当前位置:文档之家› 管长和管径对单壁碳纳米管电导的影响

管长和管径对单壁碳纳米管电导的影响

管长和管径对单壁碳纳米管电导的影响
管长和管径对单壁碳纳米管电导的影响

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

碳纳米管;石墨烯;及碳纳米管-石墨烯复合材料

目录 摘要 ................................................................................................................................................... I Abstract ............................................................................................................................................. I I 1 石墨烯. (1) 1.1 石墨烯简介 (1) 1.2 石墨烯的结构和性质 (2) 1.2.1 石墨烯的结构 (2) 1.2.2 石墨烯的性质 (4) 1.3 石墨烯的表征 (5) 1.4 石墨烯的主要制备方法 (6) 2 碳纳米管 (8) 2.1 碳纳米管的发现及发展历程 (8) 2.2 碳纳米管的结构和分类 (9) 2.2.1碳纳米管的结构 (9) 2.2.2碳纳米管的分类 (11) 2.3 碳纳米管的生长机理 (12) 2.3.1 顶部生长机理 (12) 2.3.2 底部生长机理 (13) 2.4 碳纳米管的性能 (14) 2.4.1 碳纳米管的力学性能 (14) 2.4.2 热学性能 (14) 2.4.3 碳纳米管的电学性能 (15) 2.4.4 光学性能 (16) 2.5碳纳米管的制备 (16) 2.5.1 电弧放电法 (16) 2.5.2 激光蒸发法 (17) 2.5.3 化学气相沉积法 (18) 2.6.碳纳米管的预处理 (19) 2.6.1 碳纳米管的纯化 (19) 2.6.2 碳纳米管的分散 (19) 2.6.3碳纳米管的活化 (20) 2.7碳纳米管的应用 (20) 2.7.1 在电磁学与器件方面 (20) 2.7.2 在信息科学方面 (21) 2.7.3 储氢方面 (21) 2.7.4 制造纳米材料方面 (21) 2.7.5 催化方面 (22) 2.8 存在问题及发展方向 (22) 3碳纳米管/石墨烯复合材料 (22) 3.1 从碳纳米管、石墨稀到碳纳米管/石墨稀复合材料发展历程 (22) 3.2 碳纳米管/石墨烯复合材料结构 (23)

