当前位置:文档之家› 分子生物学终极复习资料汇总

分子生物学终极复习资料汇总

分子生物学终极复习资料汇总
分子生物学终极复习资料汇总

《分子生物学》复习题

1、染色体:是指在细胞分裂期出现的一种能被碱性染料强烈染色,并具有一

定形态、结构特征的物体。携带很多基因的分离单位。只有在细胞分裂中才可见的形态单位。

2、染色质:是指细胞周期间期细胞核内由DNA、组蛋白、非组蛋白和少量

RNA组成的复合结构,因其易被碱性染料染色而得名。

3、核小体:染色质的基本结构亚基,由约200 bp的DNA和组蛋白八聚体所组

4、C值谬误:一个有机体的C值与它的编码能力缺乏相关性称为 C值矛盾

5、半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,

一条链来自6、亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制

6、DNA重组技术又称基因工程,目的是将不同的DNA片段(如某个基因或

基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

7、半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链

的合成是不连续的,故称半不连续复制。

8、引发酶:此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引

物(Primer)。实质是以DNA为模板的RNA聚合酶。

9、转坐子:存在与染色体DNA上可自主复制和位移的基本单位。

10、多顺反子:一种能作为两种或多种多肽链翻译模板的信使RNA,由DNA

链上的邻近顺反子所界定。

11、基因:产生一条多肽链或功能RNA所必需的全部核甘酸序列。

12、启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。

13、增强子:能强化转录起始的序列

14、全酶:含有表达其基础酶活力所必需的5个亚基的酶蛋白复合物,拥有σ因子。

(即核心酶+σ因子)

15、核心酶:仅含有表达其基础酶活力所必需亚基的酶蛋白复合物,没有σ因子。

16、核酶:是一类具有催化功能的RNA分子

17、三元复合物:开放复合物与最初的两个NTP相结合,并在这两个核苷酸之间形成磷酸二酯键后,转变成包括RNA聚合酶,DNA和新生的RNA的三元复合物。

18、SD序列:mRNA中用于结合原核生物核糖体的序列。30S亚基通过其16SrRNADE 3'端与mRNA5’端起始密码子上游碱基配对结合。这个富嘌呤区被命名为SD序列。

19、同工tRNA:代表同一种氨基酸的tRNA称为同工tRNA。

20、分子伴侣:它是细胞中一类能够识别并结合到不完全折叠或搭配的蛋白质

上以帮助这些多肽正确折叠、转运或防止它们聚集的蛋白质,其本身不参与终产物的形成。

21、信号肽:常指新合成多肽链中用于指导蛋白质跨膜转移的N-末端氨基酸序

列(有时不一定在N端)。

22、核定位序列:蛋白质中的一种常见的结构域,通常为一短的氨基酸序列,

它能与入核载体相互作用,将蛋白质运进细胞核内。

23、操纵子:是基因表达的协调单位,由启动子、操纵基因及其所控制的一组功能上相关的结构基因所组成。操纵基因受调节基因产物的控制。

24、弱化子:当操纵子被阻遏,RNA合成被终止时,起终止转录信号作用的那一段核苷酸被称为弱化子。

25、安慰诱导物:如果某种物质能够促使细菌产生酶而本身又不被分解,这种物质被称为安慰诱导物,如IPTG(异丙基- β–D-硫代半乳糖苷)。

26、葡萄糖效应(代谢物阻遏效应):有葡萄糖存在时,不论诱导物存在与否,操纵子都没有转录活性,结构基因都不表达。

27、顺式作用元件:影响自身基因表达活性的非编码DNA序列。

28、反式作用因子:能直接或间接地识别或结合在各类顺式作用元件核心序列上,参与调控靶基因转录效率的蛋白质。

29、基因家族:在基因组进化中,一个基因通过基因重复产生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物。

30、断裂基因:在一个结构基因中,编码某一蛋白质不同区域的各个外显子并

不连续排列在一起,而是常常被长度不等的内含子所隔离,形成镶嵌排列的断裂方式。所以真核基因被称为断裂基因。

1、乳糖操纵子的调控模型。

主要内容:

① Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码

②这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区

(P),不能单独起动合成β-半乳糖苷酶和透过酶的生理过程。

③操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。

④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。

⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发lac mRNA的合成。当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始mRNA的合成。

2、比较PCR扩增和细胞内DNA复制的异同。

PCR技术 DNA生物复制

环境体外复制,加热,90摄氏度左右体内,温和的环境

模板 DNA单链 DNA单链

原料 4种脱氧核糖核苷酸 4种脱氧核糖核苷酸

酶主要是DNA聚合酶 DNA解旋酶,DNA聚合酶,

DNA连接酶等各种酶

引物需要人工合成的引物自己合成引物成分

步骤变性--退火--延伸解旋-起始-延伸-结束

原则碱基互补配对原则碱基互补配对原则

3、细胞通过哪几种修复系统对DNA损伤进行修复?简述DNA错配修复的过程。

错配修复的过程:a、发现碱基错配;在水解ATP的作用下,b、MutS,MutL 与碱基错配位点的DNA双链结合;c、Muts-MutL在DNA双链上移动,发现甲基化DNA后由MutH切开非甲基化的子链;d、当错配碱基位于切口3'下游端时,在MutL-MutS、解链酶Ⅱ、DNA外切酶Ⅵ或RecJ核酸酶的作用下,从错配碱基3'下游端开始切除单链DNA直到原切口,并在Pol Ⅲ和SSB的作用下合成新的子链片段。若错配碱基位于切口的5'上游端,则在DNA外切酶Ⅰ或Ⅹ的作用下,从错配碱基5'上游端开始切除单链DNA直到原切口,再合成

新的子链片段。

4.图示简要说明真核生物启动子的结构。

5.说明DNA甲基化对基因转录活性的影响机理。为什么说甲基化密度与启动子强度之间的平衡决定了该启动子是否具有转录活性(可用图示说明)?

DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,抑制了转录因子与启动区DNA的结合效率。甲基的引入不利于模板与RNA聚合酶的结合,降低了转录活性。甲基化密度与启动子强度之间的平衡决定了该启动子是否具有转录活性。

6、举例说明蛋白质磷酸化如何影响基因表达。

①以络氨酸受体蛋白激酶磷酸化导致细胞癌变为例说明:

络氨酸受体蛋白激酶与表皮生长因子(EGF)相结合后,刺激了该受体蛋白的激酶活性,引发一系列生理反应。原癌蛋白ErbB虽然没有正常络氨酸受体蛋白激酶的胞外结构域,其胞内结构域却具有蛋白激酶活性,刺激细胞持久分裂,诱

发癌变。

②以cAMP介导的蛋白质磷酸化为例说明

许多转录因子都可以通过cAMP介导的蛋白质磷酸化过程而被激活

这类基因5’区有一个或数个cAMP应答元件,基本序列为TGACGTCA

膜上受体与配体结合引起受体构象变化,并与G结合,激活与膜相关的腺苷酸环化酶,导致胞内cAMP水平上升,活化A激酶,释放催化亚基入核内,实施底物磷酸化。被磷酸化的底物可作为转录激活因子诱发基因转录。

7.如何克隆一个新基因(cDNA的中间片段)?

