当前位置:文档之家› 南京理工大学科技成果——内生型陶瓷颗粒增强铝基复合材料的应用开发

南京理工大学科技成果——内生型陶瓷颗粒增强铝基复合材料的应用开发

南京理工大学科技成果——内生型陶瓷颗粒增强铝基复合材料的应用开发
南京理工大学科技成果——内生型陶瓷颗粒增强铝基复合材料的应用开发

南京理工大学科技成果——内生型陶瓷颗粒增强铝

基复合材料的应用开发

成果简介:

铝基复合材料是以铝或其合金为基体,纤维、晶须、金属间化合物、陶瓷颗粒或其组合为增强体的复合材料,它兼有基体铝的塑性、韧性又具有增强相的高硬度、高强度。铝基复合材料具有较高的比强度、比刚度,以及良好的高温性能以及优异的耐磨性能等特点。

增强相与基体达的结合界面,是影响复合材料强度的关键因素,也是复合材料研究的重点之一。目前铝基复合材料的生成类型主要有外生型和内生型两种。

外生型增强相是从外界直接加入的,增强相的表面易被污染,与基体的结合界面不干净,易有不良的反应物产生,此外,进入基体中的增强相的尺寸不能太小,须在微米级以上,且易在基体中偏聚,这些均严重影响力学性能的进一步提高,高温性能也因界面的恶化而严重下降。

本材料是采用原位合成技术开发的铝基复合材料,其增强相是通过基体中的化学反应产生的,因此,增强相表面无污染,与基体的结合界面干净、相容性好,分布均匀,克服了外生型的不足。

该技术是上世纪九十年代初才传入我国的,而用于铝基复合材料的制备研究只是刚刚起步,该项目组成功制成了内生型陶瓷颗粒增强的铝基复合材料,并对材料的制备工艺、力学性能(常温、高温)、磨损性能(常温、高温)进行了深入研究,制备工艺已基本成熟。可

直接进行中期生产应用开发。

技术指标:

1、常温下主要力学性能(纯铝基)

抗拉强度:400MPa;延伸率:9%;

2、高温下主要力学性能(纯铝基)

300℃抗拉强度:200MPa;延伸率:12%;

500℃抗拉强度:120MPa;延伸率:16%。

项目水平:国内先进

成熟程度:小试

合作方式:合作开发、专利许可、技术转让、技术入股。

颗粒增强铝基复合材料的制备方法及其存在的问题20091311

颗粒增强铝基复合材料的制备方法及其存在的问题 冶金0901班 张莹 20091311

近年来,随着不断追求轻量化、高性能化、长寿命、高效能的发展目标带动牵引了轻质高强多功能颗粒增强铝基复合材料的持续发展。提出的低密度、高比强度、高比模量、低膨胀、高导热、高可靠等优异以及良好的抗磨耐磨性能和耐有机液体和溶剂侵蚀等综合性能要求,传统轻质材料已很难全面满足要求,如铝合金模量低、线胀系数较大; 钛合金密度较大、热导率极低; 纤维增强树脂基复合材料在空间环境下使用易老化等,颗粒增强铝基复合材料经过30 多年的发展,已在国外航空航天领域得到了规模应用,这充分验证了与铝合金、钛合金、纤维树脂基复合材料等传统材料相比具有的显著性能优势,奠定了颗粒增强铝基复合材料在材料体系中的地位和竞争态势。而且更重要的是,在世界范围内有丰富的铝资源,加之易于进行工艺加工成型和处理,因而制各和生产铝基复合材料比其他金属基复合材料更为经济,易于推广,可广泛应用于航空航天、军事、汽车、电子、体育运动等领域,因此,这种材料在国内外受到普遍重视。 颗粒增强铝基复合材料已成为当下世界金属基复合材料研究领域中的一个最为重要的热点,各国已经相继进入了颗粒增强铝基复台材料的应用开发阶段,在美国和欧洲发达国家,该类复台材料的工业应用已开始,并且被列为二十一世纪新材料应用开发的重要方向并日益向工业规模化生产和应用的方向发展。本文旨在探讨颗粒增强铝基复合材料的制备方法及在亟待解决的各方面的问题,推进其应用发展的进程。 主要制备方法介绍: 增强体颗粒的分布均匀性和界面结合状况是影响复合材料性能的重要因素。因此,如何使增强体颗粒均匀分布于铝基体井与铝基体形成良好的界面结台是颗粒增强铝基复台材料制备过程中必须解决的两个最关键问题。以下是制备颗粒增强铝基复合材料的一些方法: 1、原位法 原位法的原理是通过元素间或元素与化合物之间反应制备陶瓷增强金属基复合材料,是近年来迅速发展的一种新的复合工艺方法,目前已成功地在铝基中实现了硼化物、碳化物、氮化物等的原位反应。由于这些增强相引入的特殊性,不仅它的尺寸非常细小,而且与基体具有良好的界面相容性,使得这种复合材料较传统外加增强相复合材料具有更高的强度和模量,以及良好的高温性能和抗疲劳、耐磨损性能。 原位自生铝基复合材料的制备方法较多,下面进行简略介绍。 (1)自蔓延高温合成法:该技术是利用热脉冲使放热反应起始于反应剂粉末压坯的一端,其生成热使邻近的粉末温度骤然升高.发生化学反应并以燃烧波的形式蔓延通过整个反应物,当燃烧波推行前移时反应物转变成产物。该技术的特点是在无需外加热源的情况下,利用高放热化学反应放出的热量使其在引发后自身延续合成材料,节能,粉末纯度高,粒径细小,活性高,易于烧结并能获得高性能的材料。 (2)原位热压放热反应合成法:该技术是在原位热压技术的基础上发展起来的一种新下艺。在制备过程中将反应物的物料混合或与某种基体原料混合后通过热压工艺制备,组成物相在热压过程中原位生成。该技术的突出优点是利用燃烧合成过程的放热反应,在产物处于反应高温时,施加一定的压力。使材料的致密与反应合成同时完成。获得了事半功倍的效果。 (3)放热弥散技术:这种方法法是美国一个实验室在自蔓延法的基础上改进而来的。