碳纳米管吸波材料的研究现状与展望

3海南省自然基金(80628)资助;海南大学科研基金资助项目(Kyjj0419) 王生浩:男,1984年生,研究方向为吸波材料 文峰:通讯作者,男,博士,副教授 E 2mail :fwen323@1631com 碳纳米管吸波材料的研究现状与展望3 王生浩,文 峰,李 志,郝万军,曹 阳 (热带生物资源教育部重点实验室;海南大学理工学院材料科学系,海口570228) 摘要 碳纳米管因其独特的物理和化学性能10多年来一直备受关注,已有研究将其运用于军事科技领域,如 吸波材料,但目前国内关于此类研究的报道还不多。较为全面地总结了近年来国内外对碳纳米管作为吸波材料的研究成果及其目前的研究现状,即简述碳纳米管的吸波机理;详细介绍碳纳米管薄膜、活性碳纳米管、磁性金属(合金)/碳纳米管、碳纳米管/聚合物基复合吸波材料的研究现状;展望未来吸波材料的发展方向。 关键词 碳纳米管 吸波材料 吸波性能 复合 The R esearch Status and Prospect of Electromagnetic W ave 2 absorbing C arbon N anotubes WAN G Shenghao ,WEN Feng ,L I Zhi ,HAO Wanjun ,CAO Yang (Key Laboratory of Tropical Biological Resources of Chinese Education Ministry ,Department of Materids Science , School of Science and Engineering ,Hainan University ,Haikou 570228) Abstract Carbon nanotubes (CN Ts )have been given great attention due to its unique physical and chemical properties.There are some researches about CN Ts which have been applied in military science and technology ,for ex 2ample as electromagnetic wave absorbing materials (EAM ),but few papers reports this kind of research.In this pa 2per ,the research results and present status of CN Ts as EAM are summarized in general by three parts.①the wave ab 2sorbing mechanism of the CN Ts ,②the present research status of the materials ,including thin film of CN Ts ,activated CN Ts ,metal 2coated CN Ts ,and CN Ts/Polymer composite EAM ,③the f uture prospect of EAM. K ey w ords carbon nanotubes (CN Ts ),electromagnetic wave absorbing materials (EAM ),electromagnetic wave absorbing properties ,composite   0 引言 随着电子技术的发展,电磁辐射成为新的社会公害[1],尤其是射频电磁波和微波辐射已经成为又一大环境污染。电磁辐射不仅会干扰电子仪器、设备的正常工作[2~4],而且还会影响人类的身体健康[5~8]。军事上,随着探测技术的发展,在战争中实现目标隐身对提高武器系统的生存和突防打击能力有着深刻的意义[9~11]。解决电磁辐射污染和实现目标隐身的最有效方法是采用吸波材料(Electromagnetic Wave Absorbing Materials ,EAM )。作为环境科学与军事尖端技术的组成部分,电磁波吸收材料的研究已成为一个重要的科研领域。吸波材料要求吸收强、频带宽、比重小、厚度薄、环境稳定性好,而传统的吸波材料很难满足上述综合要求,出现的问题是吸收频带单一、比重大、吸收不强等,纳米技术的发展为吸波材料开拓了一个新的研究领域。纳米吸波材料具有吸收强、频带兼容性好、材料轻、性能稳定等优点,是一类新型的吸波材料。 自1991年日本N EC 公司的电镜专家S.Iijima 发现碳纳米管(Carbon Nanotubes ,CN Ts )[12]以来,CN Ts 以其独特的结构、优良的物理、化学性质和机械性能引起了世界各国科学家的广泛关注,成为物理、化学和材料科学领域的研究重点和热点。近 年来对碳纳米管复合材料的合成和应用研究是纳米科技领域的 热点之一,但有关该类材料应用于电磁波吸收材料的研究报道还很少。有关微波与吸波材料相互作用的基础理论文献[13]已有较详细的论述,本文不再赘述。本文对目前碳纳米管吸波材料的研究现状进行了论述,并针对目前存在的问题提出了相应的解决思路。 1 碳纳米管的吸波机理 碳纳米管是一维纳米材料,纳米粒子的小尺寸效应、量子尺寸效应和表面界面效应等使其具有奇特的光、电、磁、声等性质,从而使得碳纳米管的性质不同于一般的宏观材料。纳米粒子尺度(1~100nm )远小于红外线及雷达波波长,因此纳米微粒材料对红外及微波的吸收性较常规材料强。随着尺寸的减小,纳米微粒材料具有比常规粗粉体材料大3~4个数量级的高比表面积,随着表面原子比例的升高,晶体缺陷增加、悬挂键增多,容易形成界面电极极化,高的比表面积又会造成多重散射,这是纳米材料具有吸波能力的重要机理。在原子排列较庞大的界面中及具有晶体畸变、空位等缺陷的纳米粒子内部形成的固有电矩,在微波场的作用下,由于取向极化,提高了纳米粒子的介电损耗。量子尺寸效应使纳米粒子的电子能级由连续的能谱变为分裂的

碳纳米管的性质性能及其应用前景

碳纳米管的性质性能其应用前景 The Properties and Applications of Carbon Nano-Tubes 张雅坤北京师范大学化学学院201411151935 摘要:从1991年被正式认识并命名至今,碳纳米管凭借其特殊的结构及异常的力学、电学和化学性能获得了材料、物理、电子及化学界的广泛关注。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。本文主要对碳纳米管目前的性质性能及其应用前景进行了系统详细的介绍【8】。 关键词:碳纳米管、无机化学、性质性能、应用前景 一、综述 1.发展历史与研究进程 在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Lijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 1993年,S. Lijima等和D. S. Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