在已知cDNA序列基础上克隆5’或3’端缺失序列的技术。根据已知序列设计基因片段内部特异引物,由该片段向外侧进行PCR扩增得到目的序列。此技术为RACE技术。

步骤:

1.在反转录酶的作用下,以基因片段内部特异性引物(GSP1)启始cDNA

第一条链合成。

2.RNase降解模板链mRNA,纯化第一链。

3.用末端转移酶在cDNA链3’端加入连续的dCTP,形成oligodc尾巴。

4.以连有oligo dC 的锚定引物和基因片段内部特异引物GSP2进行nest

PCR扩增,得到目的基因5'端片段并检测。

8.肽链延伸由许多循环组成,每加一个氨基酸就是一个循环,每个循环包括哪些步骤?

每个循环包括:AA-tRNA与核糖体结合、肽键的生成和移位。

1.AA-tRNA与核糖体结合需要消耗GTP,并需EF-Tu、EF-Ts两种延伸因子

2.肽键的生成是由转肽酶/肽基转移酶催化

3.移位,核糖体向mRNA3’端方向移动一个密码子。

4.需要消耗GTP,并需EF-G延伸因子

9、比较原核生物和真核生物mRNA的特点。

原核生物mRNA的特征:(1)半衰期短(2)多以多顺反子的形式存在

(3)5’端无“帽子”结构, 3’端没有或只有较短的poly(A )结构。

(4)原核生物常以AUG(有时GUG,甚至UUG)作为起始密码子,而真核生物几乎永远以AUG作为起始密码子。

真核生物mRNA的特征:

1、5’端存在“帽子”结构

2、多数mRNA 3’端具有poly(A )尾巴(组蛋白除外)

3、以单顺反子的形式存在

10、真核生物的原始转录产物需要经过哪些加工才能成为成熟的mRNA?

真核生物的原始转录产物需要经过的加工过程有:

1、在5’端加帽。5’端的一个核苷酸总是7-甲基鸟嘌呤核苷三磷酸(m7Gppp)。mRNA5’端的这种结构称为帽子结构(cap)。

2、3’端加尾,多聚腺苷酸尾巴提高了mRNA在细胞质中的稳定性,由poly (A)聚合酶催化。

3、RNA的剪接。参与RNA剪接的物质有snRNA(核内小分子RNA)、snRNP(与snRNA结合的核蛋白)

4、RNA的编辑

11、真核生物和原核生物在翻译的起始过程有哪些区别?

真核生物:起始密码子AUG 所编码的氨基酸是Met,起始AA-tRNA为Met-

tRNAMet。

原核生物:起始密码子AUG 所编码的氨基酸并不是甲硫氨酸本身, 而是甲酰甲硫氨酸(fMet),起始AA-tRNA为fMet-tRNAfMet

12.SNP技术是指?

SNP技术:是单核苷酸多态性,指基因组DNA序列中由于单个核苷酸(A,T,C和G)的突变而引起的多态性。一个SNP表示在基因组某个位点上一个核苷酸的变化,这种变化可能是转换,也可能是颠换。

SNP技术即SNP检测技术,因为只有进行了DNA序列分析才能确认所发现的SNP,所以目前国际上最常见的仍然是通过DNA测序法获得新的SNP。

基因分型是其中最常见的,它是指利用数据库中已有的SNP进行特定人群的序列和发生频率的研究,主要包括基因芯片技术、Taqman技术、分子信标技术和焦磷酸测序法等。

13、基因敲除技术的基本原理。

基本原理:基因敲除又称基因打靶,该技术通过外源DNA与染色体DNA之间的同源重组,进行精确的定点修饰和基因改造,具有专一性强、染色体DNA 可与目的片段共同稳定遗传等特点。

14.RNAi技术的基本原理。

基本原理:RNAi技术利用双链小RNA高效、特异性降解细胞内同源mRNA从而阻断靶基因表达,使细胞出现靶基因缺失的表型。

15、cDNA的合成

答:cDNA 的合成包括第一链和第二链的合成

?第一链的合成是以mRNA为模板,反转录成cDNA,由反转录酶催化,该酶合成是需要引物引导,常用的引物是Oligo dT。 Oligo dT 引物一般包含12—20个脱氧胸腺嘧啶核苷酸,后面加一个连接引物以便于克隆构建。

?第二链的合成是以第一链为模板,由DNA聚合酶催化。常用RNaseH 切割mRNA–CDNA杂合链中的mRNA序列所产生的小片段为引物合成第二条cDNA的片段,再通过DNA连接酶的作用连成完整的DNA链。

复习提纲

CHAP 1

1、证明DNA是遗传物质的两个关键性实验是什么?

肺炎双球菌实验和噬菌体侵染大肠杆菌实验。

2、什么是DNA重组技术?

DNA重组技术又称基因工程,目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。

CHAP 21.染色体、染色质、核小体、C值谬误、半保留复制、半不连续复制、引发酶、转坐子、多顺反子

染色体是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。

染色质是一种纤维状结构,叫做染色质丝,它是由最基本的单位—核小体成串排列而成的。

核小体:用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核构成的。

C值反常现象:C值是一种生物的单倍体基因组DNA的总量。真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就是著名的“C值反常现象”。

半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制

转座子:存在与染色体DNA上可自主复制和位移的基本单位。

引发酶:是依赖于DNA的RNA聚合酶,其功能是在DNA复制过程中合成RNA引物。

多顺反子mRNA:一种能作为两种或者多种多肽链翻译模板的信使RNA,由DNA链上的邻近顺反子所界定。

1、比较原核生物和真核生物基因组DNA的特点。

原核生物基因组结构特点:

①基因组很小,大多只有一条染色体

②结构简炼

③存在转录单元(trnascriptional operon) 多顺反子(polycistron)

真核生物基因组结构特点:

●真核基因组结构庞大 3×109bp、染色质、核膜

●单顺反子

●基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon)

●非编码区较多多于编码序列(9:1)

●含有大量重复序列

2.原核、真核生物DNA聚合酶的特性。

㈠原核生物中的DNA聚合酶(大肠杆菌)