铝基复合材料及应用

3铝基复合材料及应用 Aluminum matrix composites and applications 在材料体系设计、制备技术、界面研究、改性处理、性能表征、塑性变形和应用研究等方面开展了系统的研究工作,攻克了高致密制备技术、复合材料稳定性设计、稳定化处理技术、超声波辅助钎焊技术和材料稳定性评价方法等关键技术。研制出的系列颗粒、晶须和纤维增强铝基复合材料,已经应用于卫星、飞机、载人航天等领域。2008年获得国家技术发明二等奖。 The fabrication technology,interface structure,surface modification,property characterization,and plastic deformation have been investigated.A series of key technological problems have been broken through,such as high-density composite fabrication,design of dimensional stability,stabilizing treatment,ultrasonic assisted brazing and evaluation of materials stability.The composites have been successfully applied for industries. SiCp/Al 复合材料样件 SiCp/Al composites samples SiCw/Al 复合材料卫星天线展开机构丝杠 Satellite antenna screw rods of SiCw/Al composite SiC p /Al 相机框架焊接件Brazed camera carriages of SiCp/Al composite

颗粒增强铝基复合材料研究与应用进展

颗粒增强铝基复合材料研究与应用进展摘要:综述了颗粒增强铝基复合材料的研究现状,从基体、增强体的选择,铝基复合材料的制备方法,影响复合材料性能的因素和改善措施等方面进行阐述,并介绍了该复合材料的广泛应用。 关键词:颗粒;铝基复合材料;制备方法; 应用 Abstract :The research progress of particle reinforced aluminum matrix composite was summarized. The research status of the composite was reviewed in detail from the choice of the reinforcement and the matrix, the preparation technique of aluminum matrix composite, the factors which can affect the performance of the composite. Key words :particle; aluminum matrix composite; preparation methods; application 1.前言 铝基复合材料是以金属铝及其合金为基体 , 以金属或非金颗粒、晶须或纤维为增强相的非均质混合物。按照增强体的不同 , 铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。由于颗粒增强铝基复合材料具有高的比强度、比刚度,优良的高温力学性能和耐磨性,并且价格便宜,适于批量生产,良好的耐磨性和导热性能等优点,在航天、航空、汽车、电子、光学等工业领域具有相当广泛的应用前景。 颗粒增强复合材料是指弥散的硬质增强相的体积超过 20%的复合材料,而不包括那些弥散质点体积比很低的弥散强化金属的金属基复合材料[1] 。此外,这种复合材料的颗粒直径和颗粒间距很大,一般大于1μm。在这种复合材料中,增强相是主要的承载相,而基体的作用则在于传递载荷和便于加工。这种材料虽然其增强效应远不及连续纤维,但它主要是可以弥补某些材料性能的不足,如增加刚度、耐磨性、耐热性、抗蠕变等。在这种复合材料中,硬质增强相造成的对基体的束缚作用能阻止基体屈服。颗粒复合材料的强度通常取决于颗粒的直径、间距和体积比,但基体很重要。除此之外,这种材料的性能还对界面性能及颗粒排列的几何形状十分敏感[2]。 2.铝基复合材料的选择

颗粒增强铝基复合材料的研究

颗粒增强铝基复合材料的研究 姓名:陈云班级:10161201 学号:1016120118 【摘要】本文简要介绍了常见的几种颗粒增强铝基复合材料的增强颗粒和性质,以及颗粒增强铝基复合材料的制备方法和应用。 【关键词】颗粒增强铝基复合材料碳化硅氧化铝碳化钛石墨粉末冶金原位反应合成 0 前言 金属基复合材料是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。铝基复合材料是金属基复合材料的一种,按照增强体形式不同可以分为长纤维增强铝基复合材料,短纤维增强铝基复合材料,晶须增强铝基复合材料及颗粒增强铝基复合材料。 颗粒增强铝基复合材料的增强颗粒克服了制备过程中出现的纤维损伤,微观组织不均匀,纤维与纤维相互接触,反应带过大等影响材料性能的缺点。同时,颗粒增强铝基复合材料制备成本低廉,回收性和再利用性好,使其在各个领域都具有广泛应用。因此,本文将简要介绍颗粒增强铝基复合材料的部分相关内容。 1 颗粒增强铝基复合材料 颗粒增强铝基复合材料具有密度小,比强度、比刚度高,剪切强度高,热膨胀系数低,热稳定性和导热、导电性能良好,以及抗磨耐磨性能和耐有机液体和溶剂侵蚀优良等一系列优点。颗粒的增强主要是弥散强化,颗粒越小,弥散强化的效果越好,材料的性能也就越佳。 颗粒增强铝基复合材料增强体的选择要求颗粒在基体中高度弥散均匀分散,尺寸大小要适度,与基体间要有一定粘结作用,而且它们之间各方面都要相匹配。常见的增强颗粒有:碳化硅、碳化钛、氧化铝和石墨颗粒。 1.1 碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基(SiC p/Al)复合材料是一种陶瓷颗粒增强金属基复合材料,它是用碳化硅颗粒作为增强体,采用铝或铝合金作基体,按设计要求,以一定形式、比例和分布状态,构成有明显界面的多组相复合材料。通过改变碳化硅颗粒在复合材料中的含量,可以对材料的性能进行调整。一般随碳化硅体积含量的增

