脂 解:天然(1)(4)(5)(6)(9)(12)(14),合成(2)(3)(7)(8)(10)(11)(13)(15)

1.1.2 构型

例1-2试讨论线形聚异戊二烯可能有哪些不同的构型,假定不考虑键接结构(画出结构示意图)。

解:聚异戊二烯可能有6种有规立构体,它们是:

常见错误分析:本题常见的错误如下:

23C C

CH 2CH 2CH 3H

C C C C C

C R

R R 33CH 3H H

H

H H H (R =CH CH 2)C C C C C

C R

R R H H

H

H H H H H H (R =C(CH 3)CH 2)C C C C C C R R

R CH 3

CH 33

H

H H

H H

H (R =

CH

CH 2)

C C C C C C R R

R H

H H

H H

H H

H H

(R =

C(CH 3)

CH 2)

② 反1,4加成

④ 3,4加成全同立构 ③ 1,2加成全同立构

⑤ 1,2加成间同立构 ⑥ 3,4加成间同立构

(1)将1,2加成与3,4加成写反了。

按IUPAC 有机命名法中的最小原则,聚异戊二烯应写成

而不是

即CH 3在2位上,而不是在3位上。 (2)“顺1,4加成又分成全同和间同两种,反1,4加成也分成全同和间同两种。”顺1,4或反1,4结构中没有不对称碳原子,没有旋光异构体。甲基与双键成120°角,同在一个平面上。

例1-3 环氧丙烷经开环聚合后,可得到不同立构的聚合物(无规、全同、间同),试写出它们的立构上的不同,并大致预计它们对聚合物性能各带来怎样的影响?

解:聚环氧丙烷的结构式如下:

存在一个不对称碳原子(有星号的),因而有以下全同、间同和无规立构体。

性能的影响是:全同或间同立构易结晶,熔点高,材料有一定强度;其中全同立构的结晶度、熔点、强度会比间同立构略高一点。无规立构不结晶或结晶度低,强度差。

常见错误分析:“只存在间同立构,不存在全同立构。”

以上写法省略了H ,根据上述结构式,似乎只存在间同不存在全同。这是一种误解,实际上碳的四个价键为四面体结构,三个价键不会在一个平面上。而在平面上表示的只是一个示意,全同与间同的真正区别在于CH 3是全在纸平面之上(或之下),或间隔地在纸平面之上和之下。

例1-4 试述下列烯类高聚物的构型特点及其名称。式中D 表示链节结构是D 构型,L 是L 构型。

(1) -D -D -D -D -D -D -D - (2) -L -L -L -L -L -L -L -

(3) —D -L -D -L -D -L -D -L -

CH CH 3CH 2CH 2n 1234CH CH 3

CH 2CH 2n

1234

CH 3CH 2CH O n *

C C C C H H CH 3CH 3H H H H O O C C C C H H CH 3CH 3

H H H

H O O O C C C C H H CH 33H H H H O O C C C C H H CH 3CH 3H H H H O O

O C C C C H H CH 3CH 3H H H H O O C C C C H H 3

CH 3

H H H H O

O O ① 全同

② 间同

③ 无规 O O CH 3CH 3

O O

CH 3

(4) —D -D -L -D -L -L -L - 解:(1)全同立构;(2)全同立构;(3)间同立构;(4)无规立构。

常见错误分析:“(1)和(2)是均聚;(3)是交替共聚;(4)是无规共聚。”这里是将构型与共聚序列混为一谈。

例1-5计算在平面锯齿形间同和全同PVC 链中最近邻的两个氯原子的中心之间

的距离。氯原子的范德华直径为0.362nm ,从该计算结果,你能得到关于全同PVC 链的什么信息?

解:对于间同立构PVC

(a)从锯齿形碳骨架的平面观察 (b)沿链方向观察

x=0.251nm ;y=2bsin θ,b=0.177nm ,

θ≈109.5?/2,因而y=0.289nm 。

两个氯原子的距离为(x 2

+y 2

)2

1=0.383nm 。 对于全同立构PVC ,氯原子的距离x=0.251nm 。 因而平面锯齿形PVC 链就不可能是全同立构的。

例1-6 写出由取代的二烯

CH 3—CH =CH —CH =CH —COOCH 3

经加聚反应得到的聚合物,若只考虑单体的1,4一加成,和单体头一尾相接,则理论上 可有几种立体异构?

解 该单体经1,4一加聚后,且只考虑单体的头一尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物:

CH

COOCH 3CH

CH

CH CH 3

CH

COOCH 3

C H

CH

CH CH 3

即含有两种不对称碳原子和一个碳一碳双键,理论上可有8种具有三重有规立构的聚 合物。

(a)(b)

(c)(d)

(e) (f)

(g) (h)

图l-5 三重有规立构的聚合物

(a)反式——叠同三重全同立构(trans-erythrotriisotactic)

(b)顺式——叠同三重全同立构(cis-erythro-triisotactic)

(c)反式——非叠同三重全同立构(trans—threotriisotactic)

(d)顺式——非叠同三重全同立构(cis-threo-triisotactic)

(e)反式——非叠同三重间同立构(trans -threoytrisyndiotactic)

(f)顺式——非叠同三重间同立构(cis -threotrisyndiotactic)

(g)反式——叠同三重间同立构(trans -erythreoytrisyndiotactic)

(h)顺式——叠同三重间同立构(cis -erythreotrisyndiotactic)

例1-7 以聚丁二烯为例,说明一次结构(近程结构)对聚合物性能的影响?

解:单体丁二烯进行配位聚合,由于1,2加成与1,4加成的能量差不多,所以可得到两类聚合物。一类是聚1,2-丁二烯,通式是;另一类是聚1,4-丁二烯,通式是

。每一类都可能存在立体异构,如

由于一次结构不同,导致聚集态结构不同,因此性能不同。其中顺式聚1,4-丁二烯规整性差,不易结晶,常温下是无定形的弹性体,可作橡胶用。其余三种,由于结构规整易结晶,使聚合物弹性变差或失去弹性,不易作橡胶用,其性能之差详见表1-1。

表1-1聚丁二烯的物理性质 异构高分子 熔点(℃) 密度

(g/cm 3) 溶解性(烃类溶剂) 一般物性(常温) 回弹性 20℃ 90℃ 全同聚1,2-丁二烯 120~125 0.96 难 硬,韧,结晶性

45~55 90~92 间同聚1,2-丁二烯 154~155 0.96 难 硬,韧,结晶性 顺式聚1,4-丁二烯 4 1.01 易 无定形 硬弹性 88~90 92~95 反式聚1,4-丁二烯 135~148

1.02

硬,韧,结晶性

75~80

90~93

1.1.3 键接结构和共聚序列

例1-8 在聚乙烯醇(PV A)溶液中加入HIO 4,假定1、2-乙二醇结构全都与HIO 4作用使分子链断裂.在加入前测得PV A 的数均相对分子质量为35 000,作用后相对分子质量为 2 200。试求PV A 中头头相接结构的百分数(即每100个结构单元中头头结构数)。

解: %88.114435000

1

220035000

=--= 注意:-1是因为断裂一个头-头结构会产生两段链,于是头-头结构数总是比链数少

1。分母的“-1”可以忽略,因为链节总数很大,但分子的“-1”不可忽略,因为总共只有16段。

头-头结构百分数= 平均每根链上头-头结构数 平均每根链的链节数

例1-9 聚氯乙烯用锌粉在二氧六环中回流处理,结果发现有86%左右的氯被脱除,产物中有环丙烷结构,而无C=C结构,就此实验事实,说明聚氯乙烯链中单体的键接方式.

解:聚氯乙烯中头-尾相接的单元脱除Cl原子后形成环丙烷结构;而头-头相接的单元脱除Cl原子后形成双键。所以该聚氯乙烯链中单体全部为头-尾相接。

例1-10氯乙烯

H2C

CH

Cl和偏氯乙烯CH2=C-Cl2的共聚物,经脱除HCl和裂解后,

产物有

等,其比例大致为10:1:10(重量),由以上事实,对这两种单体在共聚物中的序列分布可得到什么结论?

