当前位置:文档之家› 九年数学第10节线段最值《胡不归》

九年数学第10节线段最值《胡不归》

九年数学第10节线段最值《胡不归》
九年数学第10节线段最值《胡不归》

九年数学第4节线段最值《胡不归》

【基本图形】:

【条件】:①海岛A 到海岸公路BD 的距离为AB ,

②C 为公路BD 上的酒店,

③从海岛A 到酒店C ,先乘船到登陆点D ,船速为a ,再乘汽车,车速为船速的n 倍. 【问题】:点D 选在何处时,所用时间最短?

辅助线:过点C 作射线CM ,使∠BCM=300,作DE ⊥CM ,作E A ⊥CM

辅助线思路:若n =2,则时间t =AD a +CD

2a

,当a 为定值时,问题转化为:在BC 上确定一点

D ,使得AD +CD

2

的值最小.

【应用】

1.如图,已知在△ABC 中,BC=2,∠B=300,求2AC+AB 的最小值

3.如图,已知抛物线)2(2

32

--=

x x y 交x 轴于A 、C (A 在C 的左边),交y 轴于B ,其对称轴交x 轴于D ,点P 是y 轴上一动点.试求点P 的坐标,使

PD PB +2

1

有最小值。

4.如图,AB是⊙O的直径,∠A=30°,延长AB至E使CA=CE.(1)求证:CE是⊙O的切线;

(2)若D是线段AC上任意一点(不含端点),1

2CD+OD的最小值=6,试求⊙O的半径.

5.(2018泉州市九上期末考)已知一次函数y=kx-23的图象与x轴交于点A(-2,0),与y轴交于点B,

点P的坐标为(0,m).

(1)求k的值;

(2)当m为何值时,△POA∽△AOB?

(3)求2P A+PB的最小值.

6.(14成都) 如图,已知抛物线)4)(2(8

-+=

x x k

y (k 为常数,且0>k )与x 轴从左至右依次交于A 、B 两点,与y 轴交于点C ,经过点B 的直线b x y +-=3

3

与抛物线的另一交点为D.

(1)若点D 的横坐标为-5,求抛物线的函数表达式;

(2)若在第一象限的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与△ABC 相似,求k 的值;

(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出

发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少?

7.(17广州中考)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.

(1)求证:四边形OCED是菱形;

(2)连接AE,若AB=6cm,BC=cm.

①求sin∠EAD的值;

②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s

的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.

8.(17广西贺州中考)如图,在平面直角坐标系中,△ABC为等腰直角三角形,∠ACB=90°,抛物线y=﹣x2+bx+c经过A,B两点,其中点A,C的坐标分别为(1,0),(﹣4,0),抛物线的顶点为点D.

(1)求抛物线的解析式;

(2)点E是直角三角形ABC斜边AB上的一个动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段FE的长度最大时,求点E的坐标;

(3)在(2)的条件下,抛物线上是否存在一点P,使△PEF是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

初中数学几何最值问题典型例题精修订

初中数学几何最值问题 典型例题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例

二、典型题型

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若 ∠AOB=45°,OP=PMN的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解. 【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD. ∴△COD是等腰直角三角形. 则CD OC=6. 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键. 2.如图,当四边形PABN的周长最小时,a= .

初三中考数学 线段和的最小值问题

专题四线段和的最小值问题 纵观贵阳5年中考,2014年和年两年连续考查了利用对称求线段和最小值的几何问题.设置在第24题、25题,以解答题的形式出现,分值为12分,难度较大. 预计2017贵阳中考还会设计利用图形变换考查此类问题的几何综合题,复习时要加大训练力度. ,中考重难点突破) 线段的最小值 【经典导例】 【例】(六盘水中考)(1)观察发现 如图①,若点A,B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求作的点P,线段AB′的长度即为AP+BP的最小值.

