当前位置:文档之家› 10kV配网输电线路雷击跳闸原因分析

10kV配网输电线路雷击跳闸原因分析

10kV配网输电线路雷击跳闸原因分析
10kV配网输电线路雷击跳闸原因分析

10kV配网输电线路雷击跳闸原因分析

文凯1,付伟平2,

摘要:针对10kV配网输电线路结构和环境特点,结合雷电流幅值分布概率,分析了配网线路雷击跳闸率高的原因。通过分析配网线路常规防雷措施的优缺点,归纳出配网线路防雷重点,提出了配网防雷新思路。

关键词:配网线路;雷击;跳闸率;防雷措施

The cause analysis of 10kV distribution network transmission line

lightning tripping

XXX1, WANG Xian2, CAO Shu-hao2

(1.XXXX Company, CITY 610000, PROVINCE, Country;

2.Chengdu Star-river Technological industrial Co., Ltd, Chengdu 610041, China.)

Abstract:For the 10kV distribution network transmission line structure and environmental characteristics, combined with the lightning current amplitude distribution probability, analyzes the reason of distribution network line high lightning trip-out rate. By analyzing the distribution network line and the advantages and disadvantages of the conventional lightning-proofmeasures, the key of distribution network lightning-proof is summarized, distribution networklightning-proof new ideas are put forward.

Key words:distribution network;lightning strike;trip rate;lightning-proof measure

一、前言

随着国家经济发展不断加快,城市化和城乡一体化进程不断加快,配网供电量每年都保持着较高的增长,对配网可靠性的要求越来越高。配电线路是电力输送的终端,是电力系统的重要组成部分。配电线路设备质量参差不齐,受气候、地理环境影响较大,又直接面对用户端,供用电情况复杂。

配电网纵横交错,绵延万里,呈网状分布,很容易遭受雷击,引起停电事故,给国民经济和人们生活带来严重的损失。统计资料表明,雷害是造成高压输电线路停电事故的主要原因。为了确保电力系统安全运行,采取防雷保护措施,做好配电网的防雷工作是相当必要的。

二、配网雷击分析与防雷现状

2.1 雷电的形成

对地放电的雷云绝大多数带负电荷,根据放电雷云的极性来定义,此时雷电流的极性也为负电荷。雷云中的负电荷逐渐积聚,同时在附近地面上感应出正电荷。当雷云与大地之间局部电场强度超过大气游离临界场强时,就开始有局部放

电通道自雷云边缘向大地发展。这一放电阶段称为先导放电。先导通道发展临近地面时,由于局部空间电场强度的增加,常在地面突起处出现正电荷的先导放电向天空发展,称为迎面先导。

当先导通道到达地面或者与迎面先导相遇以后,就在通道端部因大气强烈游离而产生高密度的等离子区,此区域自下而上迅速传播,形成一条高导电率的等离子通道,使先导通道以及雷云中的负电荷与大地的正电荷迅速中和,这就是主放电过程[1]。

2.2 雷电流幅值概率分布

世界上大多数国家对雷电流幅值概率分布采用美国IEEE推荐曲线,即雷电流幅值在7-40kA范围内地闪概率为63.9%,而我国则借鉴原苏联相关行业规程推荐曲线,即雷电流幅值在7-40kA范围内地闪概率为76%[2]。

虽然雷电流幅值概率结果有一定的差别,但是无论采用IEEE推荐曲线还是我国规程推荐曲线,雷电流幅值在7-40kA的地闪必然是雷电防护的主要对象。

2.3 配网雷击跳闸率高分析

根据相关国标和行业标准设计的配网输电线路绝缘水平很低,只能满足常规的安全输电,而对于雷电流这样的大电流过电压几乎没有防御能力。通常情况,5-7kA的雷电流即可造成输电线路跳闸,因此雷电流幅值在40kA以下的大概率分布是造成配网雷击跳闸率高的直接原因。

输电线路雷击跳闸是因为雷电击中输电线路后,基于输电线路或杆塔的等效阻抗产生的过电压而保护电力设备的断路动作。根据相关研究输电线路的等效阻抗远远大于杆塔的等效阻抗,因此雷电绕击对于输电线路的过电压危害也远远大于直击雷的危害。而配网输电线路通常没有铺设避雷线,小电流地闪先导发展随机性较强,击中输电线路的概率较大,因此在配网低绝缘水平下击中导线的雷电流能轻松造成线路跳闸。

另外可人为控制的造成雷击过电压高的因素是接地电阻。雷电流无论从何处击中输电线路都要通过线路的接地而泄放到大地,因此接地电阻的大小也是决定雷击跳闸率高地的主要因素之一。

综上所述,影响配网雷击跳闸率高的原因主要有三点:

1)由于成本和施工量的原因,没有防雷击输电线的措施;

2)国标和行标的限制,配网输电线路绝缘水平低;

3)配网线路全线接地电阻的大小。

三、10kV配网防雷措施分析

目前常规的配网防雷措施都是从主网防雷措施中移植而来,其中各方面的措施给配网防雷水平带来了一定的提升,特别是在良好措施下的配网线路能够有效防住5-7kA小电流地闪。但是基于配网与主网不能等同对待,各防雷设备的差异等原因,防雷措施的移植效果一般。

3.1 接地电阻改造

配网线路接地电阻改造通常有两种方法:

1)水平接地体。这种方法的弊端是很容易腐蚀,使用寿命不长。

2)用降阻剂进行降阻。这种方法也是目前对配网线路接地电阻改造效果比

较好的一种方法。但是对于配网所处地理环境的复杂性,在平原地区或土壤电阻率低的地区实施起来比较容易,但是在沿海或者丘陵地带实施起来就比较困难,通常实施困难的地带进行接地电阻改造会耗费大量的财力和人力。

因此并不是所有配网线路都适合进行接地电阻改造[3]。

3.2 加装避雷器

无论是在配网线路还是主网线路,使用避雷器进行防雷保护是一种效果比较好的措施。10kV配网线路中常用到的避雷器为氧化锌避雷器,这种避雷器运行

长时间内承受着工频电压,并且还要间歇承受工频续流和雷电过电压,很容易老化。老化后常常表现为泄露电流随加压时间延长而逐渐增大,严重时将会在运行中导致绝缘损坏,使设备失去保护,造成跳闸断电。

配网线路需安装避雷器数量众多,如需预防性试验检测没有足够的人力和物力条件,而避雷器短路后很难从外观上发现,造成故障点难以查找的情况。

另外10kV配网线路是电力网中电力线路结构最复杂,使用环境最复杂的一类。杆塔尺寸小,周围空间小,直接导致避雷器设计制造结构变小,严重影响避雷器防雷效果,甚至某些复杂线路无法安装避雷器。

3.3 提高线路绝缘水平

10kV配网线路绝缘水平较低,无论是直击雷还是感应雷都很容易造成线路

绝缘子闪络。由于配网线路建设受制于相关国标和行标,线路绝缘空间较小,没有专门的防雷设计。同时配网绝缘杆塔线路搭建灵活多变,常有一杆多回路的情况,导致绝缘距离进一步减小。对于这种杆塔,一旦遭受雷击往往各个回路同时跳闸。

配网线路改善绝缘水平通常有两种措施:

1)增加绝缘子片数。对于空间足够的杆塔方法可行,但配网线路大多数没

有足够空间来增加绝缘子片数。

2)使用绝缘导线来代替裸导线。对于一杆多回路的情况,使用绝缘导线能

够很好地改善杆塔上的绝缘水平。但相比较于裸导线,绝缘导线会带来过电压弧根烧断导线的危害。

四、配网防雷方案建议

由于10kV配网线路防雷工作的特殊性,需要有针对地考虑配网线路的结构

特点和环境特点而采取适合的防雷措施,规避某些措施所带来的负面影响。配网防雷工作重点总结为三点:防雷击过电压,提高线路绝缘水平和提供良好泄放通道。

防雷击过电压就是要防止线路绝缘子闪络产生工频续流从而跳闸或断线,良好品质的避雷器和良好的接地条件能够有效的泄放雷电流,防雷击过电压。同时近年来也涌现出一种叫波阻式防雷设备,这种设备不但能够提供良好的泄放通道,而且通过波阻器件在雷电流到达绝缘装置前进行削峰降陡,减小雷电流的危害。

配网防雷其中一个重要因素需突破配网线路设计的桎梏,大幅提高绝缘水平。在有限的空间进行增加绝缘子片数和使用绝缘导线的措施不能普遍的解决问题,并且提升绝缘水平幅度有限。另外可以在有限的空间上创造出更多空间,通过改造杆塔本身结构,例如用绝缘横担替代金属横担,从而加大电气绝缘距离,提高绝缘水平。

对重点防护区域采用集合式产品进行综合改造,一方面大幅度提高防雷效果,另一方面杜绝了不同防雷设备生产质量优劣不一和设备简单叠加等缺点。

五、总结

配网防雷是一个复杂而严峻的工程,无论所处环境还是自身结构复杂多变,虽然从主网移植了各种防雷措施,但是简单的移植所产生的防雷效果优劣不一,因此在原有的防雷措施基础上需转变思路,突破配网线路限制,改善配网无法防雷电小电流以及绝缘水平低等缺点。

参考文献

[1]李华鹏.浅析10kV配电线路防雷设计[A].全国电力系统配电技术协作网第二

届年会论文集[C]. 744-747.

[2]陈家宏,童雪芳,谷山强,等.雷电定位系统测量的雷电流幅值分布特征[J].高

电压技术, 2008, 34(9): 1893-1897.

[3]张博.探讨10kV配网线路防雷技术措施[J].企业技术开发, 2012, 31(23):

130-131.

收稿日期:XXX年X月X日

第一作者简介:XX

出生年月,学历,职称,学术成就,从事研究内容。

E-mail:Tel:

架空输电线路雷击跳闸分析及防雷论文

浅析架空输电线路雷击跳闸分析及防雷摘要:架空输电线路是电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是架空输电线路遭遇雷击,从而影响线路的供电可靠性。文章结合本人从事输电线路工程多年的工作经验介绍了几种架空输电线 路房雷的措施及方法。 关键词:雷击跳闸;防雷;避雷器;接地电阻;保护角 abstract: the overhead transmission lines is an important part of the power system. because it is exposed to the nature, so vulnerable to outside influences and damage, one of the main aspects overhead transmission lines is encountered by lightning, thus influence lines of power supply reliability. based on the transmission line i have engaged in engineering working experience for many years introduces several overhead transmission lines room the measures and methods of thunder. keywords: lightning trip; lightning protection; lightning arrester; grounding resistance; protect horn 中图分类号:tu895 文献标识码:a 文章编号: 1引言 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用;输电线路发生闪络;输电线路从冲击

同力电厂线路雷击跳闸原因分析及防止措施

同力电厂线路雷击跳闸原因分析及防止措施 摘要:针对鹤壁同力发电厂两台机组送出线路连续出现因雷击导致机组跳闸的现象,详细介绍了故障现象,保护动作情况及绝缘损坏情况,以及运行人员处理情况,配合试验院有关专家进行了故障原因的综合分析。得出由于地形特征和线路防雷设计的不完善是导致线路连续雷击跳闸的的根本原因。最后提出加装新型线路防雷措施,改进保护跳闸逻辑,有效地防止了因线路雷击导致的机组跳闸事故。 关键词:线路雷击;原因分析;防止措施 1 前言 2006年6月30日,同力电厂#1、#2机组通过发变线单元接线方式接入系统桃园变的I、II段母线,内桥开关断开,厂用电自带,机组运行正常。19时20分41秒,#1、#2机组运行中突然Ⅰ同桃1、Ⅱ同桃1开关跳闸,机组负荷均为175MW。当时天气为大雨并伴有雷电。当晚两机先后分别启动并网。 2006年9月21日,#2机组通过发变线单元接线方式接入系统桃园变,#2机组带负荷150MW,厂用电本机自带,机组运行正常。0时18分18秒,Ⅱ同桃1开关跳闸。当时为雷雨天气,鹤壁雷电不断。 2 系统概述 同力电厂采用单元制供电方式,#1、2机组分别通过两条供电线路至桃源变电站与220KV系统并列。两条供电线路可以通过短引线采用内桥形接线联络,机组既可以单独通过各自的线路与系统并列运行,也可以通过内桥开关公用一条供电线路与系统并列运行。 系统采用大电流接地系统,#1、#2主变中性点设有接地刀闸,高备变采用中性点固定接地方式。 #02启备变引自一期220kv系统,可根据需要方便的在220KV东(西)母间切换。 3 事件经过 3.1同力6月30日两台机组因线路雷击相继跳闸 2006年6月30日,#1、#2机组通过发变线单元接线方式接入系统桃园变的Ⅱ、Ⅰ段母线,内桥开关断开,厂用电自带,机组运行正常。19时20分41秒,#1、#2机组运行中突然Ⅰ同桃1、Ⅱ同桃1开关跳闸,机组负荷均为175MW。当时天气为大雨并伴有雷电。当晚两机后分别启动并网。 经查:(1)Ⅰ同桃1“光纤差动保护”和“高频距离零序保护”动作,Ⅱ同桃1“高频零序保护”动作;(2)鹤壁电业局检查I同桃线路,发现在52号杆塔处A相绝缘子上下均压环上有雷击痕迹,并分别有被电弧烧成的直径约1公分的两个洞。 3.2同力9月21日#2机组因线路雷击跳闸事件 2006年9月21日,机组通过发变线单元接线方式接入系统桃园变,#2机组带负荷150MW,厂用电由本机带,机组运行正常。0时18分18秒,Ⅱ同桃1开关跳闸。当时为雷雨天气,鹤壁雷电不断。 经查:(1)Ⅱ同桃1“高频距离零序保护”和“光纤差动保护”动作。检查保护录波和线路故障录波器,确认是线路A相接地,故障测距:18.25km,桃园变测距:3.9km。(2)事故后鹤壁电业局检查Ⅱ同桃线路,发现在60号杆塔处与I同桃线路52号杆塔处相同的情形,只是Ⅱ同桃线路A相绝缘子不仅有雷击痕迹而