解这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元):H2C CH+H2C C

Cl

(D

(V))

(1)

(2) (4)

V V V

V V D,D V V,V D V D D V,V D D,D V D D D D

这四种排列方式的裂解产物分别应为:(1)C C C C C C

Cl

Cl Cl

C H CH C

H

CH C

H

CH

C C C C C

Cl

Cl Cl

Cl

C H CH C

H

CH C

H

C

Cl

Cl

(2)

C C C

C

C

C

Cl

Cl

Cl (3)

Cl Cl

C H

C C H

C C H

C H

Cl Cl

Cl

Cl

C C C

C

C C

Cl

Cl

Cl (4)

Cl

Cl

Cl C H

C C H

C C H

C Cl

Cl

Cl

Cl

Cl

Cl

而实验得到的裂解产物组成是:

可见原共聚物中主要为:

-V -V -V -······-D -D -D -······

的嵌段排列,而如(2)或(3)情况的无规链节很少。

例1-11 有全同立构和无规立构两种聚丙烯,为测定其单体连接顺序,先分别将此两种聚丙烯氯化,并控制每一结构单元平均引入一个C1原子,再脱除HCI ,并进一步热裂解成环,则可得到各种取代苯.由裂解色谱分析得知,全同立构的裂解碎片中, 1,2,4一三甲苯/1,3,5一三甲苯 = 2.5/97.5;而无规立构物的裂解碎片中,这一比例为9.5/90.5。试由以上实验数据,推断这两种聚丙烯大分子链的单体连接顺序。 解:用例1-7的方法,

三单元组-A -A -A -或-B -B -B -均环化得1,3,5三甲苯;而其他三单元组-A -A -B -,-B -A -A -,-A -B -A -,-B -B -A ,-A -B -B -,-B -A -B -均环化得1,2,4三甲苯。所以结论是,无规立构聚丙烯中,单体头-头连接率为9.5%;全同立构聚丙烯中单体头-头连接率为2.5%。

例1-12两种单体A 、B 以等摩尔量共聚,用图表示三种有代表性的共聚物。 答:-ABABABAB —;-AABABBBA -;-AAAA -BBBBB -……

CH CH 23

CH CH 23+A B

1.2 高分子链的远程结构

1.2.1 构象

例1-13 (1)由丙烯得到的全同立构聚丙烯有无旋光性?

(2)假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度?

解:(1)无旋光性。

(2)不能。提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现;而改变构型必须经过化学键的断裂才能实现。

例1-14现有四种碳链高分子,设其中每一种高分子链是由若干个顺式(C)和反式(T)的构象按下列四种方式连接的:

(a)T—T—T—T—T;(b)T—C—C—C—T;

(c)C—C—C—C—C;(d)T—T—C—T—T.

试画出上述四种高分子链的形状示意图;比较它们末端距的长度大小。

解:(1)

(2)

(3)

(4)

顺式结构越多,末端距越小。

注意:实际上顺式构象是高能量构象,是不稳定的,聚合物一般采取能量较低的反式和旁式(包括左旁式和右旁式)构象,本题为了在绘图方便,用反式代替旁式。

例1-15计算丁烷分子中与2位碳和3位碳相连的氢原子当处于反式和顺式构象时的最小距离。

解:

(a)图为反式构象,从碳骨架平面的法线方向观察的视图。A和B分别代表平面同一侧H2和H3两个氢原子在平面上的投影,假定这两个氢都在靠近读者的一侧。

因为C2A = C3B = l CH cos(θt/2),C2D = l CC sin(θt/2),C3D = l CC cos(θt/2)。θt

是正四面体的夹角,l CH 和l CC 为C-H 键和C-C 键的长度。则AB 为反式构象时H 2和H 3的最小距离。

AB = 2

232

2)2()(A C D C D C ++= 0.249nm

(b ) 图为顺式构象时C 2-C 3键与两个氢原子H 2和H 3构成的平面,C 1和C 4不在这个平面上。

则AB 为顺式构象时H 2和H 3的最小距离。

AB = l CC -2l CH cos θt =0.227nm

例1-16 近程相互作用和远程相互作用的含义及它们对高分子链的构象有何影响?

解:所谓“近程”和“远程”是根据沿大分子链的走向来区分的,并非为三维空间上的远和近。事实上,即使是沿高分子长链相距很远的链节,也会由于主链单键的内旋转而会在三维空间上相互靠的很近。

高分子链节中非键合原子间的相互作用——近程相互作用,主要表现为斥力,如

中两个C 原子上的H 原子,两个H 原子的范德华半径之和为0.240nm ,当两个H

原子为反式构象时,其间的距离为0.247 nm ,处于顺式构象时为0.226nm 。

因此,H 原子间的相互作用主要表现为斥力,至于其它非键合原子间更是如此。近程相互排斥作用的存在,使得实际高分子的内旋转受阻,使之在空间可能有的构象数远远小于自由内旋转的情况。受阻程度越大,构象数就越少,高分子链的柔性就越小。远程相互作用可为斥力,也可为引力。当大分子链中相距较远的原子或原子团由于单键的内旋转,可使其间的距离小于范德华距离而表现为斥力,大于范德华距离为引力。无论哪种力都使内旋转受阻,构象数减少,柔性下降,末端距变大。高分子链占有体积及交联和氢键等都属于远程相互作用。

1.2.2 均方末端距

例1-17 C -C 键10

1.5410l m -=?,求聚合度1000的自由结合链的1

2

2

h

解:2

2h

nl =,1

2

92

4.8710h

m -=?

例1-18 链的尺寸扩大10倍,则聚合度需扩大多少倍? 解:()1

1

2

222

10100h

nl =,所以聚合度应扩大100倍。

例1-19 无规行走n 步,若考虑成1n 步和2n 步(12n n n =+),原点为A ,1n 步后的地点为B ,2n 步后的地点为C ,证明2

22AC AB BC =+,AB ,AC ,BC 为点之间的距离,

为统计平均值。 解:2

21AB

n l =,222BC n l =,22AC nl =

因为12n n n =+,所以得证。

例1-20 详细推导具有六个单键的分子的自由旋转均方末端距公式.假定键长0.154nm ,

键角为109'28°,计算 2,r f h 值(注:不能直接代入 2

2,2nl h r f = 计算).

解:??????++++++++++++=6252423222126151413121112l l l l l l l l l l l l l l l l l l l l l l l l h 665646362616l l l l l l l l l l l l +++++

∵22211l l l l l =??????==

θcos 2

21l l l =,θ2

2

31cos l l l =,23

14cos l l l θ=??????r u r

θcos 232l l l =,??????=θ2242cos l l l

∴[

θθθθθ5432222cos cos cos cos cos 26+++++=l l h θθθθ4

32cos cos cos cos ++++ θθθ3

2cos cos cos +++ θθ2

cos cos ++ ]θcos +

(

)

θθθθθ5

4322

2

cos cos 2cos 3cos 4cos 526+++++=l l 将3

1cos ≈θ代入

251.2154.02154.06222??+?=h

=0.1423+0.1068 =0.249nm 2

第二种算法是直接代入:

()()?????

?----+=2

2

2

cos 1cos 1cos 2cos 1cos 1θθθθθn n l h =0.1542×(12-1.498)=0.249nm 2

但本题不能直接代入2

2,2nl h r f =计算,因为该式推导过程中已假定∞→n ,但对于n =6,该式不能成立。

例1-21 计算相对分子质量为106的线形聚苯乙烯分子的均方根末端距. (1)假定链自由取向(即自由结合). (2)假定在一定锥角上自由旋转.

解:n = 2×106

/104=19231

l = 0.154nm

(1) 2

2

2

,154.019231?==nl h j f ()

nm l n h

j

f 4.21212,==

(2) 22

2

,2cos 1cos 1nl nl h j f ≈-+=θ

θ

()nm l n h r

f 2.302212,==

例1-22 已知高分子主链中键角大于90°,定性地讨论自由旋转的均方末端距与键角的关系。

解:对于自由旋转链

θ

θ

cos 1cos 12

2,-+=nl

h r f (式中:θ=180°-键角)

(1)当键角等于90°时,θ=90°,cos θ=0

2

,22,j f r f h nl h ==

可见自由结合链是平均键角为90°的自由旋转链。 (2)当键角等于180°时,θ=0,cos θ=1

∞=2,r f h

这是伸直链的情况。

(3)当键角在90°~180°之间时,随键角的增加,θ变小,cos θ增大,2

,r f h 随之增大。这是由于大的键角使链不易运动,变得较僵硬。

注意:本题也可以用2

2

,1cos 1cos f r h nl

α

α

-=+(式中:α为键角)讨论,此时α的变化方向

与θ相反(因是互补角),但讨论结果一致。

例1-23 假定聚乙烯的聚合度为2000,键角为109.5°,求伸直链的长度L max 与自由旋转链的根均方末端距之比值。并由分子运动观点解释某些高分子材料在外力作用下可以产生很大变形的原因。 解:对于聚乙烯链

nl L 2

1max 32??