㈡真核生物中的DNA聚合酶

2.细胞通过哪几种修复系统对DNA损伤进行修复?简述DNA错配修复的过程。

核苷酸切除修复修复被破坏的DNA

DNA直接修复修复嘧啶二体或甲基化DNA

DNA错配修复的过程

●Dam甲基化酶使母链位于5’GATC序列中腺甘酸甲基化

●甲基化紧随在DNA复制之后进行

●根据复制叉上DNA甲基化程度,切除尚未甲基化的子链上的错配碱基CHAP 3

1、基因、启动子、增强子、全酶、核心酶、核酶、三元复合物、SD序列

基因,分子生物学定义:产生一条多肽链或功能RNA所必需的全部核甘酸序列。

启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。

核心酶:大肠杆菌RNA聚合酶由2个α亚基、一个β亚基、一个β′亚基和一个w亚基组成核心酶

全酶=核心酶+ σ因子

增强子:能提高转录起始效率的序列被称为增强子或者强化子

三元复合物:开放复合物与最初的两个NTP相结合,并在这两个核苷酸之间形成磷酸二酯键后,转变成包括RNA聚合酶,DNA和新生的RNA的三元复合物SD序列:mRNA中用于结合原核生物核糖体的序列

?比较原核生物和真核生物mRNA的特点。

大肠杆菌RNA聚合酶的组成分析

真核生物RNA聚合酶

2.真核生物的原始转录产物需要经过哪些加工才能成为成熟的mRNA?

真核生物的原始转录产物需要经过的加工过程有:

1、在5’端加帽。5’端的一个核苷酸总是7-甲基鸟核苷三磷酸(m7Gppp)。mRNA5’端的这种结构称为帽子(cap)。

2、3’端加尾,多聚腺苷酸尾巴提高了mRNA在细胞质中的稳定性

3、RNA的剪接。参与RNA剪接的物质有snRNA(核内小分子RNA)

?、snRNP(与snRNA结合的核蛋白)

4、RNA的编辑

2.原核启动子和真核启动子的构成

一、原核生物启动子结构有

TATA区:酶的紧密结合位点(富含AT碱基,利于双链打开)

TTGACA区:提供了RNA聚合酶全酶识别的信号

二、真核生物启动子的结构

核心启动子TATA 常在-25bp左右,相当于原核的-10序列T85A97T93A85A63A83A50

核心启动子●定义:指保证RNA聚合酶Ⅱ转录正常起始所必需的、最少的DNA序列,包括转录起始位点及转录起始位点上游TATA区

●作用:选择正确的转录起始位点,保证精确起始

②上游启动子元件,包括CAAT盒(CCAAT)和GC盒(GGGCGG)等

●作用:控制转录起始频率。

CHAP4

1、遗传密码有哪些特性?理解掌握其摆动性

特性:连续性,简并性,通用性与特殊性,摆动性

摆动性:

转运氨基酸的tRNA上的反密码子需要通过碱基互补与mRNA上的遗传密码子反向配对结合,在密码子与反密码子的配对中,前两对严格遵守碱基配对原则,第三对碱基有一定的自由度,可以“摆动”,这种现象称为密码子的摆动性。

2.tRNA中起作用的重要两个臂是什么臂?

受体臂和密码子臂。

tRNA有两个关键部位:

● 3’端CCA:接受氨基酸,形成氨酰-tRNA。

●与mRNA结合部位—反密码子部位

2.肽链延伸由许多循环组成,每加一个氨基酸就是一个循环,每个循环包括哪些步骤?

每个循环包括:AA-tRNA与核糖体结合、肽键的生成和移位。

★AA-tRNA与核糖体结合需要消耗GTP,并需EF-Tu、EF-Ts两种延伸因子

★肽键的生成是由转肽酶/肽基转移酶催化

★移位,核糖体向mRNA3’端方向移动一个密码子。

需要消耗GTP,并需EF-G延伸因子

2.真核生物和原核生物在翻译的起始过程有哪些区别?

真核生物:起始密码子AUG 所编码的氨基酸是Met,起始AA-tRNA为Met-tRNAMet。

原核生物:起始密码子AUG 所编码的氨基酸并不是甲硫氨酸本身, 而是甲酰甲硫氨酸(fMet),起始AA-tRNA为fMet-tRNAfMet

2.同工tRNA、分子伴侣、信号肽、核定位序列

同工tRNA:代表同一种氨基酸的tRNA称为同工tRNA。

分子伴侣:它是细胞中一类能够识别并结合到不完全折叠或搭配的蛋白质上以帮助这些多肽正确折叠、转运或防止它们聚集的蛋白质,其本身不参与终产物的形成。

信号肽:常指新合成多肽链中用于指导蛋白质跨膜转移的N-末端氨基酸序列(有时不一定在N端)。

核定位序列:蛋白质中的一种常见的结构域,通常为一短的氨基酸序列,它能与入核载体相互作用,将蛋白质运进细胞核内。

CHAP 5

1、比较PCR扩增和细胞内DNA复制的异同。

PCR技术 DNA生物复制

环境体外复制,加热,90摄氏度左右体内,温和的环境

模板 DNA单链 DNA单链

原料 4种脱氧核糖核苷酸 4种脱氧核糖核苷酸

酶主要是DNA聚合酶 DNA解旋酶,DNA聚合酶,

DNA连接酶等各种酶

引物需要人工合成的引物自己合成引物成分

步骤变性--退火--延伸解旋-起始-延伸-结束

原则碱基互补配对原则碱基互补配对原则

2.设计一个典型的PCR扩增程序和PCR反应体系。

在一个典型的PCR反应体系中需加入:适宜的缓冲液、微量的模板DNA、4×dNTPs、耐热性多聚酶、Mg2+和两个合成的DNA引物。

PCR扩增,模板DNa 94℃变性1min,引物与模板40~60℃退火1min,72℃延伸2min。在首次循环前模板预变性3~5min;在末次循环后,样品仍需继续延伸3~5min以上,确保扩增的DNA为双链DNA。

其程序步骤为:

94℃预变性3min℃变性30s;30s;1min30s 进

行30cycle;4min; 4

2、在基因操作实践中检测核酸相对分子量的最常用方法是什么?其原理是什

么?

检测核酸相对分子量的最常用方法:核酸凝胶电泳、分光广度法

其原理是:DNA或RNA链上碱基的苯环结构在紫光区具有较强吸收,其吸收峰在260nm处。波长为260nm时,DNA或RNA的光密度OD260不仅与总含量有关,也随构型而有差异。

3.如何克隆一个新基因(cDNA的中间片段)?