(完整word版)漏电跳闸原因分析

0前言 漏电保护器在人身安全、设备保护和防止电气火灾等方面起着重要的作用。由于它使用安全方便得到广泛应用,而使用中也存在这样那样的问题、笔者从使用者的角度介绍它的相关知识和注意事项故障处理。 漏电保护器又叫漏电开关、它有电磁式、电子式等几种: 1漏电保护器的工作原理 1.1电磁式漏电保护器的工作原理 主要由高导磁材料(坡莫合金)制造的零序电流互感器、漏电脱扣器和常有过载及短路保护的断路器组成、全部另件安装在一个塑料外壳中。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值。零序电流互感器的二次绕组就输出一个信号,并通过漏电脱扣器使断路器在0.1秒内切断电源,从而起到漏电和触电保护作用。当被保护的线路或电动机发生过载或短路时,断路器中的电磁式液压延时脱扣器中热元件上的双金属片发热动作、使开关分闸,切断电源。 1.2电子式漏电保护器的工作原理 主要由零序电流互感器,集成电路放大器,漏电脱扣器及常有过载和短路保护的断路器组成。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值,零序电流互感器的二次绕组就输出一个信号,经过集成电路放大器放大后,使漏电脱扣器动作驱动断路器脱扣,从而切断电源起到漏电和触电保护作用。如果使用兼有过压保护是利用分压原理取得过电压信号,使可控硅导通,切断电源。 2漏电断路器的选用原则 2.1根据使用目的和电气设备所在的场所来选择 漏电断路器用于防止人身触电,应根据直接接触和间接接触两种触电防护的不同要求来选择。 2.1.1直接接触触电的防护 因直接接触触电的危害比较大,引起的后果严重,所以要选用灵敏度较高的漏电断路器,对电动工具、移动式电气设备和临时线路,应在回路中安装动作电流为30 mvA,动作时间在0.1 s之内的漏电断路器。对家用电器较多的居民住宅,最好安装在进户电能表后。 如果一旦触电容易引起二次伤害(比如高空作业),应在回路中安装动作电流为15 mA,动作时间在0.1 s之内的漏电断路器。对于医院中的电气医疗设备,应安装动作电流为6 mA,动作时间在0.1 s之内的漏电断路器。

10KV线路跳闸的主要原因

2、故障跳闸原因分析 (1)漯河供电公司郊区10KV线路大都分布在野外、点多、线长、面广、受季节性影响的特点比较明显,6-8月这3个月累计跳闸达109次,占线路跳闸总数的%,期间正是迎峰度夏高峰期,雷雨大风天气多、温度高、湿度大、树木生长旺盛,易于发生各类跳闸故障。 (2)从各类故障跳闸比例中可以看出,因线路配电设备自身原因,占线路跳闸总数的31%为最高,分析其原因有以下几点: 一是80%以上的线路设备是农网前两期时代的产物,受当时资金及技术条件的限制,工程标准起点低,网架结构薄弱,装备水平差,近年来负荷发展快,导线截面小,极易引发线路故障,如跳闸次数最多的商农线、姬工线等大都因负荷电流大,而烧坏刀闸和烧断跳线弓子等故障。 二是由于线路年久失修,加之部分线段污染严重,一遇恶劣天气易发生绝缘子击穿放电、避雷器击穿损坏、跌落保险熔管烧毁、引流线断落等故障引起跳闸。 三是线路导线80%以上为裸体线,档距大,弧垂超标,遇大风时易造成导线舞动,引发相间短路故障。 四是由于郊区负荷年增长率在35%以上,配电变压器的增容布点远远跟不上负荷的发展速度,由此屡屡造成因配变过负烧毁引起线路跳闸,据调查统计2011年烧毁各类型号的变压器62台,烧毁配变的主要原因固然有设备过负方面的(如某些厂家的变压器短时过载能力较差),但也有管理方面的,所烧毁的变压器80%以上是因三相负荷不平衡引起单相线圈烧毁。 (3)因用户配电设备原因,占线路跳闸总数的%。仅次于公用线路配电设备,分析其原因在于乡镇供电所对专变用户的设备疏于管理。 (4)因外力破坏原因占线路跳闸总数的%。如因司机违规驾驶撞击电杆,高架车挂断导线,施工取土挖断电缆等事故,如3月7日9点零7分Ⅰ姚工线被吊车撞断杆子,导致线路短路跳闸。