? ??=

()l n h r

f 2212,=

n =2×2000=4000(严格地说应为3999) 所以()

5.363

40003212,max ===n h

L r

f

可见高分子链在一般情况下是相当卷曲的,在外力作用下链段运动的结果是使分子趋

于伸展。于是某些高分子材料在外力作用下可以产生很大形变,理论上,聚合度2000的聚乙烯完全伸展可形变36.5倍。

注意:公式中的n 为键数,而不是聚合度,本题中n 为4000,而不是2000。 例1-24 cos 0?=时的自由旋转链的2

h

与高斯链的20

h

相比大多少?假定

cos 13θ=。

解:cos 0?=时,自由旋转链的()()2

21cos 1cos h

nl θθ=+-

高斯链的220

h

nl =

所以()()2

2

1cos 1cos 2h

h θθ=+-=

例1-25

(1)计算相对分子质量为280 000的线形聚乙烯分子的自由旋转链的均方末端距。键长0.154nm ,键角为109.5°;

(2) 用光散射法测得在θ溶剂中上述样品的链均方根末端为56.7nm ,计算刚性比值; (3) 由自由旋转链的均方末端距求均方旋转半径。

解:(1)22

,2f r h nl ==2×2×10000×1.542

=949nm 2

(2) (

)

1

2

2

20,/f r

h h σ==1.84

(3) 2

2

6

1h s =

=158nm 2 例1-26 若把聚乙烯看作自由旋转链,其末端距服从Gauss 分布函数,且已知C —C 键长为0.154nm ,键角为109.5°,试求:

(1)聚合度为5×104的聚乙烯的平均末端距、均方末端距和最可几末端距; (2)末端距在±1nm 和±10nm 处的几率那个大.

解 (1)2

2

1cos 1cos fr h nl

α

α

-=+ (注:α为键角,θ为键角的补角)

=2(5×104)×0.1542×5

.109cos 15

.109cos 1+-

=4.7×103(nm)2 或 ()

12268.6fr

h

nm =

40.9

h =

=

=nm

1

28.1h nm β

*=

=

= (2)由dh h h dh h 2223

4)ex p()(

)(πβπ

βω-= 322

2

4242

3

3(1)(

)exp[(

)(10)]4(10)

225100.1542225100.154nm ωππ

-±=?±?±?????????? =3.5×10-7(nm -1)

ω(±10nm ) =3.7×10-5(nm -1)

即在±10nm 处的几率比在±1nm 处出现的几率大。

例1-27 计算M=250000g ?mol -1的聚乙烯链的均方根末端距,假定为等效自由结合链,链段长为18.5个C-C 键。

解: 每个CH 2基团的分子量为14 g ?mol -1,因而链段数n e 为

2.5×105/(14×18.5)=9.65×102

链段长l e 为18.5bsin θ/2,式中θ=109.5?,b=0.154nm, 所以l e =2.33nm

(2

h )2

1

=l e e n =72.4nm

例1-28 试比较下列高分子链.当键数分别为n=100和n=1000时的最大拉伸倍数; (1)无规线团高分子链; (2)键角为θ的自由旋转链;

(3)聚乙烯链,已知下列数据和关系式:

反式(t)φi =0, U(t)=0;旁式(g 或g /) σ2=±120,U(g 或g /)=3.34kJ·mol -1,

,cos cos 3

1

3

1

∑∑===i j t t

t t N N ??而)exp(

kT

E N t

t -=

解:(1)对无规线团,按自由结合链计算,2

2

,nl h j f =

∴最大伸长倍数=()

21

2121

2,max n l n nl h

L j

f =??

? ?=

当n =100时为10;

当n =1000时为31.6

注:因为自由结合链无键角限制,nl L =max

(2)对自由旋转链,2

2

,2nl h r f = ∴最大伸长倍数=()

()2121

2121

2

1

2

,max 31232n l n nl h L r f ??

? ??=??? ??=

当n =100时为5.77; 当n =1000时为18.3

(3)对于聚乙烯链,?

?

cos 1cos 122

2

-+=nl h PE

∴10exp )0(==N

260.0)29831.8100034.3ex p()120()120(111

=?????-=-=---K

mol K J mol J N N

[]487.0260.0260.01)120cos(120cos 260.00cos 1cos =++?-+?+?=?

222

81.5487

.01487.012nl nl h PE =-+=

∴最大伸长倍数=()21212

1

339.081.532n l n nl =??

? ??

当n =100时为3.39; 当n =1000时为10.7

例1-29从内旋转位能图(见图1-1)上读取旋转位能较低的峰值为12kJ/mol ,高的峰值为25 kJ/mol ,g 、g ′的E k =2 kJ/mol 。用t 、g 、g ′的三个峰值代替连续分布的旋转位能,求140℃的cos ???;当68θ=?,从2

2

1cos 1cos (

)()1cos 1cos h nl θφθφ++??

??=--??

计算22/h nl ??。

解:cos ???=0.224

22/h nl ??=

1cos 681cos 1cos 681cos ??+?+??

?-?-??

=3.5

例1-30 已知顺式聚异戊二烯每个单体单元是0.46nm ,而且n h 2.162=,问这个大分子的统计上等效自由结合链的链段数和链段长度。(注:这里n 为单体单元数目) 解:∵22e e l n h =,e e l n L =max

联立此两方程,并解二元一次方程得

22max h L n e =,max 2

L h l e = ∵n L 46.0max =

∴()n n n e

013.02

.1646.02

==

,nm n n l e 352.046.02.16==

例1-31 长度足够大的高分子链,可用以链段为统计单元的等效自由取向链来统计处理.今

有一个大分子A ,含有p 个自由取向的链段,另有一个大分子B ,含有q 个自由取向链段.现将B 分子接枝到A 分子的正中链段上,若接枝前后的三种大分子的链段长度不变,其数值均为b .求从A 分子的一端到此支化分子的另二端A /及B 的均方末端距为多大. 解:

2

2'

pb h AA =,222b q p h AB ??

? ??+= 例1-32 现有一种三嵌段共聚物M —S —M ,当S 段重量百分数为50%时,在苯溶液中S

段的均方根长度为10.2nm ,假定内旋转不受限制,C —C 键角为109°28',键长为0.15nm ,分别求出S 段和M 段(两个M 一样长)的聚合度(M 为甲基丙烯酸甲酯,S 为苯乙烯). 解:(1)先求S 段的聚合度

10.22 =2n ×0.1542 n =2193

聚合度109722193==S P

A ’

(2)再求M 段的聚合度

∵S 段和M 段的重量百分数相等(均为50%)

10021041097?=?MMA P 57021141==MMA P

例1-33 现有由10摩尔水和0.1摩尔高分子组成的水溶性高分子溶液,在100℃时水蒸 汽压为38mmHg ,用拉乌尔定律试计算每根高分子链所包含的平均链段数目;当链段运动处于完全自由状态,并且每一个链段长度为5nm 时,求该高聚物链的均方根末端距的大小. 解:(1)根据拉乌尔(Raoult )定律,10

11x P P =

P 1——溶液中溶剂的蒸气压

P 10——纯溶剂的蒸气压

x 1——溶液中溶剂的摩尔分数

设每根高分子链所包含的平均链段数为n e P 1=38,P 10=760

()()e n n n n x 1.010102111+=+=

(这里假定链段与溶剂分子的大小一样) 代入10

11x P P =

()1900

1.010*******=+?=e e n n

(2)根据等效自由结合链的公式 均方根末端距 ()

nm l n h e e 2185190021

21

2

1

2=?==

1.3 高分子链的柔顺性

1.3.1柔顺性的结构影响因素(定性描述)

例1-34 试从下列高聚物的链节结构,定性判断分子链的柔性或刚性,并分析原因.

(1)

CH 2

C CH 3

CH 3

(2)

CH R

C N H

O

(3)

CH 2

CH CN

(4)

O C CH 3

CH 3

O C O

(5)

C

C

C

C

解:(1)柔性。因为两个对称的侧甲基使主链间距离增大,链间作用力减弱,内旋转位垒降

低。

(2)刚性。因为分子间有强的氢键,分子间作用力大,内旋转位垒高。

(3)刚性。因为侧基极性大,分子间作用力大,内旋转位垒高。 (4)刚性。因为主链上有苯环,内旋转较困难。

(5)刚性。因为侧基体积大,妨碍内旋转,而且主链与侧链形成了大π键共轭体系,使链僵硬。

例1-35 比较以下两种聚合物的柔顺性,并说明为什么?