在已知cDNA序列基础上克隆5’或3’端缺失序列的技术。根据已知序列设计基因片段内部特异引物,由该片段向外侧进行PCR扩增得到目的序列。此技术为RACE技术。

步骤:

5.在反转录酶的作用下,以基因片段内部特异性引物(GSP1)启始cDNA

第一条链合成。

6.RNase降解模板链mRNA,纯化第一链。

7.用末端转移酶在cDNA链3’端加入连续的dCTP,形成oligodc尾巴。

8.以连有oligo dC 的锚定引物和基因片段内部特异引物GSP2进行nest

PCR扩增,得到目的基因5'端片段并检测。

3.SNP技术

SNP技术:是单核苷酸多态性,指基因组DNA序列中由于单个核苷酸(A,T,C和G)的突变而引起的多态性。

CHAP 6

1、基因敲除技术的基本原理。

基本原理:基因敲除又称基因打靶,该技术通过外源DNA与染色体DNA之间

的同源重组,进行精确的定点修饰和基因改造,具有专一性强、染色体DNA 可与目的片段共同稳定遗传等特点。

2.RNAi技术的基本原理。

基本原理:RNAi技术利用双链小RNA高效、特异性降解细胞内同源mRNA从而阻断靶基因表达,使细胞出现靶基因缺失的表型。

CHAP 7

3、操纵子、弱化子、葡萄糖效应(代谢物阻遏效应)、安慰性诱导物

操纵子:是基因表达的协调单位,由启动子、操纵基因及其所控制的一组功能上相关的结构基因所组成。操纵基因受调节基因产物的控制。

弱化子:当操纵子被阻遏,RNA合成被终止时,起终止转录信号作用的那一段核苷酸被称为弱化子。

安慰诱导物:如果某种物质能够促使细菌产生酶而本身又不被分解,这种物质被称为安慰诱导物,如IPTG(异丙基- β–D-硫代半乳糖苷)。

葡萄糖效应(代谢物阻遏效应):有葡萄糖存在时,不论诱导物存在与否,操纵子都没有转录活性,结构基因都不表达。

2.乳糖操纵子的调控模型。

主要内容:

① Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码

②这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区(P),不能单独起动合成β-半乳糖苷酶和透过酶的生理过程。

③操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。

④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。

⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结合,从而激发lac mRNA的合成。当有诱导物存在时,操纵基因区没有被阻遏物占据,所以启动子能够顺利起始mRNA的合成。

2.色氨酸操纵子的负控阻遏系统和弱化调控机制。

负控阻遏系统:色氨酸操纵子负责色氨酸的生物合成,当培养基中有足够的色氨酸时,这个操纵子自动关闭,缺乏色氨酸时操纵子被打开,trp基因表达,色氨酸或与其代谢有关的某种物质在阻遏过程(而不是诱导过程)中起作用。

弱化调控机制: 细菌通过弱化作用弥补阻遏作用的不足,因为阻遏作用只能使转录不起始,对于已经起始的转录,只能通过弱化作用使之中途停下来。阻遏作用的信号是细胞内色氨酸的多少;弱化作用的信号则是细胞内载有色氨酸的tRNA的多少。它通过前导肽的翻译来控制转录的进行,在细菌细胞内这两种作用相辅相成,体现着生物体内周密的调控作用。

2.为什么半乳糖操纵子需要双启动子?

双启动子的生理功能:这与半乳糖在细胞代谢中的双重功能有关。半乳糖不仅作为唯一碳源供细胞生长,而且与之相关的物质——尿苷二磷酸半乳糖是大肠杆菌细胞壁合成的前体。生长过程中细胞必须随时合成差向异构酶,以保证尿苷二磷酸的供应。在没有外源半乳糖的情况下,细胞通过半乳糖差向异构酶的作用由UDP-葡萄糖合成UDPgal。因为合成细胞壁过程中对异构酶的需要量很小,本底水平的永久型合成就能够满足生理需要。

CHAP 8

1、顺式作用元件、反式作用因子、基因家簇、断裂基因

顺式作用元件:影响自身基因表达活性的非编码DNA序列。

反式作用因子:能直接或间接地识别或结合在各类顺式作用元件核心序列上,参与调控靶基因转录效率的蛋白质。

基因家族:在基因组进化中,一个基因通过基因重复产生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物。

断裂基因:在一个结构基因中,编码某一蛋白质不同区域的各个外显子并不连续排列在一起,而是常常被长度不等的内含子所隔离,形成镶嵌排列的断裂方式。所以真核基因被称为断裂基因。

2.图示简要说明真核生物启动子的结构。

2.说明DNA甲基化对基因转录活性的影响机理。为什么说甲基化密度与启动子强度之间的平衡决定了该启动子是否具有转录活性(可用图示说明)?

DNA甲基化导致某些区域DNA构象变化,从而影响了蛋白质与DNA的相互作用,抑制了转录因子与启动区DNA的结合效率。甲基的引入不利于模板与RNA聚合酶的结合,降低了转录活性

2、举例说明蛋白质磷酸化如何影响基因表达。

络氨酸受体蛋白激酶磷酸化导致细胞癌变:

络氨酸受体蛋白激酶与表皮生长因子(EGF)相结合后,刺激了该受体蛋白的激酶活性,引发一系列生理反应。原癌蛋白ErbB虽然没有正常络氨酸受体蛋白激酶的胞外结构域,其胞内结构域却具有蛋白激酶活性,刺激细胞持久分裂,诱发癌变。

3.cDNA的合成包括第一链和第二链的合成:第一链cDNA的合成是以mRNA 为模板,反转录成cDNA,由反转录酶催化,该酶合成DNA时需要引物引导,常用的引物是oligo dT 。oligo dT引物一般包含12~20个脱氧胸腺嘧啶核苷酸,

后面加一个连接引物以便于克隆构建。

第二链的合成是以第一链为模板,由DNA聚合酶催化。常用RNaseH 切割mRNA–CDNA杂合链中的mRNA序列所产生的小片段为引物合成第二条cDNA的片段,再通过DNA连接酶的作用连成完整的DNA链。