如图②,在等边三角形ABC 中,AB =2,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使BP +PE 的值最小,做法如下: 作点B 关于AD 的对称点,恰好与点C 重合,连接CE 交AD 于一点,则这点就是所求作的点P ,故BP +PE 的最小值为________. (2)实践运用 如图③,已知⊙O 的直径CD 为2,︵AC 的度数为60°,点B 是︵AC 的中点,在直径CD 上作出点P ,使BP +AP 的值最小,则BP +AP 的最小值为________. (3)拓展延伸 如图④,点P 是四边形ABCD 内一点,分别在边AB ,BC 上作出点M ,点N ,使PM +PN 的值最小,保留作图痕迹,不写作法. 【解析】(1)利用作法得到CE 的长为BP +PE 的最小值;由AB =2,点E 是AB 的中点,根据等边三角形的 性质得到CE ⊥AB ,∠BCE =21 ∠BCA =30°,BE =1,再根据含30°的直角三角形三边的关系得到CE 的长度.C E 的长为BP +PE 的最小值.∵在等边三角形ABC 中,AB =2,点E 是AB 的中点,∴CE ⊥AB ,∠BCE =21 ∠BCA =30°,BE =1,∴CE =BE =.故答案为;(2)过B 点作弦BE ⊥CD ,连接AE 交CD 于P 点,连接OB ,O E ,OA ,PB ,根据垂径定得到CD 平分BE ,即点E 与点B 关于CD 对称,则AE 的长就是BP +AP 的最小值.

初中数学最值问题典型例题(含解答分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

中考数学中的最值问题解法

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 典型例题: 例1. 如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】 A1B C. 55 D. 5 2 例2.在锐角三角形ABC中,BC=2 4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN 的最小值是▲ 。 例3.如图,圆柱底面半径为2cm,高为9cm π,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。

练习题: 1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开 始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】 A.13cm B.12cm C.10cm D.8cm 2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC= 23 BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】 A 、6 (4)π+㎝ B 、5cm C 、㎝ D 、7cm 3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ . 二、应用垂线段最短的性质求最值:典型例题: 例1. (2012山东莱芜4分)在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .

最新初中几何中线段和与差最值问题

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: m m B m A B m n m n n m n n n m

( 4)、台球两次碰壁模型 变式一:已知点A、B位于直线m,n 的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短. 变式二:已知点A位于直线 m,n 的内侧, 在直线m、n分别上求点P、Q点PA+PQ+QA 周长最短. 二)、一个动点,一个定点: (一)动点在直线上运动: 点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B在⊙O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B) 1、点与圆在直线两侧: m n m n m n m m

2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。(原理用平移知识解) (1)点A 、B 在直线m 两侧: 作法:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。 (2)点A 、B 在直线m 同侧: 练习题 1.如图1,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值为 . 2、如图2,在锐角三角形ABC 中,AB=4 ,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值为 . 3、如图3,在锐角三角形ABC 中 , AB=BAC=45,BAC 的平分线交BC 于D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 。 m m Q Q

人教版九年级数学比例线段

解答第2题图 P N M F E D C B A 三、解答题: 1、已知如图,AD =DE =EC ,且AB ∥DF ∥EH ,AH 交 DF 于K ,求KF DK 的值。 2、如图,□ABCD 中,EF 交AB 的延长线于E , 交BC 于M ,交AC 于P ,交AD 于N ,交CD 的延 长线于F 。求证:PN PF PM PE ?=?。 答案: 一、填空题: 1、 3 2 ,4,8,14;2、2或-1;3、±23 4、2∶5; 二、选择题:CBBB 三、解答题: 1、 3 1; 2、证明PM PN PF PE =即可; 课后作业 一、填空题: 1. 三条平行线截两条直线,所得的 成比例。 2. 已知x y 52=,则y x :=______________。 3. 已知线段a :b=b:c,若a=2,c=3,那么b= , 4. 若x ∶y ∶z=2∶5∶9,则 =+-++z y x z y x 2 。 5. =++===++222,7 53,10z y x z y x z y x 则且 若 。 6. 如图,在△ABC 中,MN ∥BC ,若∠C=680 ,AM :MB =1: 2,则∠MNA=_______度,AN :NC =__________。 7. 如图,△ABC 中,DE ∥BC ,AD=1,DB=2,AE=2,则 EC= 。 8. 若 ==+y x y y x 则,38 。