解:聚氯丁二烯的柔顺性好于聚氯乙烯,所以前者用作橡胶而后者用作塑料。聚氯乙烯有极性的侧基Cl ,有一定刚性。聚氯丁二烯虽然也有极性取代基Cl ,但Cl 的密度较小,极性较弱,另一方面主链上存在孤立双键,孤立双键相邻的单键的内旋转位垒较小,因为①键角较大(120°而不是109.5°),②双键上只有一个H 原子或取代基,而不是两个。

例1-36 试分析纤维素的分子链为什么是刚性的。(提示:从纤维素链节结构分析阻碍内旋转的因素) 解:因为

(1)分子有极性,分子链间相互作用力强。 (2)六元吡喃环结构使内旋转困难。

(3)分子内和分子间都能形成氢键,尤其是分子内氢键使糖苷键不能旋转,从而大大增加了刚性。分子内氢键示意图如下:

例1-37 比较以下三个聚合物的柔顺性,从结构上简要说明原因。

解:(1)的刚性最大,因为双键与苯环共轭;(2)的柔性最大,因为双键是孤立双键;(3)介于中间。

例1-38 评价主链带有间隔单键和双键的聚磷腈的柔顺性。其结构示意如下:

解:这种结构是已知最有柔顺性的主链。因为:

(1) 骨架键长为0.16nm ,比C-C 键长0.154nm 略长,减少了短程分子间相互作用; (2) N 的键角从C=C 双键的120゜变为135゜; (3) 骨架的电子结构并无π键阻碍内旋转。

1.3.2柔顺性的参数(定量描述)

H

H H CH 2OH O O OH H H

H H H H CH 2OH

O O

OH H H HO CH CH 22n CH CH CH 2n CH 2CH 2CH 22n

(1)(2)(3)

例1-39 下表数据说明了什么?试从结构上予以分析:

聚合物的刚性因子

聚二甲基硅氧烷 1.4~1.6 聚异戊二烯 1.5~1.7 聚乙烯 1.83

聚苯乙烯 2.2~2.4

硝化纤维素 4.2 解:刚性因子(

)

2

1

2,20

r

f h

h

σ越大,说明分子链刚性越大,或柔性越小。

(1)聚二甲基硅氧烷:由于Si -O 键中氧原子周围没有侧基,而且Si -O 键的键长较大,Si -O -Si 的键角也较大,所以内旋转容易,分子链极为柔顺。

(2)聚异戊二烯:由于双键上的侧基(或原子)数目较单键少,键角120°大于一般单键的109.5°,所以孤立双键邻近的单键内旋转位垒较少,分子链也非常柔顺。

(3)聚乙烯:具有一定柔顺性。

(4)聚苯乙烯:侧基较大,由于空间位阻对内旋转不利,从而刚性比聚乙烯大。 (5)硝化纤维素:主链上的六元环结构使内旋转困难。而且分子间能形成氢键,侧硝酸酯基也有极性,这些因素都大大增加分子刚性。

例1-40 在特种溶剂中在不同温度时测得下列高聚物的1

202()h M

值如下表,试求它们的刚性

因子σ。你计算所得的结果与聚异丁烯是橡胶及聚苯乙烯是塑料有没有矛盾? 又温度对分子链的刚硬性有什么影响? (提示:先算出21,2

(

)f r h M

)。

解:(

)()()

2

1

2,2

1

20

2

1

2,20

M

h

M h h

h

r

f r

f ==σ

()2

1

2,M h A r

f =

先求出()2

0202

2,08.3154.042???

?

?

?=??==M M M M M nl M

h

r

f 式中:M 0为链节相对分子质量

代入σ式得,308

.00M A =σ

结果列于下表

高聚物 M 0 温度/℃

聚异丁烯 56 24 1.93 95 1.84 聚甲基丙烯酸甲酯

100 30 2.21 聚苯乙烯

104

25 2.43 70

2.35

可见,(1)聚异丁烯柔性大,是橡胶;聚苯乙烯和聚甲基丙烯酸甲酯刚性大,是塑料。计算结果与实际一致。(2)随着温度提高,σ减少,即刚性减少。

例1-41 已知聚次甲基的聚合度为104,链的刚性因子σ=6.5,试计算: 聚次甲基链在孤立无扰状态时的理论最大拉伸比 λmax 为多大? 解:(

)

5.62

1

2,20

==r

f h

h

σ

()

()

2

1

2

2

1

20

25.6nl

h =

()

()88.8100888.00888.025.63242

1221

2

1

2

0max max ===??

? ??==n nl nl h L λ 注:聚次甲基

,不同于聚乙烯。聚合度n 与键数n 一致。

第二章

2.1聚合物的晶态和非晶态结构

2.1.1内聚能密度

例2-1 根据高聚物的分子结构和分子间作用能,定性地讨论表2-3中所列各高聚物的性能。

表2-3线形高聚物的内聚能密度

解:(1)聚乙烯、聚异丁烯、天然橡胶、聚丁二烯和丁苯橡胶都有较好的柔顺性,它们适合于用作弹性体。其中聚乙烯由于结构高度对称性,太易于结晶,从而实际上只能用作塑料,但从纯C -C 单键的结构来说本来应当有很好的柔顺性,理应是个橡胶。

(2)聚苯乙烯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯和聚氯乙烯的柔顺性适中,适合用作塑料。

(3)聚对苯二甲酸乙二酯、尼龙66和聚丙烯腈的分子间作用力大,柔顺性较差,刚性和强度较大,宜作纤维。

可见一般规律是内聚能密度<70卡/厘米3的为橡胶;内聚能密度70~100的为塑料;>100的为纤维。

2.1.2 比容、密度、结晶度

CH 2n

例2-2 由文献查得涤纶树脂的密度ρc =1.50×103kg ·m -3,和ρa =1.335×103kg ·m -3,内聚能ΔΕ=66.67kJ ·mol -1(单元).今有一块1.42×2.96×0.51×10-6m 3的涤纶试样,重量为2.92×10-3kg ,试由以上数据计算:

(1)涤纶树脂试样的密度和结晶度;

(2)涤纶树脂的内聚能密度.

解 (l) 密度)(10362.110

)51.096.242.1(1092.23363

---??=???==m kg V W ρ 结晶度 %8.21335

.150.1335

.1362.1=--=--=a c a V

c f ρρρρ

或 %3.23=--?=

a

c a

c W

c f ρρρρρρ (2) 内聚能密度 )(473192

)10362.1/1(1067.663

3

30-?=???=??=cm J M V E CED 文献值CED =476(J ·cm -3)

例2-3 试从等规聚丙烯结晶(α型)的晶胞参数出发,计算完全结晶聚丙烯的比容和密度。 解:由X 射线衍射法测得IPP 的晶胞参数为

a =0.665nm ,

b =2.096nm ,

c =0.650nm ,β=99°20ˊ, 为单斜晶系,每个晶胞含有四条H31螺旋链。

比容()043sin ~

M N abc W

V V A

??==

β

42

1210023.60299sin 650.0096.2665.023

???'????=

3068.1cm g =

(或33

10

068.1m kg -?)

密度3

936.0~1cm g V

==ρ (或33

10

936.0m kg -?)

文献值3

939.0cm g c =ρ

例2-4 已知聚丙烯的熔点T m =176℃,结构单元熔化热ΔH u =8.36kJ ·mol -1,试计算: (1)平均聚合度分别为=DP 6、10、30、1000的情况下,由于端链效应引起的T m 下降为多大?

(2)若用第二组分和它共聚,且第二组分不进入晶格,试估计第二组分占10%摩尔分数时共聚物的熔点为多少?

解 (1)

DP

H R T T u m m ??=-2110 每mol 体积 每mol 重量

式中,T o =176℃=449K ,R=8.31J ·mol -l K -1,用不同DP 值代入公式计算得到:

T m1=337K(104℃),降低值176—104=72℃ T m2=403K(130℃),降低值176—130=46℃ T m3=432K(159℃),降低值176—159=17℃ T m4=448K(175℃),降低值176—175=1℃ 可见当DP >1000时,端链效应开始可以忽略. (2)由于X A =0.9,X B =0.1

1000

36.89.0ln 31.844911ln 110?-

=?-=-m A u m m T X H R T T

∴T m =428.8K (156℃)

例2-5 有全同立构聚丙烯试样一块,体积为1.42×2.96×0.51cm 3

,重量为1.94g ,试计算

其比容和结晶度。已知非晶态PP 的比容g cm V a 3

174.1=,完全结晶态PP 的比容c V 用上

题的结果。 解:试样的比容g cm V 3105.194

.151

.096.242.1~=??=

∴651.0068

.1174.1105.1174.1=--=--=c a a

w

c V V V V X

例2-6 由大量高聚物的a ρ和c ρ数据归纳得到13.1=a c ρρ,如果晶区与非晶区的密度存

在加和性,试证明可用来粗略估计高聚物结晶度的关系式V c a X 13.01+=ρρ

解:a

c a

V

c X ρρρρ--=

13

.01113.1111-=--=--=a a a c a V

c X ρρρρρρρρ

∴V

c a X 13.01+=ρρ

例2-7 试推导用密度法求结晶度的公式 a

c a

c W

c f ρρρρρρ--?=

式中ρ为样品密度,ρc 为结晶部分密度,ρa 为非晶部分密度 解:(

)