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

分子生物学题库重点

一. 名词解释 1. C值及C值反常反应:所谓C值,通常是指一种生物单倍体基因组DNA的总量。真核细胞基因的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就是C值反常现象。 2. 半保留复制:DNA生物合成时,母链DNA解开分为两股单链,各自为模板按碱基互补规律,合成与模板互补的子链。子代细胞的DNA,一股从亲本完全接受过来,另一股则完全从新合成。两个子细胞的DNA碱基序列一致。 3 半不连续复制:前导链连续复制而随从链不连续复制,就是复制的半不连续性。 4 引发体:复制的起始含有解螺旋酶.DNA C蛋白.引物酶和DNA复制起始区域的复合结构称为引发体。 5. DNA损伤:在复制过程中发生的DNA突变体称为DNA损伤。 6 转座子:是存在于染色体DNA上可自主复制和位移的基本单位。 7. 中心法则:通过DNA的复制把遗传信息由亲代传递给子代,遗传信息由DNA传递到RNA,最后翻译成特异的蛋白质.RNA还以逆转录的方式将遗传信息体传递给DNA分子。这种遗传信息的流向称为中心法则。 8 编码链:双链DNA中,不能进行转录的那一条DNA链,该链的核苷酸序列与转录生成的RNA的序列一致,又称意义链。 9. 转录因子:能直接或间接辨认和结合转录上游区段DNA的蛋白质,称反式作用因子。在反式作用因子中,直接或间接结合DNA聚合酶的,则称为转录因子。 10 RNA编辑:是某些RNA,特别是mRNA前体的一种加工方式,如插入,删除或取代一些核苷酸残基,导致DNA所编码的遗传信息发生改变,因为经过编辑mRNA序列发生了不同于模板DNA的变化。 11 cDNA:互补DNA,是以mRNA为模板,按碱基互补规律,合成与mRNA互补的DNA 单链。 12 RNA选择性剪接:是指不同的剪切方式从一个mRNA前体产生不同的mRNA剪接异构体的过程。 13 GU-AG法则:多数细胞核mRNA前体中内含子的5’边界序列为GU,3’边界,序列为AG。因此,GU表示供体先借点的5’端,AG代表接纳体衔接点3’端序列。习惯上,这种保守序列模式称为GU-AG法则。 14. 顺反子:遗传学上将编码一个多肽链的遗传单位,称为顺反子。真核mRNA只编码一种蛋白质,为单顺反子。 15. 翻译:以mRNA为模板,氨酰-tRNA为原料直接供体,在多种蛋白质因子和酶的参与下,在核糖体上将mRNA分子上的核苷酸顺序表达为有特定氨基酸顺序的蛋白质的过程。 16. 摆动假说:Crick为解释反密码子中某些稀有成分的配对以及许多氨基酸有2个以上的密码子的问题而提出的假说。 17. 氨酰-tRNA合成酶:是一类催化氨基酸和tRNA相结合的特异性酶。 18. SD序列:早在1974年,Shine就发现,几种细菌小亚基rRNA3’末端顺序为:5’—ACCUCCUA—3’,它可以和mRNA中离AUG顺序5’侧约9-13个碱基处有一段富含嘌呤碱基AGGA或GAGG互补,后来称此区域为SD。 19. 多核糖体:mRNA同时与若干个核糖体结合形成的念珠转结构,称为多核糖体。 20 核定位序列:蛋白质中的一种常见的结构域,通常为一短的氨基酸序列,它能与核载体相互作用,将蛋白质运进细胞核内。 21. 基因打靶:是指通过DNA定点同源重组,改变基因组中的某一特定基因,从而在生物活体内研究此基因的功能。

分子生物学笔记

分子生物学笔记 ? ?第一章基因的结构第一节基因和基因组 一、基因(gene) 是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene),外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和, 基因组的大小用全部DNA的碱基对总数表示。 人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP) 基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。蛋白质组(proteome)和蛋白质组学(proteomics)

第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中DNA序列的分类? (一)高度重复序列(重复次数>lO5) 卫星DNA(Satellite DNA) (二)中度重复序列 1.中度重复序列的特点 ①重复单位序列相似,但不完全一样, ②散在分布于基因组中. ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为DNA标记. ⑤中度重复序列可能是转座元件(返座子), 2.中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments.)LINES ②短散在重复序列(Short interspersed repeated segments)SINES SINES:长度<500bp,拷贝数>105.如人Alu序列 LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl (三)单拷贝序列(Unique Sequence) 包括大多数编码蛋白质的结构基因和基因间间隔序列, 三、基因家族(gene family)

生物化学与分子生物学复习归纳笔记

生物化学与分子生物学重点(1) https://www.doczj.com/doc/bf3296634.html, 2006-11-13 23:44:37 来源:绿色生命网 第一章绪论 一、生物化学的的概念: 生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。 二、生物化学的发展: 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的

一个重要内容。 第二章蛋白质的结构与功能 一、氨基酸: 1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。 2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:① 非极性中性氨基酸(8种); ② 极性中性氨基酸(7种);③ 酸性氨基酸(Glu和Asp);④ 碱性氨基酸(Lys、Arg和His)。 二、肽键与肽链: 肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。 三、肽键平面(肽单位): 肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。 四、蛋白质的分子结构: 蛋白质的分子结构可人为分为一级、二级、三级和四级结构等层次。一级结构为线状结构,二、三、四级结构为空间结构。 1.一级结构:指多肽链中氨基酸的排列顺序,其维系键是肽键。蛋白质的一级结构决定其空间结构。 2.二级结构:指多肽链主链骨架盘绕折叠而形成的构象,借氢键维系。主要有以下几种类型: ⑴α-螺旋:其结构特征为:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm;③ 相邻螺旋圈之间形成许多氢键;④ 侧链基团位于螺旋的外侧。 影响α-螺旋形成的因素主要是:① 存在侧链基团较大的氨基酸残基;② 连续存在带相同电荷的氨基酸残基;③ 存在脯氨酸残基。 ⑵β-折叠:其结构特征为:① 若干条肽链或肽段平行或反平行排列成片;② 所有肽键的C=O和

分子生物学知识点整理知识讲解

分子生物学知识点整 理

一、名词解释: 1. 基因:基因是位于染色体上的遗传基本单位,是负载特定遗传信息的DNA 片段,编码具有生物功能的产物包括RNA和多肽链。 2. 基因表达:即基因负载遗传信息转变生成具有生物学功能产物的过程,包括基因的激活、转录、翻译以及相关的加工修饰等多个步骤或过程。 3.管家基因:在一个生物个体的几乎所有组织细胞中和所有时间段都持续表达的基因,其表达水平变化很小且较少受环境变化的影响。如GAPDH、β-肌动蛋白基因。 4. 启动子:是指位于基因转录起始位点上游、能够与RNA聚合酶和其他转录因子结合并进而调节其下游目的基因转录起始和转录效率的一段DNA片段。 5.操纵子:是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等。如:乳糖操纵子、色氨酸操纵子等。 6.反式作用因子:指由其他基因表达产生的、能与顺式作用元件直接或间接作用而参与调节靶基因转录的蛋白因子(转录因子)。 7.顺式作用元件:即位于基因附近或内部的能够调节基因自身表达的特定DNA 序列。是转录因子的结合位点,通过与转录因子的结合而实现对真核基因转录的精确调控。 8. Ct值:即循环阈值(cycle threshold,Ct),是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数。(它与PCR扩增的起始模板量存在线性对数关系,由此可以对扩增样品中的目的基因的模板量进行准确的绝对和(或)相对定量。)