1997年,A. C. Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。但该猜测在后来被证实是错误的,碳纳米管无法用于储氢的主要问题有两个:一是假如作为容器进行储氢,则无法对其进行可控的封闭和开启;二是假如用于氢气吸附,则其吸附率不超过1%(质量分数)。 能否控制单壁碳纳米管的生长是近二十余年来一直困扰着碳纳米管研究领域科学家们的难题,能否找到控制方法也成为碳纳米管应用的瓶颈。2014年,这道世界性难题被北京大学李彦教授研究团队攻克,该团队在全球首次提出单壁碳纳米管生长规律的控制方法,研究成果已于2014年6月26日发表在国际权威学术期刊《自然》杂志上,这是碳纳米管研究方面的又一大突破。 2.碳纳米管的制备方法 常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 2.1电弧放电法 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极臵于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

单壁碳纳米管

序号讲座时间讲座名称主讲人12014-3-2714:30-15:35 单壁碳纳米管的结构控制生长方 法研究 张锦22014-3-3116:00-16:50sps技术与稀土功能材料张久兴32014-4-2515:00-16:20最高引用高分子论文评析江明 42014-5-2215:00-16:06Infrared transmitting glasses for night vision and energy applications 章向华 52014-06-0514:30-15:50 Methodologies toward Efficient Syntheses of Chiral Natural Products and Drugs 汤文军、马利 单壁碳纳米管 刘文菊① 中山大学化学与化学工程学院, 广东广州510275, 11320143) 摘要单壁碳纳米管具有多种优良性能,在多个领域均有广阔应用前景,可使用多种方法制备,如电弧放电法、催化裂解法、激光蒸发法、热解聚合物法、水热合成法和电解法等方法。关键词单壁碳纳米管合成方法应用 1引言 碳纳米管(Carbon Nanotubes,CNTs),又名巴基管,是一种具有特殊结构的一维量子材料,其特征是:径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定

的距离,约0.34nm,直径一般为2~20nm。并且根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。 碳纳米管可看作是由石墨层卷曲而成的无缝管,当石墨层为单层时,对应的为单壁碳纳米管(Single Walled Carbon Nanotubes,SWNTs);当石墨层为两层或多层时,则分别对应双壁或多壁碳纳米管。[1] 碳纳米管的强度和弹性模量极高、热稳定性极好,可制造高强度、稳定性好的轻型复合增强性功能材料,具有巨大的潜在应用价值。而单壁碳纳米管最能体现碳纳米管的性质特点,单壁碳纳米管的发现与研究已经被Science评为1997年人类十大发现之一,足可证明单壁碳纳米管的巨大潜力。 图1 由石墨烯片层卷曲成SWNT的示意图[1] 2SWNT的合成方法 单壁碳纳米管的制备方法众多,其中最为成熟、应用最多的方法主要包括电弧放电法和催化裂解法。除以上两种方法以外,激光蒸发法、热解聚合物法、水热合成法和电解法等方法也被用于单壁碳纳米管的制备。[2]