1w

w

c c c a V f V f V =+-

∴w

a c a

c a c c a

V V f V V ρρρρρρ--==?--

高分子物理名词解释22953

近程结构:高分子中与结构单元相关的化学结构,包括结构单元的构造与构型 远程结构:指与整个高分子链相关的结构 构型:分子链中由化学键所固定的原子在空间的几何排布方式 构象:分子链中单键内旋转所形成的原子或基团在空间的几何排列图像 碳链高分子:高分子主链全部由碳原子组成,且碳原子之间以共价键连接而成的高分子 杂链高分子:主链上除碳原子外,还有氧氮硫等其他原子存在,原子键以共价键相连接的高分子元素有机高分子:主链不含碳原子,由Si,B,P,Al,Ti,As,O等无机元素组成,侧基为有机取代基团 链接异构:结构单元在分子链中因键接顺序或连接方式不同而形成的异构体 序列异构:不同序列排布方式形成的键接异构体 旋光异构:d型和l型旋光异构单元在分子链中排列方式不同而构成的异构体 几何异构:根据内双键连接的两个碳原子上键接基团在键两侧的排列方式分出顺式和反式两种立体异构体,称为顺反异构体,也称为几何异构体 全同立构:分子链中所有不对称碳原子均以相同的构型键接 间同立构:分子链中的不对称碳原子分别以d型和l型交替键接 无规立构:分子链中的不对称碳原子以d和l构型任意键接 线性高分子:具有一维拓扑结构的线性长链,长径比大,每个分子链带有两个端基 支化高分子:分子主链上带有与其化学组成相同而长短不一的支链的高分子,端基数目大于2 交联网络:经交联后,分子链形成的具有一定强度的网状结构 内旋转:与σ键相连的两个原子可以做相对旋转而不影响σ键电子云的分布,称为σ键的内旋转 内旋转势垒:内旋转时需要消耗一定能量以克服所受的阻力,所需能量即为内旋转势垒 内旋转势能差:内旋转异构体之间的势能差称为内旋转势能差 静态分子链柔顺性:又称为平衡态柔顺性,指高分子链在热力学平衡条件下的柔顺性 动态分子链柔顺性:指分子链在一定外界条件下,微构象从一种平衡态构象转变到另一种平衡态构

高分子物理名词解释

第二章名词解释 1.凝聚态:根据物质的分子运动在宏观力学性能上的表现来区分为固体、液体、气体。 2.单分子链凝聚态:大分子特有现象,高分子最小单位。 3.内聚能:1mol凝聚体汽化时需要的能量,△E = CE =△HV-RT(△HV——摩尔蒸发热,RT——汽化时做膨胀功) 4.晶胞:晶体结构中具有周期性排列的最小单位。 5.晶系:晶体按其几何形态的对称程度。 https://www.doczj.com/doc/bf200701.html,ler指数:是一种特殊的,以结晶学单胞三条棱为坐标系时确定的指数。 7.单晶:晶体的整体在三维方向上由同一空间格子组成。 8.球晶:浓溶液中析出或熔体中析出,在不存在应力的条件下,形成圆球形的晶体。 9.片晶厚度:结晶聚合物的长周期与结晶度的乘积。 10.结晶度:试样中结晶部分所占的质量分数或体积分数。 11.高分子链的缠结:高分子链之间形成物理交联点,构成网络结构,使分子链的运动受到周围分子的羁绊和限制。 12.聚合物液晶:一些物质的结晶结构受热熔融或被溶剂溶解后,表观上失去了固体物质的刚性,具有流动性,结构上仍保持有序结构,表现各向异性,成为固体-液体过渡状态。 13.溶致液晶:一种包含溶剂化合物在内的两种或多种化合物形成的液晶。 14.热致液晶:加热液晶物质时,形成的各向异性熔体。 15.液晶晶型:向列相(N相):完全没有平移有序 手征性液晶(胆甾相,手征性近晶相) 层状液晶(近晶A,近晶C )一维平移有序 盘状液晶相(向列相ND) 16.取向:在某种外力作用下,分子链或其他结构单元沿着外力作用方向择优排列的结构 取向度:f=1/2(3cos2θ-1)(θ:分子链主轴与取向方向之间的夹角,称为取向角) 17.双折射:一条入射光线产生两条折射光线的现象。 18.相容性:共混物各组分彼此相互容纳,形成宏观均匀材料的能力。 19.多组分聚合物:多组分聚合物又称高分子合金,指该体系中存在两种或两种以上不同的聚合物组分,不论组分之间是否以化学键相互连接。 20.自组装:基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术。 21.海-岛结构:两种高聚物相容性差,共混后形成非均相体系,分散相分散在连续相中,像小岛分散在海洋中一样,称为海岛结构。 22.核壳结构:由一种材料通过化学键或其他作用力将另一种材料包覆起来形成的有序组装结构。 23.包藏结构:海岛结构的粒子内部包藏着其他聚合物的结构。 24.电子显微镜:简称EM,电子显微镜由镜筒、真空装置和电源柜三部分组成。 25.X射线衍射:当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子分配规律。 26.偏光显微镜:用于研究所谓透明与不透明各向异性材料的一种显微镜。 27.差示扫描量热法(DSC):在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。

(完整版)高分子物理重要知识点

高分子物理重要知识点 第一章高分子链的结构 1.1高分子结构的特点和内容 高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。 英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。 与低分子相比,高分子化合物的主要结构特点是: (1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布; (2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性; (3)高分子结构不均一,分子间相互作用力大; (4)晶态有序性较差,但非晶态却具有一定的有序性。 (5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。 高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1): 表1-1高分子的结构层次及其研究内容 由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。 此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构 高分子链的化学结构可分为四类: (1)碳链高分子,主链全是碳以共价键相连:不易水解 (2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性 (4)梯形和螺旋形高分子:具有高热稳定性 由单体通过聚合反应连接而成的链状分子,称为高分子链。聚合度:高分子链中重复单元的数目; 除结构单元的组成外,端基对聚合物的性能影响很大:提高热稳定性 链接结构是指结构单元在高分子链的联接方式(主要对加聚产物而言,缩聚产物的链接方式一般是明确的)。

高分子物理第三章习题及解答

高分子的溶解 溶解与溶胀 例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢 解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。 高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。

例3-2.用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程都是增加的,即>0。显然,要使<0,则要求越小越好,最好为负值或较小的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,总小于零,即<0,溶解过程自发进行。根据晶格理论得 =(3-1) 式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式:=(3-2) 式中是体积分数,是溶度参数,下标1和2分别表示溶剂和

高分子物理第三章习题及解答

第三章 3.1 高分子的溶解 3.1.1 溶解与溶胀 例3-1 简述聚合物的溶解过程,并解释为什么大多聚合物的溶解速度很慢? 解:因为聚合物分子与溶剂分子的大小相差悬殊,两者的分子运动速度差别很大,溶剂分子能比较快地渗透进入高聚物,而高分子向溶剂地扩散却非常慢。这样,高聚物地溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”,然后才是高分子均匀分散在溶剂中,形成完全溶解地分子分散的均相体系。整个过程往往需要较长的时间。 高聚物的聚集态又有非晶态和晶态之分。非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因而溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难,因此晶态高聚物的溶解要困难得多。非极性的晶态高聚物(如PE)在室温很难溶解,往往要升温至其熔点附近,待晶态转变为非晶态后才可溶;而极性的晶态高聚物在室温就能溶解在极性溶剂中。 例3-2.用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 上式表明溶解的可能性取决于两个因素:焓的因素()和熵的因素()。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程都是增加的,即>0。显然,要使<0,则要求越小越好,最好为负值或较小的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,总小于零,即<0,溶解过程自发进行。根据晶格理论得 =(3-1) 式中称为Huggins参数,它反映高分子与溶剂混合时相互作用能的变化。的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为)。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即),其的计算可用Hildebrand的溶度公式: =(3-2) 式中是体积分数,是溶度参数,下标1和2分别表示溶剂和溶质,是溶液的总体积。从式中可知总是正的,当 时,。一般要求与的差不超过1.7~2。综上所述,便知选择溶剂时要求越小或和 相差越小越好的道理。 注意: ①Hildebrand公式中仅适用于非晶态、非极性的聚合物,仅考虑结构单元之间的色散力,因此用相近原则选择溶剂时有例外。相近原则只是必要条件,充分条件还应有溶剂与溶质的极性和形成的氢键程度要大致相等,即当考虑结构单元间除有色散力外,还有偶极力和氢键作用时,则有

同济大学高分子物理习题及解答

第一章 高分子链的结构 1 写出由取代的二烯(1,3丁二烯衍生物) CH 3CH CH CH CH COOCH 3 经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体? 解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: CH CH CH CH CH 3 COOCH 3n 即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。 2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 4氧化,可得到丙酮和乙酸。由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论? 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基: CH 2 CH OH CH 2 CH OH CH 2 CH OH CH 2O CH 2 CH 2 O CH CH 2 CH 2 CH OH 同时若用HIO 4氧化处理时,可得到乙酸和丙酮: CH 2 CH CH 2 OH CH CH 2 OH CH OH HIO 4 CH 3C OH + CH 3C O CH 3 若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 4氧化处理时,也得不到丙酮: CH 2 CH CH CH 2 CH 2 CH CH 2O CH O 2 CH CH 2 CH 2 CH OH