9.核酸分子杂交:是指核酸分子在变性后再复性的过程中,来源不同但互不配对的核酸单链(包括DNA和DNA,DNA和RNA,RNA和RNA)相互结合形成杂合双链的特性或现象,依据此特性建立的一种对目的核酸分子进行定性和定量分析的技术则称为分子杂交技术。 10. 印迹或转印:是指将核酸或蛋白质等生物大分子通过一定的方法转移并固定至尼龙膜等支持载体上的一种方法,该技术类似于用吸墨纸吸收纸张上的墨迹。 11. 探针:是一种用同位素或非同位素标记核酸单链,通常是人工合成的寡核苷酸片段。 12. 基因芯片:又称DNA芯片或DNA微阵列,是基于核酸分子杂交原理建立的一种对DNA进行高通量、大规模、并进行分析的技术,其基本原理是将大量寡核苷酸分子固定于支持物上,然后与标记的待测样品进行杂交,通过检测杂交信号的强弱进而对待测样品中的核酸进行定性和定量分析。 13. 基因文库:是指通过克隆方法保存在适当宿主中的一群混合的DNA分子,所有这些分子中的插入片段的总和,可代表某种生物的全部基因组序列或全部的mRNA序列,因此基因文库实际上是包含某一生物体或生物组织样本的全部DNA序列的克隆群体。基因文库包括两类:基因组文库和cDNA文库。 14. 克隆:是来自同一始祖的相同副本或拷贝的集合。 15. 载体:为携带的目的基因,实现其无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。 16. 限制性核酸内切酶:识别DNA的特意序列,并在识别位点或其周围切割双链DNA的一类内切酶。

分子生物学笔记完全版

分子生物学笔记第一章基因的结构 第一节基因和基因组 一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列. 一个典型的真核基因包括 ①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR) ④调控 序列(可位于上述三种序列中) 绝大多数真核基因是断裂基因(split-gene) ,外显子不连续。 二、基因组(genome) 一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。人基因组3X1 09(30亿bp),共编码约10万个基因。 每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划( human genome project, HGP ) 基因组学( genomics ),结构基因组学( structural genomics )和功能基因组学( functional genomics )。 蛋白质组( proteome )和蛋白质组学( proteomics ) 第二节真核生物基因组 一、真核生物基因组的特点:, ①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中. ②真核基因组中,编码序列只占整个基因组的很小部分(2 —>% ), 三、基因家族(gene family) 一组功能相似且核苷酸序列具有同源性的基因. 可能由某一共同祖先基因(ancestral gene) 经重复(duplication) 和突变产生。 基因家族的特点: ①基因家族的成员可以串联排列在一起,形成基因簇(gene cluster)或串联重复基因(tandemly repeated genes),如 rRNA、tRNA和组蛋白的基因;②有些基因家族的成员也可位于不同的染色体上,如珠蛋白基因;③有些成员不产生 有功能的基因产物,这种基因称为假基因(Pseudogene) . ¥ a1表示与a1相似的假基因. 四、超基因家族(Supergene family ,Superfamily) 由基因家族和单基因组成的大基因家族,结构上有程度不等的同源性,但功能不同. 第四节细菌和病毒基因组 一、细菌基因组的特点。 1 .功能相关的几个结构基因往往串联在—起,受它们上游的共同调控区控制,形成操纵子结构,2.结构基因中没有内含子,也无重叠现象。 3 .细菌DNA大部分为编码序列。 二、病毒基因组的特点 1 .每种病毒只有一种核酸,或者DNA,或者RNA ; 2 .病毒核酸大小差别很大,3X10 3 一3X106bp ; 3.除逆病毒外,所有病毒基因都是单拷贝的。 4 .大部份病毒核酸是由一条双链或单链分子(RNA或DNA),仅少数RNA病毒由几个核酸片段组成. 5. 真核病毒基因有内含子,而噬菌体(感染细菌的病毒)基因中无内含子. 6. 有重叠基因. 第五节染色质和染色体 (二)组蛋白(histone): 一类小的带有丰富正电荷<富含Lys,Arg)的核蛋白,与DNA有高亲和力. (二).端粒(telomere) :真核生物线状染色体分子末端的DNA 区域端粒DNA的特点: 1、由富含G的简单串联重复序列组成(长达数kb). 人的端粒DNA重复序列:TTAGGC。

分子生物学复习资料 绝对重点

分子生物学复习资料 (第一版) 一名词解释 1 Southern blot / Northern blot—DNA斑迹法 / RNA转移吸印技术。是为了检测待检基因或其表达产物的性质和数量(基因拷贝数)常用的核酸分子杂交技术。二者均属于印迹转移杂交术,所不同的是前者用于检测DNA样品;后者用于检测RNA样品。 2 cis-acting element / trans-acting factor—顺式作用元件 / 反式作用因子。均为真核生物基因中的转录调控序列。顺式作用元件是与结构基因表达调控相关、能被基因调控蛋白特异性识别和结合的特定DNA序列,包括启动子和上游启动子元件、增强子、反应元件和poly (A)加尾信号。反式作用因子是能与顺式作用元件特异性结合、对基因表达的转录起始过程有调控作用的蛋白质因子,如RNA聚合酶、转录因子、转录激活因子、抑制因子。 3VNTR / STR—可变数目串联重复序列 / 短串联重复。均为非编码区的串联重复序列。 前者也叫高度可变的小卫星DNA,重复单位约9~24bp,重复次数变化大,变化高度多态性;后者也叫微卫星DNA,重复单位约2~6 bp,重复次数约10~60次,总长度通常小于150bp 。(参考第7题) 4 viral oncogene / cellular oncogene—病毒癌基因 / 细胞癌基因。病毒癌基因指存在于逆转录病毒中、体外能使细胞转化、体内能导致肿瘤发生的基因;细胞癌基因也叫原癌基因,指存在于细胞内,与病毒癌基因同源的基因序列。正常情况下不激活,与细胞增殖相关,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。 5 ORF / UTR—开放阅读框 / 非翻译区。均指在mRNA中的核苷酸序列。前者是特定蛋白质多肽链的序列信息,从起始密码子开始到终止密码子结束,决定蛋白质分子的一级功能;后者是位于前者的5'端上游和3'端下游的、没有编码功能的序列,主要参与翻译起始调控,为前者的多肽链序列信息转变为多肽链所必需。 6 enhancer / silencer—增强子 / 沉默子。均为顺式作用元件。前者是一段含多个作用元件的短DNA序列,可特异性与转录因子结合,增强基因的转录活性,可以位于基因任何位置,通常在转录起始点上游-100到-300个碱基对处;后者是前者内含的负调控序列,结合特异蛋白因子时,对基因转录起阻遏作用。 7 micro-satellite / minisatellite—微卫星DNA / 小卫星DNA 。卫星DNA是出现在非编码区的串联重复序列,特点是有固定重复单位且重复单位首尾相连形成重复序列片段,串联重复单位长短不等,重复次数大小不一。微卫星DNA即STR;小卫星DNA分为高度可变的小卫星DNA(即VNTR)和端粒DNA。(参考第3题) 8 SNP / RFLP—单核苷酸多态性 / 限制性片段长度多态性。前者是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性,它是人类遗传变异中最常见的一种,占所