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

石墨烯、碳纳米管总结

第四、五章总结 石墨烯、碳纳米管的化学生物传感 一、石墨烯和碳纳米管 1、石墨烯是由碳原子以sp2杂化连接的单原子层构成的,其基本结构单元为有机材料中最稳定的苯六元环,其理论厚度仅为0.35 nm,是目前所发现的最薄的二维材料。石墨烯是构成其它石墨材料的基本单元,可以翘曲变成零维的富勒烯, 卷曲形成一维的CNTs或者堆垛成三维的石墨。 2、碳纳米管是由碳六元环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过sp 2杂化与周围3个碳原子发生完全键合。 由于石墨烯和碳纳米管独有的结构和奇特的物理、化学特性,迅速成为备受瞩目的国际前沿和研究热点。 二、石墨烯和碳纳米管的制备 1、石墨烯的制备 (1)机械剥离法(机械剥离法就是利用机械力,将石墨烯片从具有高度定向热解石墨表面剥离开来。是制备石墨烯最为直接的方法。但低产率和尺寸不易控制等缺点使该方法仅适用于实验室的基础研究。) (2)氧化石墨-还原法(利用KClO 和HNO 可以使石墨层深度氧化,获得氧化石墨(GO),GO与石墨烯具有类似的平面结构,以其为前体采用适当的还原方法可以使其表面的功能团消除,获得石墨烯材料。) (3)化学气相沉积法(采用一定化学配比的气体为反应物,在特定激活条件下,通过气相化学反应可在不同的基片表面生成石墨烯膜层。优点一、获得单层石墨烯比例大,二、结晶完整度高。缺点:成本高产量低。) 2、碳纳米管的制备方法 自发现CNTs以来人们尝试了多种方法进行制备研究,取得了一定的进展。如电弧法、激光蒸发法、催化裂解法等。在以上许多的制备方法中,有一个共同的特点,即产生小的碳(Cn)组分以使CNTs生长,从这一点来看,各种合成方法的区别在于产生碳组分的方法不同。电弧法和激光蒸发是由电极或靶蒸发产生的碳蒸气;催化裂解法是由碳氢化合物与催化剂相互作用产生的碳蒸气。 三、石墨烯和碳纳米管的功能化 所谓功能化就是利用石墨烯和CNTs在制备过程中表面产生的缺陷和基团通过共价、非共价或掺杂等方法,使石墨烯或CNTs表面的某些性质发生改变,更易于研究和应用。由于石墨烯和CNTs具有类似的结构,而且表面都含有羧基、羰基等含氧基团,因此对两者表面进行功能化的方法可以一致,即共价键合功能化和非共价键合功能化 四、石墨烯和碳纳米管在化学生物传感技术中的应用 1、石墨烯的应用 (1)基于其荧光效应LuCH等通过标记荧光染料的单链DNA吸附于氧化石墨烯上制备出一种复合物,进而用于目标单链DNA的检测。 (2)基于其载体作用Zhang Y等发展了一种制备Fe3O4纳米粒子-氧化石墨烯复合材料的新方法,该复合材料可以实现磁靶向纳米药物输运等用途。 (3)基于其拉曼效应M.Manikandan等分别用原位合成和混合超声的方式

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

碳纳米管性质及应用

碳纳米管性质及应用 摘要:碳纳米管的发现是现代科学界的重大发现之一。由于碳纳米管具有特殊的 导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰。本文简单综述碳纳米管的基本性质及应用。 关键词:碳纳米管;结构;制备;性质;应用 1 碳纳米管的发现 1991年,日本NEC科学家Lijima在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜(HRTEM)发现一种外径为515nm、内径213nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。相邻管子之间的距离约为0.34nm,与石墨中碳原子层与层之间的距离0.335nm相近,所以这种结构一般被称为碳纳米管,这是继C60之后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果[1]。 2 碳纳米管的结构 碳纳米管(CNT)又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs) 两种形式。MWNTs一般由几层到几十层石墨片同轴卷绕构成,层间间距为0.34nm左右,其典型的直径和长度分别为 2-30nm0.1-50μm.SWNTs由单层石墨片同轴卷绕构成,其侧面由碳原子六边形排列组成,两端由碳原子的五边形封顶。管径一般从10-20nm,长度一般可达数十微米,甚至长达20cm[2]。 3碳纳米管的制备 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD),以及在各种合成技术基础上产生的定向控制生长法等。 3.1电弧法利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作.T. W. Ebbeseo在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备