9、若 ()0753≠==a c b a ,则 a c b a ++=_________ 二、选择题: 1.如果 32=b a ,则 b b a +等于( ) (A )l 31 (B )2 1 (C )53 (D )35 2.如果d 是a 、b 、c 的第四比例项,则其比例为( ) (A)a :b=c :d (B )a :b=d :c (C )a :d=b :c (D )d :a=b :c 3.已知 32==d c b a ,且d b ≠,则 d b c a --=( ) (A )32 (B )5 2 (C )53 (D )51 4.D ,E 分别是△ABC 的边AB ,AC 上的点,DE ∥BC ,如果2 3 =DB AD ,AE=15,那么EC 的长是 ( ) (A )10 (B )22. 5 (C )25 (D )6 5.如图,直线l 1∥l 2∥l 3,直线AC 和DF 分别l 1、l 2、l 3相交于A 、B 、C 和点D 、E 、F ,若AB=2,EF=1,则 ( ) (A ) BC ∶DE=2 (B) BC ∶DE=21 (C) BC ·DE=2 (D) BC ·DE=2 1 6.已知 07 54≠==z y x ,那么下列式子成立的是( ) (A ) 43=++z y y x (B )61=+-y x y z (C )16 7 =++z z y x (D )21=++--z y x z y x 7.如图,平行四边形ABCD 中,AB=5,DF=1,AG=3,FG 延长线交AD 、CB 延长线于E 、H ,则EF :FG :GH=( )。 (A)1∶3∶5 (B)1∶2∶2 (C)1∶2∶3 (D)1∶3∶2 8.若3 2 =y x ,则 ()=+--+y x y x y x y x : (A ) 25∶1 (B) 1∶25 (C)27:8 (D)3:2 三、解答题: 1. 已知:如图,l 1∥l 2∥l 3,AB=3,BC=5,DF=12。求DE 和 B H G E D C A F

初中八年级数学:比例线段教学设计

新修订初中阶段原创精品配套教材比例线段教材定制 / 提高课堂效率 /内容可修改 Proportional line 教师:风老师 风顺第二中学 编订:FoonShion教育

比例线段 教学建议 知识结构 重难点分析 本节的重点是线段的比和的概念以及比例的性质.以前的平面几何主要研究线段的位置关系和相等关系,从本章开始研究线段及相关图形的比例关系――相似三角形,这些内容的研究都离不开线段的比和比例性质的应用. 本节的难点是比例性质及应用,虽然小学时已经接触过比例性质的一些知识,但由于内容比较简单,而且间隔时间较长,学生印象并不深刻,而本节涉及到的比例基本性质变式较多,合分比性质以及等比性质学生又是初次接触,内容不但多,而且容易混淆,作题不知应用哪条性质,不知如何应用是常有的. 教法建议 1.生活中比例的例子比比皆是,在新课引入时最好从生活实例引入,可使学生感觉轻松自然,容易产生兴趣,增加

学生学习的主动性 2.小学时曾学过数的比及相关概念,学习时也可以复习引入,从数的比过渡到线段的比,渗透类比思想 3.这一节概念比较多,也比较容易混淆,教学中可设计不同层次的题组来进行巩固,特别是要举一些反例,同时要注意对相近概念的比较 4.黄金分割的内容要求学生理解,主要体现数学美,可由学生从生活中寻找实例,激发学生的兴趣和参与感5.比例性质由于变式多,理解和应用上容易出现错误,教学时可利用等式性质和分式性质来处理 教学设计示例1(第1课时) 一、教学目标 1.理解线段的比的概念. 2.通过与小学知识到比较,初步培养学生“类比”的数学思想. 3.通过线段的比的有关计算,培养学习的计算能力.4.通过“引言”及“例1”的教学,激发学生学习兴趣,对学生进行热爱爱国主义教育. 二、教学设计 先学后做,启发引导 三、重点及难点 1.教学重点两条线段比的概念.