关于分子生物学试题及答案

分子生物学试题(一) 一.填空题(,每题1分,共20分) 一.填空题(每题选一个最佳答案,每题1分,共20分) 1. DNA的物理图谱是DNA分子的()片段的排列顺序。 2. 核酶按底物可划分为()、()两种类型。 3.原核生物中有三种起始因子分别是()、()和()。 4.蛋白质的跨膜需要()的引导,蛋白伴侣的作用是()。5.真核生物启动子中的元件通常可以分为两种:()和()。6.分子生物学的研究内容主要包含()、()、()三部分。 7.证明DNA是遗传物质的两个关键性实验是()、()。 8.hnRNA与mRNA之间的差别主要有两点:()、()。 9.蛋白质多亚基形式的优点是()、()、()。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP-CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP-CRP的启动子S1对高水平合成进行调节。有G时转录从(S2 )开始,无G时转录从(S1 )开始。 12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA重组实验通常包含以下几个步骤: ①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA分子上(克隆载体),形一个新的重组DNA分子。 ②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。 ③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。 ④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。 13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。 14.PCR的反应体系要具有以下条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。 b、具有热稳定性的酶如:TagDNA聚合酶。 c、dNTP d、作为模板的目的DNA序列 15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。 16、转基因动物的基本过程通常包括: ①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中; ②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

陈阅增普通生物学重点整理

第一、二、三章 1生物的特征:①特定的组构②新陈代谢③稳态与应激④生殖与遗传⑤生长与发育 ⑥进化与适应 2、生物界的分界以及阶元:原核生物界、原生生物界、真菌界、植物界与动物界。 分类阶元:界、门、纲、目、科、属、种 3、生物界的结构层次特点:生物界就是一个多层次的有序结构,生命的基本单位就是细胞,在细胞这一层次上还有组织、器官、系统、个体、种群、群落、生态系统。 4、生物学的研究方法:科学观察、假说与实验、模型实验。 5、多样性中存在着高度统一的特点。 6、同位素示踪:利用放射性同位素显示某种原子在生物体内的来去踪迹。 7、多聚体:由相同或相似的小分子组成的长链 8、单糖的结构与功能:①有许多羟基,所以单糖属于醇类②有羰基 细胞中用作燃料的分子主要就是葡萄糖,葡糖糖与其她单糖也就是细胞合成别的有机分子的的原料。 9、脂肪的功能:①脂质中主要的贮能分子②构成一些重要的生理物质③维持体温与保护内脏,缓冲外界压力④提供必需的脂肪酸⑤脂溶性维生素的来源,促进脂溶性维生素的吸收⑥增加饱腹感。 10、磷脂的结构:结构与脂肪内似,分子中只有两个脂肪酸,另一个酸就是磷酸。 11、蛋白质的结构与功能:蛋白质就是生物大分子,通过酸、碱或者蛋白酶的彻底水解。可以产生各种氨基酸。因此,蛋白质的基本结构单位就是氨基酸。 12、生物体离不开水的七个特征:①水就是极性分子②水分子之间会形成氢键③液态水中的水分子具有内聚力④水分子之间的氢键使水能缓与温度的变化⑤冰比水轻⑥水就是极好的溶剂⑦水能够电离。 13、DNA双螺旋的结构特点:两个由磷酸基团与糖形成的主链缠绕在一起,含氮碱基主动伸出,夹在双螺旋之间。①两条DNA互补链反向平行②DNA双螺旋的表面存在一个大沟与一个小沟,蛋白质分子通过这两个沟与碱基识别③两条DNA链依靠彼此之间形成的碱基结合在一起④DNA双螺旋结构比较稳定。 14、细胞生物学的发展趋势:①“一切生物学的关键问题必须在细胞中找寻”细胞就是一切生命活动结构与功能的基本单位。②细胞生物学研究的核心内容:遗传与发育的关系问题,两者的关系就是,遗传在发育过程中实现,发育又以遗传为基础。③细胞生物学的主要发展趋势:用分子生物学及其它相关学科的方法,深入研究真核细胞 基因表达的调节与控制,以期从根本上揭示遗传与发育的关系、细胞衰老、死亡及癌变的机理等基本的生物学问题,为生物工程的广泛应用提供理论依据。④两个基本点:一就是基因与基因产物如何控制细胞的生命活动,包括细胞内外信号就是如何传递的;二就是基因表达产物——蛋白质如何构建与装配成细胞的结构,并使细胞正常的生命活动得以进行。⑤蛋白质组学:生命科学的研究已经进入后基因组时代,随着一大批模式生物基因组结构的阐明,研究的重心将回归到在细胞的水平研究蛋白质的结构与功能,即蛋白质组学的研究,同时对糖类的研究将提升到新的高度。 15、原核细胞与真核细胞的差异:最大的区别就是原核细胞没有核膜包裹形成的细胞核,而真核就有;另外原核细胞中只有核糖体这一种细胞器,而真核细胞中有多种细胞器。 16、真核细胞细胞核的结构;细胞核包括核被膜、核基质、染色质与核仁。核被膜就是包在核外的双层膜,外膜可延伸于细胞质中的内质网相连;染色质就是核中由DNA与蛋白质组成,含有大量的基因片段,就是生命的遗传物质;核仁就是核中颗粒状结构,富含蛋白质与RNA,产生核糖体的细胞器。染色质与核仁都被液态的核基质所包围。

!!分子生物学笔记完全版

列〃一个典型的真核基因包括 ①编码序列—外显子(exon) ②插入外显子之间的非编码序列—内合子(intron) ③5'-端和 3'-端非翻译区(UTR) ④调控序列(可位于上述三种序列中) 绝大多数真核基因是断 裂基因(split-gene),外显子不连续。二、基因组(genome) 一 特定生物体的整套(单倍体)遗传物质的总和,基因组的大小 用全部 DNA 的碱基对总数表示。 人基因组 3X1 09(30 亿 bp),共编码约 10 万个基因。 每种真核生物的单倍体基因组中的全部 DNA 量称为 C 值,与进化的复杂性并不一致(C-value Paradox)。 人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。 蛋白质组(proteome)和蛋白质组学(proteomics) 第二节真核生物基因组一、真核生物基因组的特 点:, ①真核基因组 DNA 在细胞核内处于以核小体为基本单位的染色体结构中〃 ②真核基因组中,编码序列只占整个基因组的很小部分(2—3%), 二、真核基因组中 DNA 序列的分类 &#8226; (一)高度重复序列(重复次数>lO5) 卫星 DNA(Satellite DNA) (二)中度重复序列 1〃中度重复序列的特点

①重复单位序列相似,但不完全一样, ②散在分布于基因组中〃 ③序列的长度和拷贝数非常不均一, ④中度重复序列一般具有种属特异性,可作为 DNA 标记〃 ⑤中度重复序列可能是转座元件(返座子), 2〃中度重复序列的分类 ①长散在重复序列(long interspersed repeated segments〃) LINES ②短散在重复序列(Short interspersed repeated segments) SINES SINES:长度<500bp,拷贝数>105〃如人 Alu 序列 LINEs:长