配网输电线路雷击跳闸故障及对策分析

配网输电线路雷击跳闸故障及对策分析 发表时间:2017-03-28T10:39:24.143Z 来源:《基层建设》2016年36期作者:郑晓铭[导读] 文章主要对配网输电线路雷击灾害及防雷接地措施进行分析,避免更多事故发生。 广东电网梅州大埔供电局广东省梅州市 514299 摘要:雷电现象在我们生活中非常常见,通常情况下雷电具有很高的电压,如果雷电击中输电线路将会出现非常严重的安全隐患。为了最大程度地减少安全隐患出现,电力部门需要采用正确的防雷技术,以减少输电线路出现雷击跳闸的现象,减少雷电现象对输电线路的破坏。文章主要对配网输电线路雷击灾害及防雷接地措施进行分析,避免更多事故发生。 关键词:输电线路;雷击;防雷引言 在社会经济快速发展过程中,人们对电能的需求越来越多,这就给电路行业发展提出了严峻的挑战,为了满足人们的用电需求,电力部门架构了更多的输电线路。但是,因为雷击而引起的输电线路运行故障问题越来越多,每年都有因为雷击而引发的停电事故,影响了输电线路设备的安全运行,造成了严重的经济损失。所以,我国的电力行业要加紧输电线路防雷技术的研究,提高电网系统的安全水平。 1配网输电线路雷击跳闸故障分析雷电主要产生于积雨云中,积雨云某些云团带正电荷,某些云团带负电荷,这些正负电荷会对大地产生静电感应,这样地表物体便会产生异性电荷。当这些电荷积聚到一定程度时,云团与云团间电场强度以及云团与大地间电场强度便可把空气击穿,开始放电,产生闪电与巨响,同时形成很大的雷电流,这就是我们通常所说的雷电。 在现阶段,我国的输电线路往往都是建设在比较空旷的地方,而这部分地方恰恰是雷击发生概率比较大的地方。在雷击发生的时候,可以在短时期内给输电线路造成非常大的破坏,在高压线路遭受雷击之后,系统就会做出跳闸和切断线路额反应,整个系统也会因高压形成损害。在雷击发生的地点,如果其周围的绝缘措施和抗高压能力低,就会出现连锁破坏,而造成更大的财产损失,如果周围有居民区还会起人们的生命财产安全造成威胁。众所周知,雷击对高压线路的损害是非常大的,在雷击发生之后,所要进行的维修工作也需要投入大量的人力和财力才能够很好的对其进行修缮。雷击会造成电力的传输失败,人们生活质量也会受到影响,结合上述所讲,输电线路的防雷接地技术就是非常有必要的。应用防雷接地技术,能够有效的降低甚至避免雷击的负面影响,我国的用电质量和效率也会得到很大程度上的提升。 2配网输电线路防雷措施分析 2.1选择合理的路径 不同区域的地理环境和条件存在一定的差异,导致遭受雷电袭击的几率也不同,容易遭受雷电袭击的往往是输电线路的铺设路径存在问题的地方,为此,在选择输电线路的路径时需要尽量避开容易发生雷电袭击的地点,具体要求如下:尽量不要选择环山、水塘、树木等;尽量不要选择土地电阻率会随时发生变化或已经发生变化的地方;尽量避开山谷和峡谷等区域;尽量避开地下水位高和地下有导体矿物质的区域;不要选择阳面的山坡或者土壤条件较好的山地区域。 2.2架空避雷线 为了有效避免其被雷击,应采用架设避雷线的方式来有效规避雷击,在应用这一措施过程中,相关人员应该在线杆的顶部架设避雷线,当此线架设完成之后,线杆之下的输电线路就会受到避雷线的庇护,这样当雷击出现的时候,雷电就会落在避雷线上,然后顺着此线的引导流入到设置好的接地装置中,之后通过装置导入到大地中。所以说,为了确保输电线路能够规避雷击,就应根据实际情况来设置避雷线,在设置过程中,应该对线路的数量进行考虑,通常情况下设置一根避雷线即可,但若是情况特殊,也可以酌情考虑。 2.3安装避雷器 避雷器的使用弥补了避雷线的不足之处,在输电线路上安装避雷器需要设置一个固定的雷电流值,当雷电流值超过固定值时,避雷器就会启动,避雷器和避雷线两者之间进行良好的配合达到分流的目的,将电流导向地面,从而保证输电线路的电压不会出现问题。在避雷器安装时需要选择最佳的铁塔线路,对现有的资源进行合理利用。 2.4安装自动重合闸装置 为了进一步的提高输电线路的防雷能力,不仅应该安装相应的保护装置,还应该安装自动重合闸,而之所以要安装重合闸,是因为很多线路故障的出现都是瞬时性的,尤其是在线路遭受雷击的时候,绝缘子就会出现闪络现象,进而导致跳闸现象出现。所以说,安装自动重合闸是非常有必要的,此闸的存在可以有效地缓解跳闸现象的出现,进而将雷击的不利影响降至最低,确保输电线路的正常运行。据有关部门统计,国内110kV线路及以上高压线路有75%至95%的线路可成功重合闸,电压等级为35kV与小于35kV的输电线路有50%至80%的线路可成功重合闸。因此,可通过对架空输电线路装设自动重合闸装置,来降低输电线路雷击事故率。 2.5提高绝缘水平 绝缘子是输电线路中的重要元件,能够对母线起到固定、支持的作用,让带电导体与大地之间隔绝足够的安全距离。一般来说,绝缘子需要具有很高的电气绝缘强度和很强的耐潮湿性能。但是,由于长期处于交变电场的环境当中,绝缘子的绝缘性能会发生下降,甚至功能完全丧失。如果电网系统的工作人员没有及时对这些性能下降或者功能丧失的绝缘子进行更换,就容易在雷雨天气发生闪络事故。所以,为了维护电网系统的运行安全,必须提高输电线路的绝缘水平,定期对输电线路的绝缘子进行测试与检修。根据我国的相关规定,测试与检修的周期一般为两年,对于零值、低值、有可能发生闪络效应的绝缘子,要及时进行更换维修;对于一些绝缘水平比较低的输电线路,需要增加绝缘子的数量,加长绝缘子的结构长度来进行防雷。 2.6降低接地电阻 使用避雷线和避雷器的防雷效果并不是最好的,为了使输电线路的防雷效果提高,需要对接地的电阻进行调整,让接地电阻的值减小,下面对减小接地电阻的方法进行介绍。一是,使用爆破技术。此种技术是一种新型的技术,主要原理是改变一定区域内土壤的性质,通过爆破的方法将一定区域的地面炸开,将电阻率比较小的物体压入地下,从而改变土壤的导电性能。二是,使用适量的降阻剂。将降阻剂放置在铁塔的附近,让被包裹的电解质、水分等快速地进入土壤,从而达到降低土壤电阻的目标。 2.7中性点接地

变频器频繁跳闸的解决方法

变频器频繁跳闸的解决 方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

变频器跳闸的解决方案瑞康钛业公司: 经多次到贵公司生产现场实地了解及对设备的检查情况,贵公司由于生产调速的需要,在公司各地使用变频器,其中一些变频器负荷较轻,一些负荷较重。贵公司经常发生锅炉房和煤气发生站变频器跳闸而其他变频器几乎不跳闸的情况。而贵公司这两处变频器设备又是非常关键的设备,该处设备的跳闸事故给公司的正常生产带来严重影响。 变频器跳闸时的情况:经检查安川变频器跳闸记录为欠电压跳闸;询问西门子变频器跳闸时的情况,据操作工反应显示为F003(欠电压)故障。同时据贵公司技术人员反应,当变频器跳闸时,伴随着明显的电压波动情况。 一、锅炉房和煤气发生站变频器频繁跳闸时的可能原因检查及分析: 1设备本身正常;经过对这两处变频器控制的电机检查、控制线路、按钮、电源线路的走向和绝缘检查,均正常,不存在偶然性故障的可能情况。 2变频器参数设置正常;参数为对正常风机常规设置,不存在有明显数据不属实的情况。 对变频器、电机、线路均进行了检测,设备均正常;因而排除了设备方面可能存在的问题引起变频器跳闸,在结合变频器跳闸时了解的情况综合判断,锅炉房和煤气发生站变频器跳闸的原因为电源电压波动引起的。因此对贵公司电源供电及配电情况进行了解和检查。 经检查,锅炉房和煤气发生站变频器电源均由锅炉房380V配电室供给,而该配电室电源由公司10KV高配室经变压器变为380后供给。公司10KV高配室电源由附近的110KV变电所变为10KV后供给;变电所10KV侧有多路出线,分别供给其他公

输电线路故障跳闸原因分析报告模板)

输电线路故障跳闸原因分析报告(模板) XX月XX日XXXkVXXX线路故障跳闸原因分析报告(模板) 1 线路概况 1.1 简介(电压等级、线路名称、线路变更情况、线路长度、杆塔数、海拔、地形、地质、建设日期、投运日期、资产单位、建设单位、设计单位、施工单位、运行单位) 1.2设计气象条件 1.3 故障点基本参数 1.3.1杆、塔型。 1.3.2导、地线型号。 1.3.3 绝缘子(生产厂家、生产日期、绝缘子型式、外绝缘配置) 。 1.3.4基础及接地。 1.3.5线路相序。 1.3.6线路通道内外部环境描述。 2 保护动作情况 保护动作描述、重合闸动作情况、保护测距情况、重合不成功强送电情况、抢修恢复时间。 3 故障情况 3.1 根据保护测距计算的故障点 3.2 现场实际发现的故障情况 3.3 现场测试情况 4 故障原因分析 4.1 近期运检情况 4.2 气象分析故障(当日天气情况) 4.3 故障点地形、地貌 4.4 测试分析(雷电定位、接地电阻测量、绝缘子检测、绝缘子盐密和灰密(绝缘子污秽程度) 、复合绝缘子憎水性、绝缘试验情况、在线监测等) 4.5设计校验(故障点基本参数、绝缘配置、防雷保护角、鸟刺加装、弧垂风偏校验) 4.6现场走访情况 (向故障点周边群众了解故障当时的天气、外部环境变化、异响、弧光等) 4.7其它故障排除情况(故障排除法) 5 故障分析结论 6 暴露的问题 7 防范措施 7.1 已采取措施 7.2 拟采取措施(具体措施、措施落实责任人、措施落实时限) 附件一:现场故障现象(故障周边环境、故障点受损部件、引发故障的外部物件)图片 附件二:现场故障测试图片 附件三:现场故障处理图片 附件四:相关资质单位的试验鉴定报告 附件五:保护动作及故障录波参数 附件六:参加故障分析人员名单 单位:日期:

输电线路雷击跳闸事故分析与防治探讨

输电线路雷击跳闸事故分析与防治探讨 发表时间:2017-08-08T16:52:14.253Z 来源:《电力设备》2017年第10期作者:王慧莉[导读] 摘要:随着社会的发展,人们生产生活对电力的需求不断提升,输电线路规模跟着逐年扩大,而输电线路又是最易受雷击的地面基础供电设施之一 (绵阳启明星集团有限公司) 摘要:随着社会的发展,人们生产生活对电力的需求不断提升,输电线路规模跟着逐年扩大,而输电线路又是最易受雷击的地面基础供电设施之一,近年来雷电、台风等气候现象频发,,虽电网防雷技术有所上升,但雷击仍是导致跳闸事件发生的首要原因,威胁着整个电网安全,同时影响人们正常用电,因此积极分析输电线路雷击跳闸事故分布、原因是很有必要的,为防治措施的提出提供重要依据,时电网安全得到良好保障。 关键词:输电线路;雷击跳闸;防治措施 近年来我国气候环境有了较大变化,雷电、台风等气象活动更加频繁,它们是正常自然现象,对电网安全威胁不可避免,因此输电线路薄弱处极易发生跳闸事故,造成范围大小不等的片区停电,对人们正常生活及社会经济生产都带来了较大影响,为降低及预防输电线路雷击跳闸事故的发生,首先应对故障原因展开分析,为措施的提出和实施做好铺垫。 1 输电线路雷击跳闸事故特点分析 对近几年来雷击跳闸事件分析发现有以下几方面特点:(1)电压等级,统计发现输电线路雷击事件发生率由高到低位居前3位的电压等级为220kV、500kV和33kV。(2)地形地貌,输电线路遭雷击比例有多到少分别为山地、丘陵和平原。(3)输电线路遭雷击位置,最多被雷击处为边导线,其次为中相导线,再次是三相导线。(4)线路地线对边导线保护角大小因素,保护角超出15°遭雷击较多。分析上述特点可知220kV级电压、山地或丘陵的边导线,以及线路地线和它保护角超出15°的线路是防雷击的重要对象。 2 输电线路雷击跳闸事故原因分析 从上述输电线路雷击跳闸事故特点可以看出发生雷击的重要因素有地形。除此之外还包含接地电阻、绕击和反击影响两个关键方面。(1)接地电阻-接地电阻直接代表着输电线路的电阻的传导能力,它是将雷电传导至大地的最基本手段。需要注意的是其电阻还和时间长短存在密切相关性,早期在进行降阻处理时,基本都符合基本要求,随着时间的推延,使用时间长降阻效果会跟着越来越弱,这会使接地电阻呈逐年上升趋势。(2)绕击和反击影响-线路落雷形式来看,绕击稍多于反击。 3 输电线路雷击跳闸事故防治措施 3.1选择适合的地形架设输电线路 山区、丘陵是输电线路雷击跳闸事故多发地,因此可知地形是雷击发生的重要因素,由此可知选择适宜架设点是预防雷击的首要环节。电网设计人员在输电线安置前,应先清楚考察地势,设计出尽量避免不利地形的优化方案,比如河谷、山区风口处、峡谷顺风口等,这些都是雷电暴走途径;地面以下存在导电体矿物质;电阻率发生异常的土壤地带;周边为丘陵的潮湿盆地位置;断层处;岩石、土壤交界处等等,选好地形架设能有效降低雷击跳闸事件的发生率。 3.2降低接地电阻 首先应择取自然电阻率低的位置设架。当接地电阻难以满足需求时,其一,对水平接地体进行扩延,如接地体多根放射状分布、延伸接地体长度、设接地网等等;其二,使用竖井接地极、深埋接地极等垂直接地体;其三,做降阻剂填充处理,降阻剂应具备合理、经济、性能稳定、无腐蚀性等特点;其四,对于周边土壤有电阻率异常或降低的现象,可采用换土法来替换附近土体;同他多回线路可使用不平衡绝缘方法来降低雷电对输电线路的损害范围;此外还有爆破接地、水体接地等应用较少的降低接地电阻法。 3.3进一步提升输电线路绝缘水平 对山区、丘陵等雷击多发地域,以及雷击遭受频率较高或是预估高发位置,可使用增加绝缘子片数量的方式,来提升线路抗雷击能力。输电线路装置都具备有避雷线,而当杆塔全部高度超出40m后,每增加10m就应跟着增加1片绝缘子(146mm绝缘子)。另外常用来提升耐雷水平的方法还有增加塔头空气间距、另外改用大爬距绝缘子等。 3.4尽量减小避雷线架设保护角 通过输电线路雷击跳闸事故特点分析发现,边导线保护角也是造成雷击的重要危险因素。通常情况下制药输电线电压等级不低于110kV都需全线架设避雷线,并注意其装设方式同雷击可能性大小的密切关系。(1)单回输电线路,330kV电压等级线路及其以下级电压线路保护角最好不超过15°;500kV-750kV电压等级输电线路架设的避雷线保护角还要更小,最好不超出10°。(2)同塔双回及多回线路,110kV输电线路避雷线应不超出10°;而220kV及其以上电压等级书店线路避雷线保护角则不宜超出0°。 除上述常用防治雷击措施外,还可加强线路避雷器,如根据雷击特点安装符合外套的氧化锌避雷器,反击雷多的杆塔应三相全装备,邻杆塔也在内;绕击雷多的杆塔,在绕击一侧或两侧进行安装,来节约经济成本。另外,自动重合闸、安装招弧角、实施可控避雷针技术、应用消弧线圈接地式等也是耐雷、降低输电线路跳闸事故发生的有效措施。 结论 综上所述,电力是人们生产生活不可缺少的重要来源,近年来雷电、台风等自然气象的频出,为保证持续供电,降低输电线路雷击跳闸事故发生率是其重要举措,怎样做到防雷,首先应对以往雷击事故多发位置、地域等特点展开分析,掌握输电线路雷击高危因素,总结发现寻求防雷法应将输电线路运行方式、路线途经地域雷电强度、地貌特点、土壤电阻率等情况做全面考虑,不同条件下的输电线路采取相应科学的防雷措施,因地制宜才能取得更优的避雷效果,减少电力系统经济成本,降低输电线路雷击跳闸率,保障电网正常供电。 参考文献: [1]彭向阳,周华敏,谢耀恒等.同塔多回输电线路几种防雷击跳闸措施的评估[J].南方电网技术,2012,(3):28-32. [2]韩斌,杨金成.关于一起雷击跳闸事故的分析及防治措施探讨[J].科技与创新,2014,(19):37-38. [3]杭帅.输电线路雷击跳闸和防治[J].城市建设理论研究(电子版),2011,(23).