石墨烯碳纳米管散热涂料技术

石墨烯碳纳米管散热涂料技术 (1)项目背景 碳材料是目前人类认知的材料中功能最全、性能最优越、形式最多样的材料,是目前所有已知划时代材料所有不能比拟的,继硅时代之后21世纪甚至有望成为碳材料时代。尤其是纳米碳材料丰富的形态,涵盖从零维、一维到二维结构, 每一次纳米碳材料的出现都引领了纳米科技的快速发展。其中,碳纳米管可看成是一种石墨片卷曲结构,超强的C-C键使碳纳米管具有超强的力学性能和热传 导性能,理论计算和实际测量表明,单壁碳纳米管拉伸强度可达150 GPa,弹性模量1TPa,是钢铁的100倍,密度却只有其1/6,被誉为终极碳纤维。同时单壁碳纳米管室温导热系数高达6000W/m.K,多壁碳纳米管的室温导热系数也达3000W/m.K,是热导率最高的材料。同时,碳纳米管比表面积大,被誉为世界上 最黑的物质,这种物质对光线的折射率只有0.045%,吸收率高达99.5%以上,辐射系数接近绝对黑体的 1.0。另外还具有优异的导电性能和超高的载流子输送 密度,导电率接近金属,载流能力超过金属铜。众多优异综合性能使碳纳米管自发现以来受到极大关注,是纳米材料和纳米技术的最典型代表,是散热涂料和复合材料最理想的功能填料。 碳纳米管在功能涂料领域主要发挥以下主要作用: (1)导电填料:碳纳米管的导电阈值低至0.1wt%,而传统炭黑却高达15wt%以上,碳纳米管可以在极少量添加的情况下即达到目前炭黑型导电涂料的 性能,避免大量无机炭黑添加对涂料工艺性的负面影响。因此,碳纳米管在抗静电涂料、电磁屏蔽涂料、重防腐涂料等领域具有显著优势。同时还能利用其电致发热的作用,开发新型的节能加温、保温涂料,在家居地暖加温、仪器设备保温等新型市场具有极大的商业前景。 (2)散热填料:碳纳米管不仅具有超高的热导率,同时还具有接近理论黑体的辐射率,以此加强其红外辐射散热功能,因此新型散热涂料将有望改变目 前散热模式,大大提高热交换能力。 (3)力学增强填料:充分发挥碳纳米管一维结构的优势,在涂层内部形成增强网络,将使涂料力学性能大大提高,尤其是耐磨性、硬度等,甚至可形成

单壁碳纳米管的轴向能带工程

中国科学B辑:化学 2009年 第39卷 第10期: 1069~1088 https://www.doczj.com/doc/bd18560163.html, https://www.doczj.com/doc/bd18560163.html, 《中国科学》杂志社SCIENCE IN CHINA PRESS 单壁碳纳米管的轴向能带工程 现晓军, 刘忠范* 北京大学纳米化学研究中心, 北京大学化学与分子工程学院, 北京 100871 * 通讯作者, E-mail: zfliu@https://www.doczj.com/doc/bd18560163.html, 收稿日期:2009-07-11; 接受日期:2009-08-02 摘要单壁碳纳米管具有优异的电子学特性, 是制备新一代高性能集成电路的重要材料. 碳纳米管芯片之路存在诸多挑战, 包括直径和手性的控制生长方法、金属性和半导体性单壁碳纳米管的分离方法、器件加工与集成方法等. 这些课题从本质上讲大多属于化学问题, 因此碳纳米管芯片研究为化学家们提供了新的机遇与挑战. 过去10年来, 我们围绕单壁碳纳米管的轴向能带工程这一研究思路, 开展了一系列碳纳米管芯片的基础探索工作, 发展了若干有效的单壁碳纳米管局域能带的调控方法, 包括温度阶跃生长法、脉冲供料生长法、基底调控法以及形变调控法等. 本文系统地阐述了这些局域能带调控方法, 为使读者对该领域的研究进展有一个较为全面的了解, 文中对其他课题组开展的代表性工作也给予了综述性介绍. 关键词 碳纳米管 CVD CMOS器件 轴向能带工程 纳米转移印刷技术 1引言 碳纳米管是日本NEC公司的电子显微学家Iijima S(饭岛澄男)博士发现的. 1991年, Iijima S在用高分辨透射电镜观察富勒烯原始样品时, 偶然发现了多层套管状的多壁碳纳米管[1]. 两年后, Iijima S和IBM公司的Bethune D S在“Nature”杂志的同一期上同时报道了由单层管构成的单壁碳纳米管[2,3], 从而掀起了世界范围的持续至今的碳纳米管研究热潮. 理论上讲, 单壁碳纳米管是理想的导电沟道材料, 用单壁碳纳米管制作的场效应晶体管(FET)有着硅晶体管无与伦比的优越性, 因此它的问世为新一代高性能集成电路研究注入了新的活力[4]. 首先, 单壁碳纳米管中载流子的传输是一维的, 这就意味着载流子散射的相空间减小, 反向散射受到强烈抑制, 从而导致极高的载流子迁移率. 理论和实验研究都表明, 碳纳米管中载流子的迁移率比硅材料高两个数量级以上. 高载流子迁移率带来的好处是工作电流大, 延迟时间短, 因此可以预期, 碳纳米管芯片的速度将大大高于硅芯片. 硅基CMOS器件在特征尺寸进入纳米领域时, 会出现所谓的短沟效应. 单壁碳纳米管的直径通常在1~2 nm范围, 载流子被限域在非常狭小的空间范围内运动, 因此可以有效地抑制这种短沟效应, 使得理想的静电学控制成为可能, 这是碳纳米管FET的另一个优点. 碳纳米管中的碳原子呈稍微变形的sp2成键构型, 径向方向不存在未饱和的悬挂键, 因此不需要表面化学钝化, 这一点与呈sp3成键结构的硅材料完全不同. 这意味着碳纳米管器件不必一定使用二氧化硅作为栅极绝缘材料, 可以采用其它高介电常数材料, 在材料选择上的自由度大得多. CMOS技术是传统的硅基微电子器件的基础, 其基本结构单元是互补的n型和p型场效应晶体管. 因为碳纳米管能带中的导带和价带是对称的, 由此人们预测碳纳米管FET中的电子和空穴传输特性也是相似的, 这样可以为互补电路提供更平衡的电 1069