信息材料

1.根据信息材料的功能,可把信息材料主要分为信息收集材料,信息存储材料,信息处理材料,信息传递材料,信息显示材料2还有一类重要的信息材料是半导体激光器材料。 光信息的存储、处理、传递和显示并不是基于半导体激光材料在外场作用下发生某种物理或化学变化来实现,但这些功能都必须有半导体激光器产生的激光参与才得以实现。 3.半导体激光器是信息功能器件的核心器件和通用器件,半导体激光材料也是信息材料中重要的部分。 4.信息收集材料是指用于信息传感和探测的一类对外界信息敏感的材料。 在外界信息如力、热、光、磁、电、化学或生物信息的影响下,这类材料的物理或化学性质(主要是电学性质)会发生相应变化,通过测量这些变化可方便精确地探测、接收和了解外界信息变化。 5.信息传感材料主要包括力敏传感材料、热敏传感材料、光敏传感材料、磁敏传感材料、气敏材料、湿敏材料、压敏材料、生物传感材料等。 6.力敏传感材料是指在外力作用下电学性质会发生明显变化的材料,主要分为金属应变电阻材料和半导体压阻材料两大类。金属应变电阻材料主要有康铜系合金、锰铜合金、镍铁铝铁合金、镍铬合金、铁铬铝合金等。半导体压阻材料主要是单晶硅。(半导体压阻材料便于力敏传感器件的微型化和集成化,在常温下有大量应用,逐步取代金属型应变计。金属应变电阻材料的电阻温度系数、温度灵敏度系数等都比半导体好,具有很高的延展性和抗拉强度,在耐高温、大应变、抗辐射等场合得到广泛使用。) 7.热敏传感材料是指对温度变化具有灵敏响应的材料,主要是电阻随温度显著变化的半导体热敏电阻陶瓷。根据电阻温度系数的正负,可分为正温度系数(BaTiO3、V2O5为基的热敏陶瓷)和负温度系数(过渡金属氧化物为基的热敏陶瓷)热敏材料两类。 8.光敏传感材料在光照下会因各种效应产生光生载流子,用于制作光敏电阻、光敏三极管、光电耦合器和光电探测器。最常用的光学敏感材料是锗、硅和II-VI族、IV-VI族中的一些半导体化合物等,如CdS、CdSe和PbS等半导体化合物,9.磁敏电阻材料是指具有磁性各向异性效应的磁敏材料。这类材料在磁化方向平行电流方向时,阻值最大;在磁化方向垂直于电流方向时,阻值较小。改变磁化方向与电流方向夹角,即可改变磁敏电阻材料的阻值。强磁性簿膜磁敏电阻材料主要是NiCo和NiFe合金薄膜,可制备磁敏二极管或三极管,灵敏度高、温度特性好,可用于磁场测量。 10.巨磁阻效应是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象(巨磁阻效应读出磁头,磁头存储密度迅速提高到3Gb/in2,磁盘记录从4Gb提升到600Gb或更高) 11.气敏材料是对气体敏感,电阻值会随外界气体种类和浓度变化的材料,如SnO2、ZnO、Fe2O3、ZrO2、TiO2和WO2等n 型或p型金属氧化物半导体。气敏材料用于制作气敏传感器,吸附气体后载流子数量变化将导致表面电阻率变化,进而对气体的种类和浓度进行探测。 12.湿敏材料是指电阻值随环境湿度增加而显著增大或降低的一些材料。陶瓷湿敏材料主要有MgCr2O3系、ZnCr2O3系和MnWO4、NiWO4等。高分子湿敏材料是指吸湿后电阻率或介电常数会发生变化的高分子电解质膜,如吸湿性树脂、硝化纤维系高分子膜。 13.信息存储材料是指用来制作各种信息存储器的一些能够记录和存储信息的材料。 在外加物理场(如电场、磁场、光照等)的影响下,信息存储材料发生物理或化学变化,实现对信息的存储。 14.磁记录材料 磁记录材料可方便地进行数据的存储和读取工作。磁性存贮器具有容量大、成本低等优点; 磁记录装置可将记录下来的信号进行放大或缩小,使科研中的数据处理更为方便灵活;磁卡可用于存取款、图书保存以及乘坐交通工具的票证等,方便人们生活。 15.颗粒涂布型磁记录介质是将磁粉、非磁性胶粘剂和少量添加剂等形成的均匀磁性浆料,涂布于聚酯薄膜上制成。 磁粉包括γ-Fe2O3、BaO-Fe2O3、金属粉等。 16.金属磁粉特点是具有较高的磁感应强度和矫顽力。纯铁磁化强度达1700emu/cm3,可在较薄的磁层内得到较大的读出信号;小针状铁粒子可提供较高矫顽力,使磁记录介质承受较大的外场作用。金属磁粉缺点是稳定性差,易氧化或发生其它反应,常用表面钝化或合金化等办法控制表面氧化,但降低粒子的磁化强度 17.钡铁氧体来源丰富,成本低,有较高的矫顽力和磁能积,抗氧化能力强,是一种应用广泛的永磁材料。钡铁氧体矫顽力高达398kA/m,本不适于作磁记录介质,以下特点使其可成为理想高密度磁记录材料:六方形平板结构和垂直于平板

功能陶瓷材料研究进展综述

功能陶瓷材料的应用 研究 姓名:刘军堂___________ 学号: 23122837________ 班级: 机械1201_________ 任课老师:张志坚__________