线路雷击跳闸的原因及条件

线路雷击跳闸的原因及条件 本文介绍了线路雷击跳闸的二大条件及主要原因。 一般情况下35kV线路由于绝缘水平不是很高,雷闪放电引起导线对地闪络是不可避免的,线路因雷击而跳闸必须具备两个条件: 1雷击时雷电过电压超过线路的绝缘水平引起线路绝缘冲击闪络,但其持续时间只有几十微秒,线路开关还来不及跳闸。 2冲击闪络继而转为稳定的工频电弧,对35kV线路来说就是形成相间短路,从而导致线路跳闸。 因此对于全线架设避雷线的线路,线路雷击跳闸主要取决于: (1)线路防雷水平的高低雷击档距中避雷线时,一般情况下空气间隙不会发生闪络,而雷电流在向两边杆塔传播时,由于强烈的电晕,当传播到杆塔时,幅值已大为降低,如果杆塔的接地电阻不高,杆塔电位的升高不足以引起绝缘子串发生闪络。而当雷击杆塔引起反击过电压时,雷电流引起杆塔的塔顶电位升高,使绝缘子串电压升高,当绝缘子串电压超过绝缘子串闪络电压时,绝缘子串就可能发生闪络由于塔顶电位的升高和绝缘子串电压的大小和与杆塔冲击接地电阻值直接相关,因此接地电阻越大,塔顶电位越高,绝缘子串上的电位差也就越大,这样就容易造成绝缘子串的闪络,甚至造成多串绝缘子串的同时

闪络,导致相间短路,引起跳闸。由于全线架设避雷线,雷绕过避雷线的保护作用击于导线的概率相对就极低。四川中光防雷。 (2)系统中性点运行方式我国规程规定,35kV系统单相接地电容电流小于10A时,中性点采用绝缘运行方式。如果35kV系统单相接地电容电流超10A,当线路因雷击引起导线单相对地短路后,短路点的单相接地电流往往就以弧光形式出现,这种弧光不易自行熄灭,时燃时灭,这样就容易在系统产生弧光过电压,危及一些绝缘水平较低的电气设备,并且如果这时线路又遭雷击引起其它相短路的话就形成了相间短路,线路马上跳闸。因此系统采用中性点经消弧线圈接地运行方式就是利用单相接地时消弧线圈产生的感性电流补偿接地点的容性电流,使接地电流变小,并自动熄弧,接地故障消失系统恢复正常.

LED显示屏频繁跳闸原因分析及解决方法v

漏电保护器布局不合理 由于LED显示屏安装现场所具有的特殊性,如接线错误、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱等原因,以及漏电保护器本身不可避免的误动和拒动,再加上没有按照实际用电情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸。 对于这种情况除了加强管理外,还需要从技术的角度,根据实际情况对漏电保护器进行合理布置。进线总电源上的漏电保护器,可主要做为防止电气火灾隐患和电气短路的总保护,兼做每个小的漏电保护范围的后备保护,它的额定漏电动作电流可在200~500mA 之间选择,额定漏电动作时间可选择0.2~0.3s。这样,可极大地减少浪涌电压、浪涌电流、电磁干扰对总漏电保护器的影响,提高总漏电保护器动作的选择性和可靠性。如果能使每个漏电保护范围内的二级漏电保护处于有效保护状态,就可以大大地减少工地总漏电保护器的频繁跳闸机率。 在保护范围内没有形成有效的二级或三级漏电保护 开关箱内的末级漏电保护器是用电设备的主保护,如果末级漏电保护器不装、损坏或选型不当,将可能导致上级漏电保护器频繁跳闸。由于LED显示屏内金属导体很多,电线接头较多,如果导线绝缘不是很好,就会导致经常漏电的状况;有的还加了一些插座,在很多时候都不装漏电保护器,经常造成漏电。只有在每个保护范围内形成有效的二级或三级漏电保护模式,才能有效地减少漏电保护器的频繁跳闸。

漏电保护器本身有一定的局限性 (1)目前的漏电保护器,不论是电磁型还是电子型均采用磁感应电压互感器拾取用电设备主回路中的漏电流,三相或三相四线在磁环中不可能布置完全均衡。LED显示屏的三相用电负荷也不可能完全平衡,在大电流下或较高的过电压下,会在有很高导磁率的磁环中感应出一定的电动势,这个电动势大到一定程度,就会导致漏电保护器跳闸。由于额定电流越大的漏电保护器采用相对较大的磁环,产生的漏磁通也相对较大,且漏电流要克服磁环本身的磁化力,导致实际使用的漏电保护器额定电流越大,灵敏度越低,拒动率也越大。 (2)漏电保护器在额定漏电动作电流和额定漏电不动作电流之间有一段动作不确定区域,漏电保护器的漏电流在此区域内波动时,可能导致漏电保护器无规律跳闸。 漏电保护器选型不合理 (1)开关箱内使用的额定漏电动作电流超过了30mA或者是超过用电设备额定电流两倍以上的漏电保护器,或是选用了带延时型的漏电保护器,由于额定漏电动作电流的提高或保护灵敏度的下降,发生漏电故障时,末级漏电保护器没有动作,上级漏电保护器就可能动作 (2)给LED显示屏通电时的启动电流往往都比较大,此大电流可能会使漏电保护器跳闸。因此,应尽可能分批次地给显示屏的箱体上电。另外,一般应选用对浪涌过电压、过

浅析输电线路雷击跳闸及防范措施

浅析输电线路雷击跳闸及防范措施 [摘要]阐述了薛家湾地区110—220kV线路投运以来雷击跳闸情况,对雷击原因进行了较详细的分析和判断,给出了判别绕击雷和反击雷的一般性原则,并对如何防止和减少110--220kV线路雷击提出了对策。 【关键词】输电线路;雷击;跳闸 1.前言 薛家湾地区地处鄂尔多斯高原东南部,海拔高度820—1584.6m,本地区内大部分地区沟谷发育,沟网纵横密布,地表被分割,呈支离破碎状。由于地形造成本地区雷击线路跳闸事故频繁发生,给线路的安全稳定运行带来了极大的危害。本文针对历年来的线路雷击跳闸事故进行分析,提出防范措施。 2.110--220kV线路雷击跳闸统计 薛家湾地区输电线路历年雷击跳闸统计如下表1。 表1 历年雷击线路跳闸情况表 序号线路名称电压等级(kV)跳闸时间故障情况 1 薛万线110 2001.7.21 119#塔A相瓷绝缘子第一片炸碎 2 薛万线110 2001.9.11 43#和44#杆A、C相绝缘子闪络 3 薛清线110 2002.5.27 34#杆避雷线炸伤一股 4 薛万线110 2005.8.24 182#B相小号侧距绝缘子4米处导线被雷击断9股,A相合成绝缘子闪络,C相导线有烧伤痕迹。 5 薛清线110 2002.6.25 36#C相第4片瓷瓶闪络。 6 薛清线110 2003.4.22 28#B相瓷瓶闪络。 7 薛万线110 2006.8.31 183#塔C相大号侧瓷绝缘子4片闪络,B相1片瓷绝缘子闪络。 8 万永线220 2007.7.22 65#塔A、B相大号侧、C相小号侧合成绝缘子闪络。 9 万永线220 2008.7.20 76#塔A相合成绝缘子闪络。 10 薛永线220 2012.6.21 4#塔B相合成绝缘子与横担连接处有放电现象,合成绝缘子闪络。 3.跳闸情况分析 由于本地区所有杆塔均处于山顶或山腰上,线路基本是布置在山上或跨越山谷,地形条件复杂,雷电活动相当频繁并容易产生畸变;杆塔所处位置地质条件较差,降低杆塔接地冲击电阻比较困难而使它的耐雷水平较低。线路极易遭受雷击。 线路遭受雷击跳闸的原因有反击和绕击两种,自现场查明雷害事故时,尤其要区分雷击事故是绕击还是反击引起的。区分绕击与反击的几条原则如表2。当雷电流较大,接地电阻较大时,则雷电的反击可能性较大;反之,雷电流较小,接地电阻较小,一旦发生雷电闪络时,则绕击的可能性较大。当发生绕击时,往往是单基单相或两基同相;而反击时,则一基多相或多基多相闪络。地形对绕击的影响较大,特别是山坡或山顶较易遭绕击,而耐雷水平较低相宜受反击[1]。 分析历年来线路遭受雷击跳闸跳闸记录及分析记录,薛万线遭受雷击反击较多,特别是43#和44#杆A、C相绝缘子闪络,由于接地引下线与杆塔连接不好,是造成反击的主要原因。万永线两次雷击中,绕击和反击各占一次,通过分析比