CH 2 CH CH OH CH 2CH 2 CH OH OH 4 CH 3C OH O + OH C CH 2CH 2C OH 可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。 3 氯乙烯( CH 2CH Cl )和偏氯乙烯( CH 2CCl 2 )的共聚物,经脱除HCl 和裂解后,产物有: ,Cl , Cl Cl , Cl Cl Cl 等,其比例大致为10:1:1:10(重量),由以上 事实,则对这两种单体在共聚物的序列分布可得到什么结论? 解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元): CH 2 CH Cl CH 2 C Cl Cl + (V) (D) V V V V V D D D V D D D 这四种排列方式的裂解产物分别应为:,Cl , Cl Cl , Cl Cl Cl 而实验得到这四种裂解产物的组成是10:1:1:10,可见原共聚物中主要为: V V V 、 D D D 的序列分布,而其余两种情况的无规链节很少。 4 异戊二烯聚合时,主要有1,4-加聚和3,4-加聚方式,实验证明,主要裂解产物的组成与聚合时的加成方法有线形关系。今已证明天然橡胶的裂解产物中 C H 3C CH 3 2 C H 3CH C H 3CH 2 (A) (B) 和 的比例为96.6:3.4,据以上事实,则从天然橡胶中异戊二烯的加成方式,可得到什么结论? 解:若异戊二烯为1,4-加成,则裂解产物为:

高分子物理学(吴其晔)课后答案

高分子物理答案详解(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 等。 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。

3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象? 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶? 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。 6.从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯睛与碳纤维; (2)无规立构聚丙烯与等规立构聚丙烯; (3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。 (1)线性高分子梯形高分子 (2 非晶高分子结晶性高分子 (3)柔性 (4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链 C 原子中约含15~35 个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。

高分子物理部分复习题.doc

高分子物理部分复习题 一、名词解释 构型、构象、柔顺性、内耗、等同周期、假塑性流体、 远程结构、近程结构、末端距、聚集态结构、液晶、 取向、嫡弹性、玻璃化转变温度、应力松弛、蠕变、杂链高分子、元素有 机高分子、键接结构、旋光异构、均相成核、异相成核、时温等效原理、粘流态、玻璃化转变温度、 二、填空题 1.聚合物的粘弹性体现在具有 _______ 、 ________ 、 ________ 三种力学松驰现象。 (3分) 2.___________________________ 分子间的范德华力包括________ 、和o (1.5分) 3.___________________________________________________ 作为橡胶、塑料和纤维使用的聚合物之间的主要区别是 ____________________________ o 4. ________ 材料一般需要较高程度的取向。 5.某聚合物试样中含两个组分,其相对分子质量分别1X10“ g/mol和 2X105g/mol,相应的质量分数(w)分别是0.2和0.8,其数均相对分子质量、重均相对分子质量和相对分子质量多分散系数分别是 _____________________ 、____________ 和 6.___________________________________________________ 高分子链的柔顺性越大,它在溶液中的构象数越 ________________________________ ,其均方 末端距越 _____________ O 7.__________________________________ 橡胶的高弹性的特点是:(1)弹性模量很 ______________________________________ ,而形变量很 _____ ; (2)形变需 要 _______ ; (3)形变时有________ 效应。 &制备高分子合金的方法有()和()o 9.随着聚合物结晶度的提高,其弹性模量_____________ ;随着结晶聚合物分子量 的增加,其熔点________________ ;随着聚合物交联程度的提高,其弹性模 量___________ O 10.PET的玻璃化转变温度是69°C,但用它制造的可乐瓶和矿泉水瓶在很低的温度下却还 有很高的抗冲击性能,主要是由于它在玻璃化转变温度以下还存在

何曼君 高分子物理课后答案_第三版

第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别? ①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ①稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团 之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。 ②亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章 一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。而一般共混物两相界面之间的作用力是分子间作用力或氢键,其分相可能是宏观可见的,添加增容剂后,并经强烈的机械混合,增容剂提高了两相界面之间的相互作用,可形成稳定的微相分离结构 第五章聚合物的非晶态 3.何谓“松弛”?请举例说明松弛现象。用什么物理量表示松弛过程的快慢? 答:“松弛”过程是指一个从非平衡态到平衡态进行的过程,它首先是很快地进行,然后逐步放慢甚至于时间达到无穷长。√ 例如,一直杆的长度比两刚壁之间的固定距离L稍长;将直杆强制地装入两刚壁之间,在开始时,直杆与刚壁的接触面之间有相互作用的压力P,在直杆内任一截面上也有内压力P;以后,随着时间的增长,这些压力的数值渐渐减小,而且温度越高时减小得越快。岩石和

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m 高 熔融熵?S m :与分子间链柔顺性有关。分子链越刚,?S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系: 结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物, 在该体系中存在两种或两种以上不同的聚合物, θ θθ22sin 2 3 1)1cos 3(2 1-=-=f

高分子物理第三章 习题参考答案

第三章 习题参考答案 1. 什么是溶度参数δ? 聚合物的δ怎样测定? 根据热力学原理解释非极性聚合物为什么能够溶解在其δ相近的溶剂中? 解:(1)溶度参数是内聚能密度的开方,它反映聚合物分子间作用力的大小。 (2)由于聚合物不能汽化,不能通过测汽化热来计算δ。聚合物的δ常用溶胀度法,浊度法和黏度法测定。 (3)溶解自发进行的条件是混合自由能0?M H (吸热), 所以只有当M M S T H ??,∴M H ?越小越好。 ()2 2121δδφφ-=?V H M ∴ 越小越好 ,即1δ与2δ越接近越好。 2. 用热力学原理解释溶解和溶胀。 解:(1)溶解:若高聚物自发地溶于溶剂中,则必须符合: 0≤?-?=?S T H G 上式表明溶解的可能性取决于两个因素:焓的因素(H ?)和熵的因素(S ?)。焓的因素取决于溶剂对高聚物溶剂化作用,熵的因素决定于高聚物与溶剂体系的无序度。对于极性高聚物前者说影响较大,对于非极性高聚物后者影响较大。但一般来说,高聚物的溶解过程S ?都是增加的,即S ?>0。显然,要使G ?<0,则要求H ?越小越好,最好为负值或较小 的正值。极性高聚物溶于极性溶剂,常因溶剂化作用而放热。因此,H ?总小于零,即G ?<0, 溶解过程自发进行。根据晶格理论得 H ?=211φχKTN (3-1) 式中1χ称为Huggins 参数,它反映高分子与溶剂混合时相互作用能的变化。KT 1χ的物理意义表示当一个溶剂分子放到高聚物中去时所引起的能量变化(因为KT H N 111,1,1χφ≈?≈=) 。而非极性高聚物溶于非极性溶剂,假定溶解过程没有体积的变化(即0=?V ),其H ?的计算可用Hildebrand 的溶度公式: H ?=22121)(δδφφ-V (3-2) 式中φ是体积分数,δ是溶度参数,下标1和2分别表示溶剂和溶质,V 是溶液的总体 积。从式中可知H ?总是正的,当1δ2δ?→?时,H ?0?→? 。一般要求1δ与2δ的差不超过1.7~2。综上所述,便知选择溶剂时要求1χ越小或1δ和2δ相差越小越好的道理。 注意: ①Hildebrand 公式中δ仅适用于非晶态、非极性的聚合物,仅考虑结构单元之间的色散力,因此用δ相近原则选择溶剂时有例外。δ相近原则只是必要条件,充分条件还应有溶

高分子物理名词解释

一、概念与名词 第一章高分子链的结构 高聚物的结构 指组成高分子的不同尺度的结构单元在空间相对排列,包括高分子的链结构和聚集态结构。 高分子链结构 表明一个高分子链中原子或基团的几何排列情况。 聚集态结构 指高分子整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结构。 近程结构 指单个大分子内一个或几个结构单元的化学结构和立体化学结构。 远程结构 指单个高分子的大小和在空间所存在的各种形状称为远程结构 化学结构 除非通过化学键的断裂和生成新的化学键才能改变的分子结构为化学结构。 物理结构 而一个分子或其基团对另一个分子的相互作用 构型 分子中各原子在空间的相对位置和排列叫做构型,这种化学结构不经过键的破坏或生成是不能改变的。 旋光异构 结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三中键接方式,即全同、间同、无规立构,此即为旋光异构。 全同立构 结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的异构体是相同的,此即为全同立构。 间同立构 结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是交替出现的,此即为间同立构。 无规立构 结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三种键接方式,若高分子链中C*的两种异构体是无规则出现的,此即为无规立构。