初中数学线段最值问题专题训练PPT

线段最值问题 1、“对称+点点最值”如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是OC的中点,点M在BC边上,且BM=6,P为对角线BD上一点,则PM+PN的最小值为 2、“对称+点点最值”如图,在矩形ABCD中,AB=6,AD=8,E、 F、 G、H分别在矩形ABCD 的边AD、AB、BC、CD上。若AF=2,DH=5,E、G分别为AD、BC上的动点, 求四边形EFGH周长的最小值 3、“双对称 +点点最值”如图,在边长为6的菱形 ABCD中, AC是其对角线,∠B=60°,点P在 CD上,CP=2,点M在AD上,点N在AC上,则△PMN周长的最小值为 4、“双对称+点点最值”如图,∠AOB=30°,点P为∠AOB内一点,且OP=10,点M,N分别为OA,OB上的动点求△PMN周长的最小值 5、“平移+点点最值”如图,菱形ABCD的边长为3,∠BAD=60°,点E、F是对角线AC上的两点,且EF=1,点E在点F的左侧,求DE+BF的最小值。

6、“平移+对称+点点最值”(1)如图,菱形ABCD 的边长为3,∠BAD=60°,点E 、F 是对角线AC 上的两点,且EF=1,点E 在点F 的左侧,求DE+DF 的最小值。 (2)如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值. (3)如图,sinC=3/5,长度为2的线段ED 在射线CF 上滑动,点B 在射线CA 上,BC=5,则△BDE 的周长的最小值为_____. (4)如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________. 7、“三对称+点点最值”如图,矩形ABCD 的边AB=3,BC=4,点E 为CD 边上一点,且CE=1,点F 、G 、H 分别是AD 、AB 、BC 边上的动点,则四边形EFGH 周长的最小值是多少? A B C D E F M x

初中数学教程比例线段

3.1 比例线段 第1课时 教学目标 c d =,那么ad=bc. 教学重难点 【教学重点】 掌握比例的基本性质及其推导过程. 【教学难点】 对比例的基本性质进行变形. 课前准备 无 教学过程 一.预习导学 对应练习:你能说出下面比例的内项和外项各是多少吗? (1)1.4:35 4 = 4 :5 5 (2) 612 714 =

可以交换,等式仍然成立; 两个外项的位置也可以交换,等式仍然成立; 对应练习: 1. 已知四个数a,b,c,d 成比例. (1)若a=-3,b=9,c=2, 求d ; (2)若3,2,a b c =-==求d ; 2.比例基本性质的逆定理的教学 动脑筋:如果a d=bc ,那么a c b d =.(其中a ,b ,c ,d 为非零实数) (学生合作推导,总结得出) 设计意图:利用等式的基本性质,由条件到结论的证明方法体现了综合证明题的方法.锻炼了学生的逻辑思考能力,增强了学生的学习兴趣,达到了教学的效果. (二)展示提升 3.已知四个数a,b,c,d 成比例,即 a c b d = . 下列各式成立吗?若成立,请说明理由. ()()()1;2;3.b d a b a b c d a c c d b d ++=== (过程方法:以学生自主学习为主,教师引导为辅的方法进行教学,先让学生讨论学习,然后可点名展示,也可分组展示,培养学生分析问题和解决问题的能力;同时增强学生团结协作的精神.老师在此环节准确引导,及时点拨和追问,总结出解决问题的方法和规律.) 对应练习:25,3a b a b a a -+=已知求的值。 设计意图:通过练习加强学生对比例的基本性质及其相关知识的理解与掌握. 4.根据下列条件,求a:b 的值: ()() 145;2;78a b a b == (先让学生讨论学习,然后分组展示,老师在此环节准确引导,及时点拨和追问,总结出解决问题的方法和规律.) 设计意图:通过练习与展示进一步加强学生对比例的基本性质及其相关知识的理解与掌握,以达到非常熟练的程度,并能融会贯通地应用. 对应练习:求下列各式中x 的值. ()()11314:15:9;2::;235 x x == 方法总结:通过分层练习,巩固对比例基本性质的掌握,体验比例基本性质的应用价值,促进所有学生都能在动静结合的学习过程中获得发展,使不同的学生获得不同程度的发展.同时渗透假设.验证.有序思考的解题策略和方法,体验解决问题方法的多样性和优化策略,感受“一 一对应“和”变与不变“的数学思想. 三.知识梳理 以”本节课我们学到了什么?”启发学生谈谈本节课的收获. 1.我们是怎样:探究比例的基本性质的?