功能陶瓷材料的应用研究 1.选择一个课题进行相关检索,要求对课题作简要分析,并在分析的基础上确定检索词,准确描述检索过程。(10分)(可选择其他课程中以论文方式考核的科目,如无此类题目,可自选或用备选题目) 功能陶瓷 功能陶瓷材料是具有特殊优越性能的新型材料,各国在基础与应用研究以及工程化方面,均给予了特殊重视,特别是在信息、国防、现代交通与能源产业中均将其置于重要地位。根据功能陶瓷材料的应用前景,本文介绍了功能陶瓷新材料的性能、应用范围,市场的开发应用现状和开发应用新领域,以及正在研发的高性能陶瓷材料;同时介绍了功能陶瓷材料今后的发展趋势。 关键词:功能陶瓷材料;应用现状;趋势 检索过程 第一步:进入“中国知网”主页,网址是“https://www.doczj.com/doc/cf266833.html, 第三步:登录成功后会进入操作界面, 第四步:选择要检索的文献数据库。在操作界面上,中国知网将其文献分成了不同的库,我们根据自己的文献范围属性进行选择。 第五步:检索参数设置。在操作界面的上部,有搜索参数设置对话框。最好逐一填写。(1)检索项,系统对文献进行了检索编码,每一个文献都有一一对应的编码,一个编码就是一种检索项。点击检索项框右边的向下箭头,就能弹出所有检索项,选中一个就好。(2)检索词,填入要求系统搜索的内容。没有明确严格要求,不一定是词语。但是需要考虑到它应当与你选中的检索项相一致。如检索项用了“关键词”,就不能用一个长句等作检索词了。(3)文献时间选择,根据文献可能出现的年代,点击对话框右边的小三角就可以选了。需要说明的是,中国知网建立时间是1994年,所以1994年及其后的数据才是最全的。现在他们在逐渐补充1994年以前的文献数据,但是,全面性可能要差些。(4)排序,提示系统将找到的文献按什么顺序呈现。(5)匹配,即要求系统按自己的检索要求进行哪种精确程度的检索。如果你确定你的文献参数,那么选择“精确”,如果不确定,就选择“模糊”。 第六步:点击“搜索”就完成了第一阶段的操作了。然后就进入检索结果呈现的界面:中国知网2.rar(点击打开查看),中国知网的结果呈现表中,对文献的基本信息:文献题目、文献的载体、发表时间及在中国知网中的收藏库名进行了说明。

碳化硅颗粒增强铝基复合材料

碳化硅颗粒增强铝基复合材料 碳化硅颗粒增强铝基复合材料, 是目前普遍公认的最有竞争力的金属基复合材料品种之一。尽管其力学性能尤其是强度难与连续纤维复合材料相匹敌, 但它却有着极为显著的低成本优势, 而且相比之下制备难度小、制备方法也最为灵活多样, 并可以采用传统的冶金工艺设备进行二次加工, 因此易于实现批量生产。冷战结束后的20 世纪90 年代, 由于各国对国防工业投资力度的减小, 即使是航空航天等高技术领域, 也越来越难以接受成本居高不下的纤维增强铝基复合材料。于是, 颗粒增强铝基复合材料又重新得到普遍关注。特别是最近几年来, 它作为关键性承载构件终于在先进飞机上找到了出路, 且应用前景日趋看好, 进而使得其研究开发工作也再度升温。碳化硅颗粒增强铝基复合材料主要由机械加工和热处理再结合其的性质采用一定的方法制造。如铸造法、粘晶法和液相和固相重叠法等。 碳化硅颗粒增强铝基复合材料碳化硅和颗粒状的铝复合而成,其中碳化硅是用石英砂、石油焦(或煤焦)、木屑(生产绿色碳化硅时需要加食盐)等原料在电阻炉内经高温冶炼而成,再和增强颗粒铝复合而成,增强颗粒铝在基体中的分布状态直接影响到铝基复合材料的综合性能,能否使增强颗粒均匀分散在熔液中是能否成功制备铝基复合材料的关键,也是制备颗粒增强铝基复合材料的难点所在。纳米碳化硅颗粒分布的均匀与否与颗粒的大小、颗粒的密度、添加颗粒的体积分数、熔体的粘度、搅拌的方式和搅拌的速度等因素有关。纳米颗粒铝

的分散的物理方法主要有机械搅拌法、超声波分散法和高能处理法。对复合材料铸态组织的金相分析表明,碳化硅复合材料挤压棒实物照片 颗粒在宏观上分布均匀,但在高倍率下观察,可发其余代表不同粒度、含量的复台材料现SiC颗粒主要分布在树枝问和最后凝固的液相区,同时也有部分SiC颗粒存在于初生晶内部,即被初生晶所吞陷。从凝固理论分析,颗粒在固液界面前沿的行为与凝固速度、界面前沿的温度梯度及界面能的大小有很大关系,由于对SiC颗粒的预处理有效地改善了它与基体合金的润湿性,且在加入半固态台金浆料之前的预热温度大大低于此时的合金温度,故而部分SiC颗粒就可能直接作为凝固的核心而存在于部分初生晶的内部,但是太多数SiC在枝晶相汇处或最后凝固的液相中富集,这便形成了上述的组织形貌。金属中弥敷分布的铝对金属中的品界运动,位错组态及位错运动都有响.纳米碳化硅颗粒增强复合材料具有细小而均匀的组织其原因应该是细小而均匀分布的纳米颗粒高教率地占据空间,颗粒间距较小.有效地控制晶粒的长大;微米碳化硅颗粒增强复台材料中.颗粒尺寸较大,它在空间的分布间距也较大,由于基体热膨胀系数的差异而引起的局部应力也越大,造成了颗粒附近与远离颗粒处基体状态的差异.这种差异是造成微米颗粒增强复合材料组织不均匀的原因。 碳化硅颗粒增强铝基复合材料的航空航天工程应用;1、在惯导系统中的潜在应用;在我国自行研制的诸多型号机载、弹载惯性导航系统中, 不同程度地存在着现用的铸造铝合金结构件比刚度不足、热

陶瓷材料

2性能 力学特性 陶瓷材料是工程材料中刚度最好、硬度最高的材料,其硬度大多在1500HV以上。陶瓷的抗压强度较高,但抗拉强度较低,塑性和韧性很差。 热特性 陶瓷材料一般具有高的熔点(大多在2000℃以上),且在高温下具有极好的化学稳定性;陶瓷的导热性低于金属材料,陶瓷还是良好的隔热材料。同时陶瓷的线膨胀系数比金属低,当温度发生变化时,陶瓷具有良好的尺寸稳定性。 电特性 大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压(1kV~110kV)的绝缘器件。铁电陶瓷(钛酸钡BaTiO3)具有较高的介电常数,可用于制作电容器,铁电陶瓷在外电场的作用下,还能改变形状,将电能转换为机械能(具有压电材料的特性),可用作扩音机、电唱机、超声波仪、声纳、医疗用声谱仪等。少数陶瓷还具有半导体的特性,可作整流器。 化学特性 陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。 光学特性 陶瓷材料还有独特的光学性能,可用作固体激光器材料、光导纤维材料、光储存器等,透明陶瓷可用于高压钠灯管等。磁性陶瓷(铁氧体如:MgFe2O4、CuFe2O4、Fe3O4)在录音磁带、唱片、变压器铁芯、大型计算机记忆元件方面的应用有着广泛的前途。 三、陶瓷材料的特点 1 生物陶瓷具有良好的生物相容性与骨传导性; 2 陶瓷能承受高温气流的摩擦和冲刷; 3 具有抵抗高的高温强度和好的抗氧化性能以及抗辐射的性能;