根据电气几何模型对10kV配电线路雷击跳闸率的计算

根据电气几何模型对10kV配电线路雷击跳闸率的计算 发表时间:2019-01-23T11:57:01.113Z 来源:《河南电力》2018年16期作者:黄正洋[导读] 本文先分析了对10kV配电线路雷击跳闸率计算的重要性 黄正洋 (江苏科能电力工程咨询有限公司 210000)摘要:本文先分析了对10kV配电线路雷击跳闸率计算的重要性,然后分析了10kV无避雷线线路电气几何模型原理以及根据电气几何模型对10kV配电线路雷击跳闸率的计算。 关键词:电气几何模型;10kV配电线路;雷击跳闸率;计算1对10kV配电线路雷击跳闸率计算的重要性首先我们要知道10kV配电线路是电力系统发、变、输、配、用五大子系统中可以说是配电系统的一个非常重要的组成部分。所以说它主要是承担着向负荷分配电能的重任,那么这样一来的话其安全稳定运行就显得至关重要,可是实际上由于配电线路的绝缘水平低的影响,那么再加上网架结构复杂,就会使其不具备防护直击雷的最基本的能力。除此之外雷电在导线上产生的感应雷过电压实际上我们也知道能够达到500kV以上,这个数字肯定是大大超过了10kV配电线路的基本的绝缘水平。据不完全统计,实际上在电压等级的电网中,发生的雷击跳闸率居高不下不仅如此它还经常有柱上开关、刀闸、避雷器还有变压器、套管等设备在雷电活动时损坏的问题的频繁出现。 当前我们知道的10kV配电线路主要防雷措施就包括安装避雷器、架设避雷线或者说是耦合地线、安装绝缘子还有过电压保护器及架空绝缘导线等措施也可以同时进行。所以说尽管10kV配电网大量使用避雷器可是也难免会出现问题,这主要表现在运行中因避雷器质量、老化等问题而使一些避雷器在雷电活动的时候就很有可能会发生击穿故障,不仅如此击穿后须停电才能处理好发生的问题,那么这在一定程度上也可以说是降低了供电可靠性。在现有线路架设避雷线、或者耦合地线以及架空绝缘导线工程最大的特点也就是量大而且成本高,所以说这些因素就一定是会在很大程度上制约了该项防雷措施的整体的推广。那么假如说是盲目加强线路绝缘的情况下,就会导致雷电波沿线传播从而就会使线路终端避雷器遭受雷电冲击的频次大大的增强,进而就肯定会增大线路终端避雷器损坏的风险。 所以说对10kV配电线路制定的各项防雷措施实际上并未达到良好的防雷效果,不仅如此而且防雷设备的运行维护不当也在很大程度上严重危害了电网的稳定运行。那么就需要建立一套更好的10kV配电线路防雷性能评估体系,不仅如此还一定要以制定科学、合理的防雷策略或者说是形成各项防雷措施的最佳的优化配置为主要目标,然后要保证良好的运行维护方案是降低配网雷害各种故障的一个非常重要的手段。下文将讨论根据输电线路电气几何模型思想从而就可以建立10kV配电线路电气几何模型,那么这样做的结果就是可以实现对其耐雷性能以及防雷策略的有效评估,更重要的就是可以为10kV配电线路防雷策略的制定提供非常重要的依据。 2 10kV无避雷线线路电气几何模型原理分析 这里我们所说的电气几何模型实际上就是将雷电的放电特性跟线路结构尺寸进行紧密联系从而建立的一种判断雷击点的这样一种几何分析计算模型。而且不仅如此它也主要用于无避雷线的配电线路屏蔽保护计算时的几何作图分析法之中。那么实际上对于三角形排列的单回线路而言,可以这样说线路横担长度与双回杆塔是类似的。所以说假如说我们采用三角形排列导线电气几何模型原理的话,上相导线暴露弧就一定会与边相导线暴露弧交于一点,可是从另一个方面来看我们还可以根据暴露弧投影法原理,而去假设杆塔横档长度是相同的这样一来的话,那么上相导线就一定会暴露弧投影从而就会被两边相导线的暴露弧投影所覆盖,然后我们还要注意雷电直击导线的总暴露弧投影长度实际上是与双回杆塔相同的。所以我们就可用双回塔作为分析10kV配电线路电气几何模型原理的典型模型。换句话说也就是对于10kV配电线路而言,实际上击于大地的雷电流在导线上产生的感应雷过电压它是非常可能会造成线路跳闸的问题的。那么在这种情况下我们对于10kV配电线路就必需得考虑雷击大地时,这种情况下能够在导线上产生的感应雷过电压的影响到底是什么。 实际上我们可以对电气几何模型做了一定程度上的改进。首先基于电气几何模型的雷击距理论我们需要考虑的因素可以说是较多的。而相比之下对于水平导体而言,我们知道不同学者得出的雷击距公式也肯定是不同的,可是实际上大部分学者的雷击距公式有一个共同点就是雷电流的一元方程,所以这样来看的话我们就会发现他们未考虑线路高度的差异对击距的影响。这个时候就应该保证计入导体高度的击距公式一定要适用于导体高度在一定的范围不仅如此还要保证雷电流幅值在一定范围内,只有这样才可以保证雷击距公式具有更好的普适性。其次雷电先导发展到架空导线侧边的时候会发生变化,它就会受到地面形状的影响,进而就很有可能会导线和地面被雷击。这个时候我们会发现实际上雷电先导对地击距同对导线击距的比值或者说是击距系数其实是小于1的。另外就是雷击于大地在导线会产生的感应过电压的大小的情况下,也就会在一定程度上导致感应过电压的大小一定是与雷击点到导线的水平距离的大小、或者说是导线高度以及雷电流大小有着非常密切的关系。就比如说我国规程就规定了雷击大地时在导线上产生的感应过电压的大小,通过分析10kV无避雷线线路电气几何模型原理我们就可以顺利地进行根据电气几何模型对10kV配电线路雷击跳闸率的计算分析。 3根据电气几何模型对10kV配电线路雷击跳闸率的计算分析 3.1线路直击雷跳闸率计算 一直以来我国线路防雷计算中判断绝缘是否闪络的情况下,实际上一直是用比较绝缘子串两端出现的过电压以及绝缘子串或者说是空气间隙放电电压方法作为一个非常重要的判据,这里的过电压超过绝缘的放电电压也就说我们说的判为闪络。具体计算过程就是取10kV配电线路波阻抗,然后就可以根据彼得逊法则从而得出线路直击雷耐雷水平。 3.2感应雷跳闸率的计算 我们知道当雷云对线路附近的地面进行放电时,那么就一定会使得先导通道中的负电荷被迅速中和,不仅如此先导通道所产生的电场也会迅速降低,这样一来就一定会使导线上的束缚电荷得到释放,而且还会使沿导线两侧运动形成感应雷过电压。那么假如说是雷电通道中的雷电流在通道周围空间建立了强大的电磁场的情况下,这个时候电磁场的变化也就肯定会使导线感应出很高的电压,然后就会出现静电感应电压和电磁感应电压两者相互叠加的情况进而就很有可能会使导线上产生过电压。 4结语