8-线段和差最值的存在性问题解题策略(1)

中考数学压轴题解题策略(8) 线段和差最值的存在性问题解题策略 《挑战压轴题·中考数学》的作者上海马学斌 专题攻略 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1). 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′. 解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题. 图1 图2 图3 例题解析 例?如图1-1,抛物线y=x2-2x-3与x轴交于A、B两点,与y轴交于点C,点P 是抛物线对称轴上的一个动点,如果△P AC的周长最小,求点P的坐标. 图1-1 【解析】如图1-2,把抛物线的对称轴当作河流,点A与点B对称,连结BC,那么在△PBC中,PB+PC总是大于BC的.如图1-3,当点P落在BC上时,PB+PC最小,因此P A+PC最小,△P AC的周长也最小. 由y=x2-2x-3,可知OB=OC=3,OD=1.所以DB=DP=2,因此P(1,-2). 图1-2 图1-3

例?如图,抛物线21442 y x x =-+与y 轴交于点A ,B 是OA 的中点.一个动点G 从点B 出发,先经过x 轴上的点M ,再经过抛物线对称轴上的点N ,然后返回到点A .如果动点G 走过的路程最短,请找出点M 、N 的位置,并求最短路程. 图2-1 【解析】如图2-2,按照“台球两次碰壁”的模型,作点A 关于抛物线的对称轴对称的点A ′,作点B 关于x 轴对称的点B ′,连结A ′B ′与x 轴交于点M ,与抛物线的对称轴交于点N . 在Rt △AA ′B ′中,AA ′=8,AB ′=6,所以A ′B ′=10,即点G 走过的最短路程为10.根据 相似比可以计算得到OM =83,MH =43,NH =1.所以M (83 , 0),N (4, 1). 图2-2 例? 如图3-1,抛物线248293 y x x =-++与y 轴交于点A ,顶点为B .点P 是x 轴上的一个动点,求线段P A 与PB 中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P 的坐标. 图3-1 【解析】题目读起来像绕口令,其实就是求|P A -PB |的最小值与最大值. 由抛物线的解析式可以得到A (0, 2),B (3, 6).设P (x , 0). 绝对值|P A -PB |的最小值当然是0了,此时P A =PB ,点P 在AB 的垂直平分线上(如图3-2).解方程x 2+22=(x -3)2+62,得416x =.此时P 41(,0)6 . 在△P AB 中,根据两边之差小于第三边,那么|P A -PB |总是小于AB 了.如图3-3,当点

经典几何中线段和差最值(含答案) (2)

几何中线段和,差最值问题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.

一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时) 二、典型题型 1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =△PMN 的周长的最小值为 6 . 2.如图,当四边形P ABN 的周长最小时,a = 4 7 . P A +P B 最小, 需转化, 使点在线异侧 B l

3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|P A﹣PB|的最大值为5. 4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点 P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC 边 上可移动的最大距离为 2 . 5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,PD 6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B 在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O

二次函数线段、周长、面积最值问题

1. 如图,对称轴为直线x=-1的抛物线y=ax 2+bx+c (a ≠0)与x 轴相交于A 、B 两点,其中点A 的坐标为(-3,0). (1)求点B 的坐标;(2)若a=1,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且S △POC =4S △BOC .求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于 点D ,求线段QD 长度的最大值. 2.如图,二次函数y=ax 2-32 x+c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,已知点A (-1,0),点C (0,-2).(1)求抛物线的函数解析式;(2)若点M 是线段BC 下方的抛 物线上的一个动点,求△MBC 面积的最大值以及此时点M 的坐标. 3.如图,二次函数y=ax 2 +bx 的图象与一次函数y=x+2的图象交于A 、B 两点,点A 的横坐标是-1,点B 的横坐标是2.(1)求二次函数的表达式;(2)设点C 在二次函数图象的OB 段上,求四边形OABC 面积的最大值.