陶瓷具有强度大、刚度好、耐腐蚀、化学稳定性好; 5 一些特定的陶瓷还有低活性、能吸收中子的特点(核工业); 6 价格低廉,对环境污染很小,符合当前社会发展的趋势等。 四、发展趋势 先进陶瓷今后的重点发展方向是加强工艺-结构-性能的设计与研究,有效地控制工艺过程,使其达到预定的结构(包括薄膜化、纤维化、气孔的含量、非晶态化、晶粒的微细化等),重视粉体标准化、系列化的研究与开发及精密加工技术,降低制造成本,提高制品的重复性、可靠性及使用寿命。 五、陶瓷材料目前的应用领域 先进陶瓷材料又称精密陶瓷材料,是新材料的一个重要组成部分,广泛应用于通讯、电子、医疗、生物、机械、航空、航天、军事等高技术领域,在信息与通讯技术方面有着重要的应用。

铝基复合材料

目录 一、引言 (1) 二、铝基复合材料的基本成分 (1) 三、铝基复合材料的性能 (1) 3.1 低密度 (1) 3.2 良好的尺寸稳定性 (1) 3.3强度、模量与塑性 (2) 3.4耐磨性 (2) 3.5疲劳与断裂韧性 (2) 3.6热性能 (2) 四、铝基复合材料的应用 (3) 4.1 在汽车领域的应用 (3) 4.2 在航空航天领域的应用 (3) 4.3 在电子和光学仪器中的应用 (3) 4.4 在体育用品上的应用 (4) 五、铝基复合材料的制造工艺 (4) 5.1 粉末冶金法 (4) 5.2 高能-高速固结工艺 (4) 5.3 压力浸渗工艺 (5) 5.4 反应自生成法 (5) 5.5 液态金属搅拌铸造法 (5) 5.6 半固态搅拌复合铸造 (5) 六、铝基复合材料的研究的热点及发展趋势 (6) 6.1铝基复合材料的研究的热点 (6) 6.1.1纳米相增强铝基复合材料 (6) 6.1.2碳管纳米增强铝基复合材料 (6) 6.2铝基复合材料的发展趋势 (7)

铝基复合材料的综述 摘要:本文较为详细的介绍了铝基复合材料的性能、应用及其制造工艺,并指出了铝基复合材料的发展趋势。 关键词: 铝基复合材料; 性能; 应用; 工艺;发展趋势 一、引言 复合材料是应现代科学发展需求而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。复合材料可分为三类:聚合物基复合材料(PMCs)、金属基复合材料(MMCs)、陶瓷基复合材料(CMCs)。金属基复合材料基体主要是铝、镍、镁、钛等。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要[1]。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 二、铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝极复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 三、铝基复合材料的性能 铝基复合材料的性能取决于基体合金和增强物的特性、含量、分布等。与基体合金相比,铝基复合材料具有许多优良的性能。 3.1 低密度 2,铝基复合材料的密度一般在8.2左右,基本上与一般铝合金相当,比钢低3同等几何尺寸的零件,其重量仅为钢制的1左右。 3.2 良好的尺寸稳定性 许多增强物都具有很小的热膨胀系数,加入相当含量的增强物可降低材料膨胀系数,从而得到热膨胀系数小、尺寸稳定性好的铝基复合材料。

铝基复合材料综述

铝基复合材料综述 XXXXXXXXXXX 摘要铝基复合材料凭借密度小、耐磨、热性能好等优点在航天航空等领域占有优势地位。文中综述了铝基复合材料的种类、铝基复合材料性能、各种铝基复合材料的制备和应用以及发展前景。 关键词铝基复合材料种类性能制备应用 Abstract Al-based alloys have advantages in the field of the aerospace by the advantages of small density , anti-function ,good thermal performance and so on. This article discussed the kinds ,performance ,approach , use and development prospect of Al-based alloys. Key words Al-based alloys kind performance approach use

1.引言 自20世纪80年代金属基复合材料大规模研究与开发以来,铝基复合材料在航空,航天,电子,汽车以及先进武器系统等领域得到迅速发展。铝基复合材料的制备工艺设计高温、增强材料的表面处理、复合成型等复杂工艺,而复合材料的性能、应用、成本等在很大程度上取决于其制造技术。因此,研究和开发心的制造技术,在提高铝基复合材料性能的同时降低成本,使其得到更广泛的应用,是铝基复合材料能否得到长远发展的关键所在。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。2.铝基复合材料分类 按照增强体的不同,铝基复合材料可分为纤维增强铝基复合材料和颗粒增强铝基复合材料。纤维增强铝基复合材料具有比强度、比模量高,尺寸稳定性好等一系列优异性能,但价格昂贵,目前主要用于航天领域,作为航天飞机、人造卫星、空间站等的结构材料。颗粒增强铝基复合材料可用来制造卫星及航天用结构材料、飞机零部件、金属镜光学系统、汽车零部件;此外还可以用来制造微波电路插件、惯性导航系统的精密零件、涡轮增压推进器、电子封装器件等。 3.铝基复合材料的基本成分 铝及其合金都适于作金属基复合材料的基体,铝基复合材料的增强物可以是连续的纤维,也可以是短纤维,也可以是从球形到不规则形状的颗粒。目前铝基复合材料增强颗粒材料有SiC、AL2O3、BN等,金属间化合物如Ni-Al,Fe-Al和Ti-Al也被用工作增强颗粒。 4.铝基复合材料特点 在众多金属基复合材料中,铝基复合材料发展最快且成为当前该类材料发展和研究的主流,这是因为铝基复合材料具有密度低、基体合金选择范围广、热处理性好、制备工艺灵活等许多优点。另外,铝和铝合金与许多增强相都有良好的接触性能,如连续状硼、AL2O3\ 、