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

储氢碳纳米管

碳纳米管储氢性能的研究 学院:材料学院班级:1109102 学号:1110910209 姓名:袁皓 摘要:综述了近年来研究人员在碳纳米管制备以及在各种不同条件下获得的储氢性能,分析了碳纳米管的储氢机理。从实验、理论研究两个方面总结了前人在碳纳米管储氢上的研究成果,并对碳纳米管储氢吸附方式,吸附量影响因素等方面做出分析。最后指出为实现碳纳米管储氢大规模应用仍需做的一些基础性研究工作。 关键词:碳纳米管;吸附;储氢 氢能以其资源丰富、可再生、热效率高等优点备受关注。氢能的使用包括氢的生产、储存和运输等方面,开发氢能的关键问题是如何对氢进行储存。储氢的主要方法有:金属存储、压缩存储、液化存储和吸附存储等,它们各有优缺点。碳纳米管因其特殊的力学、电学等性质而成为储氢的主要载体。Kroto等发现了C60以后,Iijima意外地发现碳纳米管。由于碳纳米管具有优良的电学、力学性质,世界各国迅速展开了对碳纳米管的制备方法、结构与性能的研究。Dillon等报道了碳纳米管储氢作用,相关报道也比较多。因为碳纳米管具有比较大的比表面积,且具有大量的微孔,其储氢量远远大于传统材料的储氢量,因此被认为是良好的存储材料。 一碳纳米管的结构和性质 碳纳米管(Carbon Nanotubes, CNTs)首次是在1991年由日本的电子显微镜专家Iijima分析电弧放电产生的阴极沉积物时意外发现的,可以被看成是由石墨面卷曲而成的无逢管状结构,后发现可以通过化学处理使两端开口。根据组成碳纳米管管壁中碳原子层数目,碳纳米管可被分为单壁碳纳米管(Single -Walled Carbon Nanotubes, SWNTs )和多壁碳纳米管(Multi-Walled Carbon Nanotubes,MWNTs)。结构模型如图: 单壁碳纳米管仅由一层碳原子构成,是多壁碳纳管的一种特殊情况。单壁碳纳米管直径一般在1 -3nm,最小直径大约为0. 5nm,当直径大于3nm时会表现出不稳定性。单壁碳纳米管通常因范德华力作用而形成10 -100管束状。多壁碳纳米管可以看成为不同管径的单壁碳纳米管套装而成,少则2层多达几十层,层距约为0.343nm,略大于石墨片层之间的距离0. 335nm。碳纳米管直径在几纳米到几十纳米之间,而长度可达数微米,具有较大的长径比。因此,人们认为碳纳米管是一种典型的准一维纳米材料,并且因其重量轻,六边形完美结构而表现出许多异常的力学、电磁学、化学特性,并在不同领域里得到广泛的应用。其中碳纳米管在吸附氢气上表现出的独特性质,使其最有希望成为高效的储氢材料。 二碳纳米管的制备 目前已有很多种制备碳纳米管的方法,其中电弧放电法和催化裂解法应用得最为广泛。1991年Iijima首先用真空电弧蒸发石墨电极,在阴极沉积物中发现了碳纳米管。该方法是:在一定气压的惰性气氛下,石墨电极之间在强电流下产生电弧,阴极逐渐损耗,部分气态碳离子沉积于阴极形成沉积物。电弧放电法的产物质量较好,管径均匀,管身较直,石墨化程度高,但因