有规立构 全同和间同立构高分子统称为有规立构。 等规度 全同立构高分子或全同立构高分子和间同立构高分子在高聚物中的百分含量。 几何异构 当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。 顺反异构 当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。 键接异构 是指结构单元在高分子链中的联接方式,在烯类单体的加成聚合过程中,所形成的各种异构。如头头、头尾异构,异构化聚合,共聚合等。 序列 在多种结构单元组成的高分子链中,一种结构单元构成的链段称为序列。 序列分布 在多种结构单元组成的高分子链中,一种结构单元构成的链段称为序列,显然各个序列的长度是不同的,这种序列的长度的多分散性称为序列分布。 数均序列长度 在多种结构单元组成的高分子链中,一种结构单元构成的链段称为序列,显然各个序列的长度是不同的,若按数量进行统计平均所得到的序列长度。 支化度 指支化点的密度或两相邻支化点间链的平均分子量 交联度 相邻两个交联点之间的链的平均分子量(Mc)或交联点的密度。 IPN 两种不同的单体各自聚合形成的网络互相贯穿,称为互穿网络高分子。 Semi-IPN 当一线形聚合物在另一聚合物网络形成时均匀分散其中,宏观上成为一整体,称为半互穿网络,即Semi-IPN。 构象 由于单键的内旋转而产生的分子中原子在空间位置上的变化叫做构象