10kV架空线路雷击跳闸原因与防雷措施探讨

10kV属于中压配电网络,是我国城市主干配电网络。由于受当时技术水平和综合投资资金等因素的制约,10kV网络在当时规划建设过程中,其网状结构和配电网绝缘水平普遍偏低,尤其是在环境较为复杂地区,易受到雷电危害。据一些统计文献资料表明,雷击架空线路跳闸事故是10kV架空线路常见故障,其占配电网故障比例一直居高不下,约80%以上的故障是由于雷击危害引起。架空线路雷击危害常发生在配电变压器、柱上断路器以及隔离开关等设备处,也时常引起架空线路绝缘子发生闪络,在很大程度上影响了配电网供电可靠性和供电公司电网运营经济效益。 一、10kV架空线路雷击跳闸事故发生原因分析 1.绝缘水平不匹配引起跳闸事故 10kV架空线路绝缘水平与电气设备绝缘水平之间存在不配合问题,是导致配电网发生雷击跳闸事故的主要原因之一。10kV架空线路由于受当时建设制造水平、设计方案以及后期运行维护措施等因素的影响,很多线路在耐张杆塔上直接采用两片LXY1-70型玻璃绝缘子串,而其跳线绝缘子则采用SC-210型瓷瓶。另外,架空线路配电变压器高压侧及电缆入地端则仅采用单组阀式避雷器进行雷击防护。而从大量雷电冲击试验数据可知,两片LXY1-70型玻璃绝缘子的U50%冲击放电电压高达195.85kV,而SC-210型支柱式瓷瓶绝缘子其U50%冲击闪络电压大约为255.73kV。但根据DL/T620-1997《交流电气装置的过电压保护和绝缘配合》行业标准相关技术要求:10kV配电变压器全波冲击耐压在75kV左右,这样就会导致绝缘子绝缘水平与线路不匹配,加上避雷器泄流能力有限,导致一部分雷电过电压仍能侵入到配电电气设备及电缆线路侧,进而导致线路发生跳闸事故。 2.感应过电压引起跳闸事故 10kV架空线路大多位于城市郊区,线路杆塔周围存在大量水塘、水田。由于水的电导率要远大于周围土壤电导率,这样就容易导致架空线路在遭受雷击过程中产生较大的感应雷过电压,进而引起线路发生跳闸事故。 3.避雷器防雷性能质量降低引起跳闸事故 目前,一些10kV架空线路中依然还存在使用老式阀型避雷器的问题。由于阀型避雷器已经运行较长岁月,其密封已经受到破坏而受潮,运行相电压时其电晕效应相当严重,进而在避雷器内部产生硝酸盐等化合物,致使气体中的氧和氮大量减少,导致避雷器气压降低,工频放电电压也大大下降。另外,污秽等除了会引起避雷器放电电压降低外,还能使避雷器灭弧性能降低,严重时还可能切断不了续流进而引发避雷器发生爆炸。 4.接地引下线存在问题引起跳闸事故 接地引下线作为配电设备与配电网接地体间的连接体,其质量水平的高低对配电设备接地防雷性能的正常高效发挥非常重要。10kV架空线路接地引下线连接不规范、不合理,也是引起配电网雷击跳闸事故的主要原因之一。 二、10kV架空线路综合防雷措施 根据DL/T620-19977《交流电气装置的过电压保护和绝缘配合》行业标准相关技术要求,我国内陆绝大部分地区的雷电流幅值大于100kA的概率仅为7.3%,也就是说除当地地质、气象条件较为特殊的地区外,其余内陆地区在进行架空线路防雷措施研究时,更多应考虑幅值小于100 kA雷电流对架空线路的雷击破坏影响。结合多年10kV架空线路运行维护实际工作经验,笔者认为可以从优选线路氧化锌避雷器、架设耦合地线、装置自动重合闸保护装置等多个方面进行雷电危害的综合防护,以提高10kV架空线路运行的稳定性、可靠性和经济性。 1.优选线路氧化锌避雷器 在10kV架空线路上安装氧化锌避雷器来防护雷电过电压,是国际上广泛推广应用的防雷措施之一。在架空线路上安装氧化锌避雷器后,一旦出现雷击架空线路杆塔时,雷电流将会被分流,一部分雷电流经过杆塔接地体直接泄入大地中;而雷电流中超过允许值的另一部分,则可以通过避雷器进行分流,大部分雷电流可以通过线路避雷器分流到导线上,传播到邻近的杆塔接地体中泄入到大地,这样就可以减少雷击跳闸事故。10kV架空线路装设线路氧化锌避雷器前后的电压变化曲线,如图1和图2所示。 从图1和图2可知,加装线路氧化锌避雷器时,大部分雷电流可以通过避雷器有效流入到大地中,线路电压波动范围不大;而没有加装氧化锌避雷器时,线路雷电流不能有效泄入大地,进而导致线路电压剧烈波动,最高可到270kV左右。可见加装线路氧化锌避雷器后,所取得的防雷效果十分明显。另外,采取线路避雷器与绝缘子并联的防护体系,具有良好钳位作用,即避雷器的残压低于绝缘子串50%放电电压,这样即使雷电流增大引起避雷器残压增加,线路绝缘子也不会发生闪络事故。 10kV架空线路雷击跳闸原因与防雷措施探讨 边文明 摘要:10kV架空线路雷击危害事故频繁发生,严重威胁到10kV配电网供电的安全性、可靠性和经济性,直接影响到广大人民群众的正常生产、生活用电。结合经验,对10kV架空线路运行时发生雷击危害的主要原因进行归纳总结,分析探讨了10kV架空线路的雷电综合防护措施,具有非常重要的工程实践应用意义。 关键词:10kV架空线路;雷击危害;防雷保护 作者简介:边文明(1982-),男,江西抚州人,中铁二十四局集团上海电务电化有限公司电务工程分公司,工程师。(上海 210071)中图分类号:TM72 文献标识码:A 文章编号:1007-0079(2012)27-0140-01 DOI编码:10.3969/j.issn.1007-0079.2012.27.066 (下转第144页)

相关主题
文本预览
相关文档 最新文档