碳纳米管的介绍

纳米材料课程论文 论文题目: 碳纳米管在场效应管中的 应用 学院: 理工学院 专业: 材料科学与工程专业 指导老师: xxx 姓名:XXX 学号: XXX 二0 年月日

碳纳米管在场效应管中的应用 题目:碳纳米管在场效应管中的应用 单位:XXX 作者;XXX (201XXXXX) 摘要简单介绍了晶体管的定义和分类、晶体管的发展历史. 碳纳米管热学性质和电学性质、碳纳米管场效应晶体管 的结构、工作原理及制备与性能、碳纳米管场效应晶体 管的研究进展。 Abscart We briefly introduced the definition , classification and the history of the development of the transisor. And we make a thorough inquiry about thermal properties , electrical properties , structure, working principle , preparation and research progress of the CNTFET . 关键词:碳纳米管场效应晶体管单壁工作原理研究进展 1引言 碳纳米管作为一种新型半导体材料在制作纳米级电子元器件中有着广泛的应用。根据结构的不同,碳纳米管有金属型和半导体型两种,人们以半导体型碳纳米管制备了碳纳米管场效应晶体管,取得了良好的效果。 随着纳米技术的发展, 新的工艺技术也随之产生。纳米器件的“由下至上”

]1[制作工艺, 是在纳米技术和纳米材料的基础之上发展起来的, 在新工艺基础之上, 可以利用纳米管、纳米线的性质制作成各种新的电子器件。由于碳纳米管可以和硅在电子电路中扮演同样的角色, 随着基于碳纳米管的纳米电路研究的深入发展, 电子学将在真正意义上从微电子时代进入纳电子时代。从分析碳纳米管分立场效应晶体管典型结构特点入手, 分析阐述了碳纳米管构建的典型纳米逻辑电路结构特征及碳纳米管在柔性纳米集成电路方面的应用。 2 碳纳米管和晶体管发展历史 2.1碳纳米管发展历史简介 1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,现在命名为“Carbon nanotube”(CNT),即碳纳米管]2[。按片层石墨层数分类, 可分为单壁碳纳米管和多壁碳纳米管。单壁碳纳米管其结构可以看作单层石墨烯无缝卷曲而成, 而多壁碳纳米管可理解为不同直径的单壁碳纳米管套装而成。在以后的20年里CNT的制备工艺,应用逐渐发展成熟。理论预计该材料具有优异的力学、电学、磁学等性能,极具理论研究和实际应用价值,因而激起了国内外学者的极大兴趣。时至今日,碳纳米管的研究仍是材料界以及凝聚态物理研究的前沿和热点。 图1 碳纳米管结构示意图 2.2 晶体管发展历史 晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。分为半导体三极管、电力晶体管、光晶

相关主题
文本预览
相关文档 最新文档