4.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 5.如图,已知抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴与x轴交于点H. (1)求该抛物线的解析式; (2)若点P是该抛物线对称轴上的一个动点,求△PBC周长的最小值; (3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.求S与m的函数关系式。S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.

线段差的最大值与线段和的最小值问题

For personal use only in study and research; not for commercial use 线段差的最大值与线段和的最小值问题 有关线段差的最大值与线段和的最小值问题的主要应用原理是:1、两点这间线段最短。2、三角形的任意两边之和大于第三边(找和的最小值)。3、三角形的任意两边之差小于第三边(找差的最大值)。 作图找点的关键:充分利用轴对称,找出对称点,然后,使三点在一条直线上。即利用线段的垂直平分线定理可以把两条线段、三条线段、四条线段搬在同一条直线上。证明此类问题,可任意另找一点,利用以上原理来证明。 一两条线段差的最大值: (1)两点同侧:如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。作法:连结AB并延长AB交直线L于点P。点P即为所求。︱PA-PB︱=AB 证明:在直线L上任意取一点P。,连结PA、PB,︱PA-PB︱<AB (2两点异侧:如图,如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。作法:1、作B关于直线L的对称点B。 B

2、连结AB并延长AB交直线L于点P。点P即为所求。︱PA-PB︱=AB 证明:在直线L上任意取一点P。,连结PA、PB、PB。︱PA-PB︱=︱PA-PB︱<AB (三角形任意两边之差小于第三边) 二、两条线段和的最小值问题: (1))两点同侧:如图,点P在直线L上运动,画出一点P使P A+PB取最小值。 (三角形的任意两边之和大于第三边(找和的最小值),P A+PB=AB (2)两点异侧:如图,点P在直线L上运动,画出一点P使P A+PB取最小值。 (两点之间线段最短) 三、中考考点: 08年林金钟老师的最后一题:如图,在矩形ABCO中,B(3,2),E(3,1),F(1,2)在X轴与Y轴上是否分别存在点M、N,使得四边形EFNM的周长最小?若存在,请求出周长的最小值,若不存在,请说明理由。 提示:EF长不变。即求F N+NM+MF的最小值。利用E关于X轴的对称点E,F的对称点F,把这三条线段搬到同一条直线上。

线段和差最值问题-经典模型

线段和(差)的最值问题 此类问题特点:1.两个定点,一个定点; 2. 线段 和最小值,线段差最大值 一、线段和最小值问题 若在一条直线m 上,求一点P ,使PA+PB 最小; (1)两侧/异侧型:定点A 、B 在直线m (动点P 所在直线)两侧:直接连接A 、B 两点交直线m 于一点P ,该点P 即为所求点。(PA+PB=AB ) (2)同侧型:定点A 、B 在动点P 所在直线m 同侧:(方法:一找二作三连): 一找:找定点A 、B ,动点P 及动点所在的直线m ;二作:任选一个定点做对称;三连:连接对称点与另一个定点,其连线交动点所在直线于一点P ,该点P 即为所求。( PA+PB=PA’+PB=A’B ) Image Image 二、线段差最大值问题 若在一条直线m 上,求一点P ,使得最大 (1)同侧型:定点A 、B 在直线m (动点P 所在直线)两侧:直接连接 A 、 B 两点交直线 m 于一点P ,该点P 即为所求点。() (2)两侧/异侧型:定点A 、B 在直线m (动点P 所在直线)两侧:任选