昆明理工大学材料学院学生大四上学期专业课论文颗粒增强铝基复合汇报材料

铝基复合材料的研究发展现状与发展前景——颗粒增强铝基复合材料 课程名称:复合材料 学生:XX 学号:XXXXX 班级:XX 日期:20XX年X月X日

铝基复合材料的研究发展现状与发展前景 ——颗粒增强铝基复合材料 XX (刚理工大学,省市,650093) 摘要:介绍了颗粒增强铝基复合材料的发展历史、制备工艺、性能及应用,以碳化硅颗粒增强铝基复合材料为例指出了颗粒增强铝基复合材料这一行业存在的问题,并对这种材料的未来发展趋势做了预测。 关键词:颗粒增强铝基复合材料;历史;工艺;性能;应用;趋势 0.引言 近年来在金属基复合材料领域, 铝基复合材料(包括纤维增强和颗粒增强)的发展尤为迅速。这不仅因为它具有重量轻、比强度、比刚度高、剪切强度高、热膨胀系数低、良好的热稳定性和导热、导电性能, 以及良好的抗磨耐磨性能和耐有机液体和溶剂侵蚀等一系列优点, 而且因为在世界围有丰富的铝资源, 加之可用常规设备和工艺加工成型和处理, 因而制备和生产铝基复合材料比其他金属基复合材料更为经济, 易于推广和应用,因此, 这种材料在国外受到普遍重视。而其中的颗粒增强铝基复合材料解决了纤维增强铝基复合材料增强纤维制备成本昂贵的问题, 而且材料各向同性, 克服了制备过程中出现的诸如纤维损伤、微观组织不均匀、纤维与纤维相互接触、反应带过大等影响材料性能的许多缺点。所以颗粒增强铝基复合材料已成为当今世界金属基复合材料研究领域中的一个最为重要的热点, 并日益向工业规模化生产和应用的方向发展。 1.发展历史 金属基复合材料(复合材料)自60年代初期开始研究,现在已经取得了突破性的进展。初期研究的工作主要集中在连续纤维增强复合材料]1[,但由于连续长纤维本身的制造工艺复杂、价格昂贵,再加上纤维的预处理以及纤维增强复合材料制造工艺限制,使连续纤维增强复合材料成本极高,仅限用于要求极高性能的场合。 因此,进入80年代,研究重点转向了成本较低的SiC、Al 2O 3 等颗粒或晶须作为增 强材料的不连续增强复合材料,这种材料具有比刚度、比强度强,耐磨性、抗蠕变性好、热膨胀系数小等特点]2[,其比刚度超过了钢和钛合金,而价格不到钛合金的十分之一]3[,用以取代钢、钛等材料,对减轻产品结构重量,降低成本具有明显的经济效益,尤其是取代航空、航天飞行器中的合金钢、钛合金构件,更具有巨大的潜力。 20世纪70年代末,美国政府开始将复合材料列入武器研究清单,并对其研究成果限制发表。日本通产省在20世纪80年代初期开始实施的“下世纪产业基础技术”规划中,把发展铝基复合材料放在了主要位置,并在财力、物力上向有关院所、高校和公司倾斜。我国从20世纪80年代中期开始经过十几年的努力,在颗粒增强铝基复合材料的组织性能、复合材料界面等方面的研究工作已接近国际先进水平,铝基复合材料已列为国家“863”新型材料研究课题。

信息功能材料学

信息功能材料学 第一章:半导体材料 1,本征半导体的能带结构课分为:直接带隙半导体,间接带隙半导体。 2,半导体掺杂工艺主要有:扩散,离子注入等。 3,向半导体中掺杂高价杂质时,杂质原子提供的价电子数目多于半导体原子,多余的价电子很容易进入导带而成为电子载流子,半导体的电导率也随之增加,这种提供多余价电子的掺杂称为施主掺杂。 向半导体中掺杂低价杂质时,杂质原子提供的价电子数目少于半导体原子,很容易在价带形成空穴,半导体的电导率也随之增加,这种掺杂称为施主掺杂。4,np=Ne*Nv*exp(-Eg/k B T);Eg=Ec-E V;Eg------半导体的禁带宽度 5,非平衡载流子主要影响少子。 当半导体承受外界作用时,除热平衡载流子外,还将产生非平衡载流子。 非平衡载流子的复合过程分为直接复合和间接复合。 直接复合是指电子直接从导带跃迁至价带的过程。 6,半导体的电导率是由载流子浓度和载流子迁移率共同决定的。 7,对于本征半导体来说,载流子浓度仅与温度有关;对于杂质半导体而言,载流子浓度由半导体掺杂浓度和温度共同决定。 8,半导体光吸收的机制:本征吸收,激子吸收,杂质吸收,自由载流子吸收,声子吸收。 9,半导体光吸收机制中,除声子吸收外,都将产生额外的载流子,由于半导体的电导率与载流子浓度成正比,所以光照可以引起半导体电导率的增加,这部分增加的电导率称为光电导。 10,如果磁场方向与电流方向垂直,导体中就会在磁场和电流方向上产生电场,这就是霍尔效应。 11,半导体置于磁场中,半导体的电阻会增加,这种效应称为半导体的磁阻效应。 磁阻效应分为物理磁阻效应和几何磁阻效应。 理磁阻效应主要是由于载流子在磁场作用下做螺旋运动,导致载流子散射概率增加二引起的电阻增加现象。 几何磁阻效应主要是由于样品的形状引起的电阻增加的现象。 12,块状半导体单晶制备技术中,广泛应用的是:切克劳斯基法(提拉法);布里奇曼法(坩埚下降法)。 13,半导体薄膜制备方法:磁控溅射;分子束外延,金属有机化学气象沉积。14,GaAs半导体的应用: ①砷化镓的禁带宽度达工作温度大,适合制作大功率器件。 ②电子迁移率高,有效质量小,用GaAs制作的半导体器件工作速度快, 噪声低。 ③GaAs为直接带隙半导体,光电转换效率和发光效率都很高,适合制作太 阳能电池,发光二极管,半导体激光器。 ④GaAs光吸收系数高,适合制作红外探测器件。 15,半导体的四种效应: ①光照下产生电压——光生伏特效应 ②导电方向性——整流效应