高分子物理期末知识点总结

UNIT1.碳链高分子:主链全部由C以共价键相连接;杂链:主链含C,以及O、S等两种或以上的原子以共价键相连接;构造:聚合物分子的各种形状(线形、枝化、交联、梯形、螺旋)构型:由化学键固定的原子在空间几何排列;构像:原子或原子团绕单键内旋转所产生的空间排布。旋光异构体:结构单元为-CH2-CHX-型,包含一个不对称C,所形成的异构体;分为全同:取代基都在主平面一侧或都由一种旋光异构单元键接而成;间同:相间分布于或两种交替链接;无规:不规则分布或两种无规链接。链段:高分子链中的单键旋转时互相牵制,一个键转动,要带动附近的一段链一起运动,把若干个键组成的一段链作为一个独立运动的单元。自由连结链:一个孤立高分子链在旋转时不考虑键角限制和位垒的障碍,每个分子由足够过的不占有体积的化学键自由结合而成的,每个键在任方向取向几率相等的理想模型。自由旋转链:分子链中每个键在键角所允许的方向自由转动,不考虑空间位阻对旋转的影响;等效自由:将一个原来有n个键长为l键角固定旋转不自由的键组成的链可视为Z个长度为b的自由结合链段的的高分子链;链的柔性:分子链能够改变其构象的性质.(不但高分子本身是一个独立运动单元,而且在每个高分子中还存在能独立运动的小单元,他们热运动的结果 使链有强烈的卷曲倾向,这是大分子链具备柔性的最根本内在原因)柔性实质:构象数增,S增,分子链卷曲程度增,分子链在无外力作用下总是自发采取卷曲形态,使构象熵最大。平衡态柔性:热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差ΔUtg。动态柔性:在外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式和旁式构象之间的位垒ΔUb与外场作用能之间的关系(ΔUb与kT).影响柔性的因素:分子结构:a主链结构1主链全部由单键组成,一般柔性较好,PE PP;不同单键,柔性不同Si-O>C-N>C-O>C-C.2有孤立双键,柔性大,顺式聚1,4-丁二烯;共轭双键,不能内旋转,分子刚性,聚乙炔,聚苯;有芳杂环,柔性差,芳香尼龙.b取代基1极性大作用力大,内旋转受阻,柔性差,PAN聚氯乙烯>聚1,2-二氯乙烯.3极性取代基的分布对柔性有影响,聚偏二氯乙烯>聚氯乙烯.4非极性取代基,基团体积大,空间位阻大,内旋困难,柔性差,PS1/2不良溶剂。χ1kT的物理意义:把一个溶剂分子放入高聚物中时引起的能量变化。高分子aq与小分子aq区别?什么时候可当成理想aq?比小分子aq溶解的缓慢的多,粘度明显大于小分子aq,性质存在相对摩尔质量的依赖性,而分子量有分散性,故研究很复杂;当链段与溶剂相互作用产生的混合热和混合熵相互抵消时。X1=1/2,U1e=0的溶液才能将此高分子溶液看做是理想溶液,但即使是X1=1/2,高分子溶液的ΔHm也不为0.符合理想溶液条件的高分子溶液混合自由能来源于混合热和混合熵。X1=1/2的高分子溶液宏观上热力学性质遵从理想溶液规律,其微观状态与小分子理想溶液有本质区别。过量化学位:Flory-Krigbaum稀溶液理论:1高分子稀溶液中链段的分布是不均匀的,而是以链段云得形式分布在溶剂中,每一链段云可近似球体.2在连段云内,以质心为中心,链段的径向分布符合高斯分布.3链段云彼此接近要引起自由能的变化,每个高分子链段云有其排斥体积。(引入热参数,令,定义θ=)θ温度:超额混合热/超额混合熵;θ溶液:当T=θ时,Δu1E为零,链段间与溶剂间作用能抵消,无扰状态,排斥体积为零;当T=θ,此时的高分子aq,在宏观上看热力学性质遵从理想aq,但微观状态仍是非理想,因混合热和混合熵均不为零,只是两者的效应刚好抵消,所以Δu1E=0,这一条件为θ条件或θ状态,(θ条件:选择合适的溶剂和温度,可以使溶剂分子对高分子构象所产生的干扰忽略不计(此时高分子“链段”间的相互作用等于”链段”与溶剂分子间的相互作用).在θ条件下测得的高分子尺寸为无干扰尺寸,只有无干扰尺寸才是高分子本身结构的反应)对应为θ溶剂,对应温度为θ温度。。第二维利系数A2:与χ1一样,表征高分子链段与溶剂分子之间的相互作用。凝胶:交联聚合物溶胀体,不熔不溶,既是聚合物浓溶液,又是高弹性固体;冻胶:由范德华力交联形成,加热或拆散可拆散范德华力交联而溶解。 UNIT4.数均分子量Mn:按物质的量统计的平均分子量;重均分子量Mw:按质量统计的平均分子量;Z均分子量Mz:按Z量的统计平均分子量;黏均分子量Mη:用稀溶液黏度法测得的平均分子量(z ≥w≥η≥n)。单分散:z=w=n。为什么z≥w≥η≥n?因为Mn靠近低分子量部分,则低分子量部分对其影响大,Mw靠近高分子量部分,则高分子量对其影响较大,一般用Mw表征比Mn更恰当,聚合物熔体粘度依赖于高分子量部分。分子量测定方法:端基分析(Mn)、沸点升高或冰点降低(Mn)、气相渗透法VPO(Mn)、渗透压法(Mn)、黏度法(Mη)。沸升冰降测的是Mn?是的,通过热力学推导,可知,溶液的沸点升高值ΔTb和冰点降低值ΔTf正比于溶液浓度,即正比于溶质分子数,而与溶质的分子量成反比,由此可推导出高分子数均分子量Mn。稀溶液依数性:沸点升高、冰点下降、蒸汽压下降、渗透压等数值仅与溶液中的溶质数有关,而与溶质的本性无关。特性粘度[η](表示高分子aq的c趋于0时,单位浓度的增加对增比浓度或相对粘度对数的贡献);体积排除色谱法(SEC):又称凝胶渗透色谱法(GPC),分离机理:在分离作用由于大小不同的分子在色谱柱中的多孔性填料中占据的空间体积不同造成的。色谱柱中装填表面和内部有着各种大小不同的空洞和通道的多孔填料,以待测样品的某种溶剂充满柱子,最大的分子,只能留在填料颗粒之间,走的路径最短,先被溶剂冲出来,较大的分子,走颗粒间的路径和颗粒内较大的孔,路径长一些,较后被冲出来,较小的分子,颗粒间、颗粒内的大孔,还进入颗粒内的小孔,走的路径最多,最后被溶剂冲洗出来(大分子Ve小,小分子Ve大)SEM纵坐标记录洗提液与纯溶剂折射率差值Δn,在极稀溶液中,相当与Δc(洗提液的相对浓度),横坐标是保留体积Vr(淋出体积Ve),表征分子尺寸大小。保留体积小,分子尺寸大。 VPO:加入不挥发溶质沸点升高冰点降低蒸汽压下降。由于溶液的依数性,沸点升高值正比于浓度反比与分子量。由于高分子溶液热力学性质与理想溶液偏差,只有无限稀释才符合。所以测各种浓度,外推在恒温密闭容器内充有溶剂饱和蒸汽,将一滴不挥发溶质的溶液滴1和溶剂滴2悬在这个饱和蒸气中。由于1中溶剂的蒸气压较低,就会有溶剂分子从饱和蒸气相凝聚到溶液滴上。并放出凝聚热,使1温度升高。由于依数性,达平衡时,两液滴温差与溶质摩尔分数成正比。ΔT=AX2,ΔT温度差,X2溶质摩尔分数。 UNIT5.分子运动及转变特点:①运功单元的多重性A高分子链的整体运动:分子分子链质量中心的相对移动。B链段运动:区别于小分子的特殊运动形式。质量中心不变,一部分链段通过单键内旋转而相对于另一部分链段运动,使大分子可以伸展或卷曲。C链节、支链、侧击的运动。D晶区内的分子运动②分子运动的时间依耐性:外因作用下,聚合物从一平衡态通过分子运动过渡到另一与外界条件相连的新的平衡总需要时间,原因是整个分子链,链段、链节等运动单元的运动都需要克服内摩擦阻力,不可能瞬间完成③分子运动的温度依耐性:升温,一方面运动单元热运动能量提高,另一方面由于体积膨胀,分子距离增加,运动单元活动空间增大,松弛加快,松弛时间减小。聚合物分子运动特点:a.运动单元的多重性,包括整分子链平移、链段运动、链节支链侧基等小尺寸单元的流动、原子在平衡位置的振动、晶区的运动b.高分子运动的时间依赖性c.分子运动的温度依赖性松弛时间:橡皮由Δx(t)变为Δx(0)的1/e倍时所需要的时间,表征松弛过程快慢。(开始较快,后来越慢)。论述自由体积理论:液体或固体,它的整个体积包括两个部分:一部分是为分子本身占据的,称占有体积;另一部分是分子间的空隙,称自由体积,它以大小不等的空穴无规分布在聚合物中,提供了分子的活动空间,使分子链可能通过转动和位移而调整构象。在玻璃化温度以下,链段运动被冻结,自由体积也处于冻结状态,其空穴尺寸和分布基本上保持固定。聚合物的玻璃化温度为自由体积降至最低值的临界温度。在此温度下,自由体积提供的空间已不足以使聚合物分子链发生构象调整,随着温度升高,聚合物的体积膨胀只是由于分子振幅、链长等的变化,即分子占有体积的膨胀,而在玻璃化温度以上,自由体积开始膨胀,为链段运动提供了空间保障,链段由冻结状态进入运动状态,随着温度升高,聚合物的体积膨胀除了分子占有体积的膨胀之外,还有自由体积的膨胀,体积随温度的变化率比玻璃化温度以下为大。为此,聚合物的比体积-温度曲线在Tg时发生转折,热膨胀系数在Tg发生突变。影响Tg的因素:①主链的柔性:柔性越高,Tg高②取代基:侧基极性强,Tg高;极性基数高,Tg高;取代基位阻高,内旋转受阻程度高,Tg高③构型:全同Tg较低;顺反异构中,反式分子柔性差,Tg较高④分子量:M较低时,M高,Tg高;当分子量超过一定值后,Tg不再依赖分子量⑤外力速率:张力可强迫链段沿张力方向运动,Tg低,压力使分子链运动困难,Tg升高;冷却速率快,Tg高。另外:调节Tg手段:增塑、共聚、共混。聚合物Tg开始时随相对分子质量增大而升高,当达到一定值之后,Tg变为与相之无关的常数?相对分子质量对Tg的影响主要是链端的影响,处于链末端的链段比链中间的链段受的牵制要小些,因而有比较剧烈的运动,链端浓度的增加预期Tg会降低,链端浓度与数均相对分子质量成反比,超过临界相对分子质量后链端的比例很小,其对Tg影响可以忽略。聚合物中加入单体、溶剂、增塑剂等低分子物时导致Tg下降:Tg具有可加和性,这些物质Tg较高分子低许多,所以混和Tg比聚合物低。分子结构与结晶能力的关系(为什么结晶聚合物结晶不完整?)a.链的对称性、规整性越高,结晶能力越强b.共聚,无规共聚降低结晶能力c.链柔性差降低结晶能力,柔性太好不能结晶d.分子间作用力过大降低结晶能力e.交联降低结晶能力f.分子量增大限制结晶。{高压力下形成的结晶高聚物结晶体密度高,拉应力可以加速高聚物结晶}。结晶聚合物边熔融边升温的现象是由于试样中含有完善程度不同的晶体。结晶时,如果降温程度不是足够的慢,随着熔体黏度的增加,分子链的活动性减小,来不及作充分的位置调整,则结晶停留在不同的阶段上;等温结晶过程中,也存在着完善程度不同的晶体。这时再升温,在通常的升温速度下,比较不完善的晶体将在较低的温度下熔融,比较完善的晶体则要在较高的温度下熔融,因而出现较宽的熔融范围。结晶过程的特点:结晶温度区间在Tg与Tm之间;同一聚合物在同一结晶温度下,结晶速度随结晶时间过程而变化;结晶聚合物结晶不完善,没有精确的熔点,存在容限。 UNIT6.什么情况下符合虎克定律?在形变很小时,交联橡胶的应力应变关系才符合虎克定律。 UNIT7.五个区域:玻璃态区、玻璃—橡胶转变区、橡胶—弹性平台区、橡胶流动区、液体流动区。力学松弛:聚合物的各种性能表现出对时间的依赖性。蠕变:一定的温度、较小恒应力持续作用下,材料应变随时间增加而增大的现象(包括瞬时可逆的普弹形变ε1、滞后可逆高弹形变ε2、不可逆的黏性形变ε3;Tg以下,链段运动松弛时间很长,ε2很小;材料本体粘度很大,ε3很小;因此蠕变主要由ε1构成,蠕变量很小。Tg以上,链段运动的松弛时间变短,导致ε2较大,材料的本体粘度η3仍很大,ε3较小,蠕变主要由ε2构成,夹杂少量ε3。同时,ε 3 随时间的发展而发展,导致总形变不断发展)。应力松弛:恒定温度和形变保持不变时,聚合物内部应力随时间增加而逐渐衰减的现象;产生原因:当聚合物受到外力作用发生变形时,分子链段要沿着外力方向伸展与外力相适应,因而在材料内部产生内应力。但是链段的热运动又可以使某些链缠结散开,以至于分子链之间可以产生小的相对滑移;同时链段运动也会调整构象使分子链逐渐地回复到原来蜷曲状态,从而使内应力逐渐地消除掉。(当温度远小于Tg时,链段运动的能力很弱,应力松弛非常慢;当温度太高时,应力松弛过程进行太迅速。只有在Tg温度附近几十度的范围内,应力松弛现象才比较明显)。滞后:聚合物在交变应力作用下形变落后于应力变化的现象;产生原因:链段的运动受到内摩擦阻力作用的结果,当外力变化时,链段的运动受到内摩擦阻力的作用跟不上外力的变化,所以形变总是落后于应力,滞后了一个相位差δ。(外力作用频率适中,链段一方面可以运动,但又不能完全跟上应力的变化,这时滞后现象才能充分体现出来)力学损耗或内耗:在有滞后现象存在时,由于形变的发展落后于应力的变化,当第一周期的形变还没有完全恢复时,材料又会受到第二个周期应力的作用,因此每个周期都会有一部分弹性储能没有释放出来,这部分能量最终转变为热能,以热量的形式释放出来,造成损耗。影响因素:1温度a温度低,分子运动弱,不运动摩擦消耗能量小,内耗小.b温度高,分子运动快,应变跟得上应力变化,δ小,内耗小.c温度适中,跟不上应力变化, δ大,内耗大.2频率a频率快,分子运动跟不上应力的交换频率,摩擦消耗能量小,内耗小b频率很慢,应变跟得上应力变化, δ小,内耗小c频率适中,分子可以运动但跟不上应力频率变化, δ大,内耗大.3次级运动的影响:次级运动越多,所做的功可以通过次级运动耗散掉.时温等效原理:对于同一个力学松弛过程,既可以在较高温度和较短的外力作用时间下表现出来,也可以在较低温度和较长的外力作用时间下表 现出来。即:升高温度与延长外力作用时间对分子运动是等效的,对聚合物的粘弹性是等效的。 UNIT8.非晶态聚合物应力应变曲线:1.弹性形变区:直线斜率即为杨氏模量,此阶段普弹性,由于高分子键长键角和小运动单元的变化产生。2.屈服阶段:应变软化点,超过此点,大外力使本来冻结的链段开始运动,为大形变提供条件。3.大变形区:高弹性形变区,本质上与高弹形变一样是链段运动,它在外力作用发生。4.应变硬化区:分子链取向排列使强度提高。5.断裂。。屈服点以后,材料大变形的分子机理主要是g的链段运动,即在外力作用下,玻璃态p原来被冻结的链段开始运动,g链的伸展提供了材料的大变形,此时,p处于玻璃态,即使去除外力形变不能自动回复,只有升到 Tg以上链段运动解冻,分子链重新蜷曲,形变才可回复)。

相关主题
文本预览
相关文档 最新文档