一个定点做对称;三连:连接对称点与另一个定点,其连线交动点所在直线m于一点P,该点P即为所求点。() 线段和最小值练习题 1.如图1,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC 于点D,M,N分别是AD和AB上的动点, 则BM+MN的最小值为. 2. 如图2所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 . 3.如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为 __________. 图1 图2 图3 图4 4. 如图4,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为. 5. 如图5,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm. 6.已知正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB +PE的最小值是 7. 如图6,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC

中考数学教学指导:例谈求初中数学中线段最值的方法

例谈求初中数学中线段最值的方法 几何最值问题属于中考题中的热点问题,也是难点问题,其中,求线段的最值问题是近年常见的题型.下面结合一些实例谈谈解决此类问题的方法. 一、轨迹法 对于线段最小值问题,若线段的一个端点是定点,另一个端点是动点,可以考虑轨迹法,即考虑动点的轨迹.若动点的轨迹是一条直线,可以用“垂线段最短”原理解决;若动点的轨迹是圆(或一段圆弧),可以用“圆最值模型”解决. 圆最值模型如图1, P 是⊙O 外的一点,直线PO 分别交⊙O 于点,A B ,则PA 是点P 到⊙O 上的点的最短距离, PB 是点P 到⊙O 上的点的最长距离. 证明 如图1,在⊙O 是任取一点C (不为,A B ),连结,PC OC . ,P O P C O C P O P A O A P A O C <+=+=+Q , P A P C ∴<, 即PA 是点P 到⊙?O 上的点的最短距离. 如图2,在⊙O 是任取一点D (不为,A B ) ,连接,PD OD . ,PO OD PD PB PO OB PO OD +>=+=+Q , PB PD ∴>, 即PB 是点P 到⊙O 上的点的最长距离. 例1 .如图3,已知平行四边形OABC 的顶点,A C 分别在直线1x =和4x =上,O 是坐标原点,则对角线OB 长的最小值为 .

解析 如图3,设直线1x =和x 轴交于点E .作BF ⊥直线4x =点F ,因为平行四边形OABC ,所以OA 和BC 平行且相等,可得AOE ?和CBF ?全等,所以OE BF =,可得点B 的轨迹是直线5x =.当点B 在x 轴上时,OB ⊥直线5x =,此时OB 最小,最小值为5. 例2 .如图4,Rt ABC ?中,,6,4,AB BC AB BC P ⊥==是ABC ?内部的一个动点,且满足PAB PBC ∠=∠,则线段CP 长的最小值为( ) (A) 32 (B) 2 (c) 解析 根据PAB PBC ∠=∠,可得90APB ∠=?,故点P 在以AB 为直径的圆上(如图 4).取AB 的中点,O OC 交⊙O 于点P ,根据圆最值模型知此时CP 最小. 13,52 OP AB OC = ==Q , 所以CP 的最小值为532OC OP -=-=, 选B. 二、构造法 对于线段最大值问题,若线段的一个端点是定点,另一个端点是动点,但动点轨迹难确定,可以考虑构造法,即找一个定点,当这三点共线时,线段最大. 例3 如图5,平面直角坐标系中,已知矩形,2,1ABCD AB BC ==,点A 和B 分别在x 轴正半轴和第一象限角平分线上滑动,点C 在第一象限,求OC 的最大值.