颗粒增强铝基复合材料

颗粒增强铝基复合材料 1.复合材料 1.1复合材料的概述 材料是社会进步的物质基础和先导,是人类进步的里程碑。在许多方面,传统的单一材料已不能满足实际需要,这些都促进人们对材料的研究逐步摆脱过去单纯靠经验的摸索方法,向预定性能设计新材料的研究方展发展。复合材料(Composite Materials)一词大约出现在20世纪50年代,随之也出现复合材料较为严格的定义。复合材料是由两种或两种以上物理和纯学性质不固的物质组合两成的一种多相固体材料[1]。复合材料的组分材料虽然保持其相对的独立性,但复合材料的性能却不是组分材料的简单加和,两是有着重要的改进。复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。分散相是以独立的形态分布在整个连续相中,两相之间存在着相界面。分教相可以是增强纤维,也可以是颗粒状或弥散的填料。 自上世界40年代美国诞生了玻璃纤维增强塑料(俗称玻璃钢)以来,新型增强材料不断出现,到目前为止,聚合物基、金属基、陶瓷基、混凝土基复合材料和碳,碳复合材料正以前所未有的速度发展。随着航天航空技术的发展,对结构材料的比强度、比模量、韧性、耐热、抗环境能力和加工提出了新的要求。高强度、高模量的耐热纤维和颗粒与金属复合,特别是轻金属复合焉成的金属基复合材料,克服了树脂基复合材料耐热性差和不导电、导热性能低等不足,加上增强体不仅提高了材料的强度,还可以保持密度变纯不大甚至降低。此外,这种材料还具有耐疲劳、耐磨耗、高阻尼、不吸潮放气等特点,已经广泛应用予尖端技术领域,是理想的结构材料。2l世纪我们面临筋将是复合材料迅猛发展和更广泛应用的时代[2-4]。 1.2颗粒增强铝基复合材料 金属基复合材料(Metal Matrix Composite,简称MMC)是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。其增强材料大多为无机非金属,如陶瓷、碳、石墨及硼等,也可以用金属丝。在结构材料方面,

功能材料选修作业

功能材料之生态环境材料简述 功能材料发展前景 我国非常重视功能材料的发展,在国家攻关、“ 863”、“973”、国家自然科学基金等计划中,功能材料都占有很大比例。在“九五”“十五”国防计划中还将特种功能材料列为“国防尖端”材料。这些科技行动的实施,使我国在功能材料领域取得了丰硕的成果。在“863”计划支持下,开辟了超导材料、平板显示材料、稀土功能材料、生物医用材料、储氢等新能源材料,金刚石薄膜,高性能固体推进剂材料,红外隐身材料,材料设计与性能预测等功能材料新领域,取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地。镍氢电池、锂离子电池的主要性能指标和生产工艺技术均达到了国外的先进水平,推动了镍氢电池的产业化;功能陶瓷材料的研究开发取得了显著进展,以片式电子组件为目标,我国在高性能瓷料的研究上取得了突破,并在低烧瓷料和贱金属电极上形成了自己的特色并实现了产业化,使片式电容材料及其组件进入了世界先进行列;高档钕铁硼产品的研究开发和产业化取得显著进展,在某些成分配方和相关技术上取得了自主知识产权;功能材料还在“两弹一星”、“四大装备四颗星”等国防工程中作出了举足轻重的贡献。 世界各国功能材料的研究极为活跃,充满了机遇和挑战,新技术、新专利层出不穷。发达国家企图通过知识产权的形式在特种功能材料领域形成技术垄断,并试图占领中国广阔的市场,这种态势已引起我国的高度重视。我国在新型稀土永磁、生物医用、生态环境材料、催化材料与技术等领域加强了专利保护。但是,我们应该看到,我国功能材料的创新性研究不够,申报的专利数,尤其是具有原创性的国际专利数与我国的地位远不相称。我国功能材料在系统集成方面也存在不足,有待改进和发展。 国外 根据预测, 2001年新材料技术产业在世界市场的销售额将超过4000亿美元,,其中功能材料约占75~80%。某些特种功能材料就其单项而言,其市场也是巨大的。1995年信息功能陶瓷材料及其制品的世界市场销售额已达210亿美元,预期到2010年将达到800亿美元;2000年超导材料销售额已达80亿美元,预测2010年的年销售额预计将达到600亿美元,其中高温超导电力设备的全球销售额可达50-60亿美元,到2020年,全球与超导相关的产业的产值(按1995年的价格估算)可能达到1500亿到2000亿美元,其中高温超导占60%;2010年全球钕铁硼永磁材料的市场需求量将达万吨,产值达80亿美元,带动相关产业产值700 亿美元;生物医用材料是一个正在迅速发展的高技术领域,全球生物医用材料及制品的产值超过700亿美元,美国约为400亿美元,与半导体产业相当,是美国经济中最活跃、出口量最大的6个产业之一,一直保持每年20%以上的速率持续增长,预计到本世纪前十年左右,生物医用材料产业将达到药物市场的份额;随着可持续发展政策被各国政府的广泛采纳,生态环境材料的市场需求也将迅速增加,估计2010年的社会需求将高于500亿美元。可见,在全球经济中,特种功能材料无论是需求的规模,还是需求的增长速度,都是相当惊人的。