现代分子生物学考研复习重点

现代分子生物学考研复习资料整理 第一章绪论 分子生物学:是研究核酸、蛋白质等所有生物大分子的形态、结构及其重要性、规律性和相互关系的科学 分子生物学的主要研究内容 1、DNA重组技术 2、基因表达调控研究 3、生物大分子的结构功能研究——结构分子生物学 4、基因组、功能基因组与生物信息学研究 5、DNA的复制转录和翻译 第二章染色体与DNA 半保留复制:DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样,因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA半保留复制 DNA半不连续复制:DNA双螺旋的两条链反向平行,复制时,前导链DNA的合成以5′-3′方向,随着亲本双链体的解开而连续进行复制;后随链在合成过程中,一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向、按照5′-3′方向合成一系列的冈崎片段,然后再把它们连接成完整的后随链,这种前导链的连续复制和后随链的不连续复制称为DNA 的半不连续复制 原核生物基因组结构特点:1、基因组很小,大多只有一条染色体2、结构简练3、存在转录单元,多顺反子4、有重叠基因 真核生物基因组的结构特点:1、真核基因组庞大,一般都远大于原核生物的基因组2、真核基因组存在大量的重复序列3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间最主要区别4、真核基因组的转录产物为单顺反子5、真核基因是断裂基因,有内含子结构6、真核基因组存在大量的顺式作用元件,包括启动子、增强子,沉默子等7、真核基因组中存在大量的DNA多态性8、真核基因组具有端粒结构 DNA转座(移位)是由可移位因子介导的遗传物质重排现象 DNA转座的遗传学效应:1、转座引入插入突变2、转座产生新的基因3、转座产生的染色体畸变4、转座引起生物进化 转座子分为插入序列和复合型转座子两大类 环状DNA复制方式:θ型、滚环型和D-环型 第三章生物信息的传递(上)从DNA到RNA 转录:指拷贝出一条与DNA链序列完全相同的RNA单链的过程 启动子:是一段位于结构基因5′段上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性 原核生物启动子结构:存在位于-10bp处的TATA区和-35bp处的TTGACA区,其是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力 终止子:是给予RNA聚合酶转录终止信号的DNA序列(促进转录终止的DNA序列) 终止子的类型:不依赖于ρ因子和依赖于ρ因子 增强子:能增强或促进转录起始的序列 增强子的特点:1、远距离效应2、无方向性3、顺式调节4、无物种和基因的特异性5、具

分子生物学复习题(有详细答案)

绪论 思考题:(P9) 1.从广义和狭义上写出分子生物学的定义? 广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。 狭义的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。其中也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 2、现代分子生物学研究的主要内容有哪几个方面?什么是反向生物学?什么是 后基因组时代? 研究内容: DNA的复制、转录和翻译;基因表达调控的研究;DNA重组技术和结构分子生物学。 反向生物学:是指利用重组DNA技术和离体定向诱变的方法研究已知结构的基因相应的功能,在体外使基因突变,再导入体内,检测突变的遗传效应,即以表型来探索基因结构。 后基因组时代:研究细胞全部基因的表达图式和全部蛋白质图式,人类基因组研究由结构向功能转移。 3、写出三个分子生物写学展的主要大事件(年代、发明者、简要内容) 1953年Watson和Click发表了?脱氧核糖核苷酸的结构?的著名论文,提出了DNA的双螺旋结构模型。 1972~1973年,重组DNA时代的到来。H.Boyer和P.Berg等发展了重组DNA 技术,并完成了第一个细菌基因的克隆,开创了基因工程新纪元。 1990~2003年美、日、英、法、俄、中六国完成人类基因组计划。解读人类遗传密码。 4、21世纪分子生物学的发展趋势是怎样的? 随着基因组计划的完成,人类已经掌握了模式生物的所有遗传密码。又迎来了后基因组时代,人类基因组的研究重点由结构向功能转移。相关学说理论相应诞生,如功能基因组学、蛋白质组学和生物信息学。生命科学又进入了一个全新的时代。 第四章 思考题:(P130) 1、基因的概念如何?基因的研究分为几个发展阶段? 概念:基因是原核、真核生物以及病毒的DNA和RNA分子中具有遗传效应的核苷酸序列,是遗传的基本单位和突变单位以及控制形状的功能单位。 发展阶段:○120世纪50年代以前,主要从细胞的染色体水平上进行研究,属于基因的染色体遗传学阶段。 ○220世纪50年代以后,主要从DNA大分子水平上进行研究,属于分

分子生物学终极复习资料汇总

《分子生物学》复习题 1、染色体:是指在细胞分裂期出现的一种能被碱性染料强烈染色,并具有一定 形态、结构特征的物体。携带很多基因的分离单位。只有在细胞分裂中才可见的形态单位。 2、染色质:是指细胞周期间期细胞核内由DNA、组蛋白、非组蛋白和少量RNA 组成的复合结构,因其易被碱性染料染色而得名。 3、核小体:染色质的基本结构亚基,由约200 bp的DNA和组蛋白八聚体所组 成 4、C值谬误:一个有机体的C值与它的编码能力缺乏相关性称为C值矛盾 5、半保留复制:由亲代DNA生成子代DNA时,每个新形成的子代DNA中, 一条链来自6、亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制 6、DNA重组技术又称基因工程,目的是将不同的DNA片段(如某个基因或基 因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。 7、半不连续复制:DNA复制时其中一条子链的合成是连续的,而另一条子链的 合成是不连续的,故称半不连续复制。 8、引发酶:此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引 物(Primer)。实质是以DNA为模板的RNA聚合酶。 9、转坐子:存在与染色体DNA上可自主复制和位移的基本单位。 10、多顺反子:一种能作为两种或多种多肽链翻译模板的信使RNA,由DNA 链上的邻近顺反子所界定。 11、基因:产生一条多肽链或功能RNA所必需的全部核甘酸序列。 12、启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。 13、增强子:能强化转录起始的序列 14、全酶:含有表达其基础酶活力所必需的5个亚基的酶蛋白复合物,拥有σ因子。 (即核心酶+σ因子) 15、核心酶:仅含有表达其基础酶活力所必需亚基的酶蛋白复合物,没有σ因子。 16、核酶:是一类具有催化功能的RNA分子 17、三元复合物:开放复合物与最初的两个NTP相结合,并在这两个核苷酸之间形成磷酸二酯键后,转变成包括RNA聚合酶,DNA和新生的RNA的三元复合物。 18、SD序列:mRNA中用于结合原核生物核糖体的序列。30S亚基通过其

相关主题
文本预览
相关文档 最新文档