2019届中考数学复习《成比例线段》专题复习训练(含答案).docx

2019 届初三中考数学复习成比例线段专题复习训练1.下列各组线段的长度成比例的是() A.1 cm,2 cm,3 cm,4 cm B.2 cm,3 cm,4 cm,5 cm C.0.3 m ,0.6 m ,0.5 m ,0.9 m D .30 cm,20 cm,90 cm,60 cm 2.已知 1 a=0.2 ,b= 1.6 ,c=4,d=2,则下列各式中正确的是() A.a∶b=c∶d B .a∶c=d∶b C .a∶b=d∶c D .b∶a=d∶c 3.两条直角边为 6 和 8 的直角三角形斜边与斜边上的高之比为() A.3∶4 B .4∶3 C .25∶12 D .12∶25 4.将式子ab=cd(a ,b,c,d都不等于0) 写成比例式,错误的是() a d A. c=b B. c a b=d C. d b a=c D. a c b=d y+z x+z x+y 5.已知x=y=z=k,则y=kx+k的图象一定经过的象限是() A.一、二B.二、三 C .二、四D.一、三 AD 1AD 6.如图,已知=,则的值为 ( ) BD 2AB A.1∶2 B.1∶3 C .2∶1 D.3∶1 7.下列各组线段中,是成比例线段的是 ( ) A.4,6,5,8 B .2,5,6,8 C .3,6,9,18D.1,2,3,4 8. 已知点 P 是线段 AB上的点,且 AP∶PB=1∶2,则 AP∶AB= ________. AB BC AC2 9.已知△ ABC与△ DEF的三边的比===,则△ ABC与△ DEF DE EF DF3 的周长比为 ______. 10.已知 A,B 两地的实际距离AB=5 km,画在地图上的距离A′B′= 2 cm,则这

线段最值问题专题

线段最值问题专题 类型一 线段的最大、最小值 1. 如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△A ′B ′C ,M 是BC 的中点,P 是A ′B ′的中点,连接PM .若BC =2,∠BAC =30°,则线段PM 的最大值是( ) A. 4 B. 3 C. 2 D. 1 第1题图 B 【解析】∵在Rt △AB C 中,BC =2,∠A =30°,∴AB =4,根据旋转的性质,得A ′B ′=4,如解图,连接CP ,∵P 是A ′B ′的中点,∴CP =2,又∵M 是BC 的中点,∴CM =1,由三角形的三边关系,得CM +CP >PM ,∴当M 、C 、P 三点共线时,PM 最大,此时,PM =MC +CP =1+2=3. 第1题解图 2. 如图,点C 在以AB 为直径的半圆上,AB =8,∠CBA =30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D 并交EC 的延长线于点F .则线段EF 的最小值为( ) A. 4 3 B. 2 3 C. 12 D. 26 第2题图 A 【解析】∵点E 与点D 关于AC 对称,∴∠E =∠CDE ,又∵DF ⊥DE ,∴∠E +∠F =90°,∠CDE +∠CDF =90°, ∴∠F =∠CDF , ∴CD =CF =CE, ∴EF =2CD ,当CD 最小时,EF 最小,这时CD ⊥AB, ∵A B =8, ∠CBA =30°,∴A C =4, BC =43,用面积法得CD =AC ·CB AB =4×438 =23,∴EF 的最小值为EF =2CD =4 3. 3. 如图,正方形ABCD 的边长为4,E 为正方形外一个动点,∠AED =45°,P 为AB 中点,线段PE 的最小值是( ) A. 2-2 B. 2+1 C. 22-1 D. 22-2

中考数学中的二次函数的线段和差以和最值问题

v1.0 可编辑可修改 二次函数与线段和差问题 例题精讲:如图抛物线与x轴交于A,B(1,0),与y 轴交于点C,直线经过点A,C.抛物线的顶点为D,对称轴为直线l,(1)求抛物线解析式。 (2)求顶点D的坐标与对称轴l. (3)设点E为x轴上一点,且AE=CE,求点E的坐标。 (4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。 (5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F 的坐标及△BCF周长的最小值,若不存在,说明理由。 (6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。 (7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d ①求d关于h的函数关系式 ②求d的最大值及此时H点的坐标 (8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少

1.如图,矩形的边OA在轴上,边OC在轴上,点的坐标为(10,8),沿直线OD折叠矩形,使点正好落在上的处,E点坐标为(6,8),抛物线经过、、三点。 (1)求此抛物线的解析式。 (2)求AD的长。 (3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标。

2.如图,在平面直角坐标系中,抛物线4 1 2+ =x y 与轴相交于点A ,点B 与点O 关于点A 对称。 (1)填空:点B 的坐标是 。 (2)过点的直线 (其中)与轴相交于 点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由。 (3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。

相关主题
文本预览
相关文档 最新文档