铝基复合材料简述

铝基复合材料 1. 铝基复合材料的基本性能 1.1 强度,模量与塑性 铝基复合材料比强度和比刚度高.高温性能好。更耐疲劳和更耐磨,阻尼性 能好,热膨胀系数低。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。 增强体的加入在提高铝基复合材料强度和模量的同时。降低了塑性。 另外增强相的加入又赋予材料一些特殊性能,这样不同金属与合金基体及不 同增强体的优化组合。就使金属基复合材料具有各种特殊性能和优异的综合性能。 尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工 和价格低廉的优点,更加引起人们的注意。 1.2 耐磨性 高的耐磨性是铝基复合材料(SiC、A1203)增强的特点之一 颗粒体积分数对复合材料摩擦系数的影响显著,而颗粒尺寸对复合材料摩擦系数影响不大。 与基体合金相比,铝基复合材料表现出良好的抗磨损性能,并随着加入颗粒 尺寸的减小和数量的增多而变强。在滑动磨损实验中,颗粒及纤维增强的铝基复合材料的耐磨性有两个数量级的提高,但随着磨粒尺寸的增大,载荷中冲击成分的提高使其耐磨性迅速下降。材料的耐磨性的好坏取决于强化机制、增强相之间的相互制约及与基体在变形过程中的协调作用。当然,也与增强相类型及基体合金的性能有关。 增强相的聚结显著降低材料的耐磨性。 1.3 疲劳与断裂韧性 铝基复合材料的疲劳强度和疲劳寿命一般比基体金属高,这与刚度及强度的提高有关,而断裂韧性却下降。影响铝基复合材料疲劳性能和断裂的主要因素有:增强物与基体的界面结合状态、基体与增强物本身的特性和增强物在基体中的分布等。界面结合状态良好,可以有效地传递载荷,并阻止裂纹扩展,提高材料的断裂韧性。 目前对复合材料疲劳断裂过程的研究分为疲劳裂纹的萌生和扩展两个方面。现有的研究工作在实验的基础上得出疲劳裂纹萌生于SiC 附近。SiC与铝合金界

颗粒增强金属基复合材料

高性能聚乙烯纤维及其复合材料发展与应用 论文关键词:高性能聚乙烯纤维表面改性复合材料应用 论文摘要:高性能聚乙烯纤维作为新型有机纤维,其性能与复合材料的应用是科研人员研究的热点之一。着重探究高性能聚乙烯纤维的性能、表面改性以及复合材料的应用等问题。 近几年,纤维的高性能、高功能和高感性一直是研究者对新型化纤材料研究的重点,高性能聚乙烯纤维是继碳纤维、芳纶之后具有极其重要战略意义的新型纤维材料,因其独特的性能,该纤维及其增强复合材料已被广泛应用于多个领域,倍受研究人员与生产企业的青睐。 1 高性能聚乙烯纤维的结构及特点 高性能聚乙烯纤维的高强高模特性来源于自身的超高相对分子质量、沿轴向高度取向和晶体结构。聚乙烯具有亚甲基相连的大分子链的化学结构,在超倍牵伸时,形成伸直链超分子结构,高性能聚乙烯纤维的优越性能完全是由于它的这种超分子结构决定的。 高性能聚乙烯纤维的一个突出优点是密度低,为0.97g/cm3,使得其质量轻的同时,能够达到较大的比拉伸强度和拉伸模量;由于聚乙烯不含易与接触物质发生反应的羟基、芳香环等基团,使得其具有高耐酸碱腐蚀性;同时,高性能聚乙烯纤维熔点比普通聚乙烯低,沸水收缩率也较低。另外,即使在很低的温度下,该纤维仍能够保持柔软。 2 高性能聚乙烯纤维的缺点及改进现状 高性能聚乙烯纤维有其不可避免的不足,如熔点低蠕变高,在制造复合材料的过程中具有较高的纤维表面惰性和较差的浸润性。这些特点直接影响了高性能聚乙烯纤维在复合材料中的应用范围,围绕高性能聚乙烯纤维制造与改性的研究也在近些年取得了阶段性成果。 1)改进低熔点和高蠕变。研究证明进行放射处理,使超高强聚乙烯纤维产生分子间交联,或提高其分子量或共聚(如使用有机过氧化物等化学物质)改性,均可使纤维蠕变得到改善,熔点得以提高。 2)改进纤维与基体的粘结性。高性能聚乙烯纤维的化学惰性和低表面能,决定了其与基体的粘合性很低,研究表明可以通过以下方法对其加以改进:①使用化学试剂进行处理。如用二甲苯、铬酸、高锰酸钾等强氧化性剂对高性能聚乙烯纤维表面进行氧化处理,产生含氧活性基团,与基体形成化学键,使其表面凸凹不平,加大其粗糙程度,提高其粘接性能; ②使用辐射引发表面接枝处理。用丙烯类单体,如丙烯酸、丙烯酸甲酯、甲基丙烯酸缩水甘油酯等,接枝在高性能聚乙烯纤维链上,提高纤维与树脂基体的粘接性能;③采用电晕放电处理及等离子处理。它是利用等离子体发生装置产生等离子流利用它冲击纤维表面达到很高表面活性的目的其总的效果是在纤维表面产生微凹痕增加纤维表面积通过处理,使其表面形成极性基团,从而提高其与树脂基体的粘接性能;④目前高性能聚乙烯纤维复合材料常用的树脂体。由于上述3种方都会损害纤维的综合性能为代价的,而且拉伸强度和模量下降尤为明显,所以寻找或合成树脂基体来提高粘接性则是较好的方式。经过大量研究,目前符合聚乙烯纤维复合材料用树脂基体条件的有聚氨酯类、橡胶类、乙烯酯类树脂体。 3 高性能聚乙烯纤维复合材料类型 高性能聚乙烯纤维复合材料主要有以下几类: 1)自增强类。是以高密度聚乙烯或低密度聚乙烯为基体材料,以高性能聚乙烯纤维为增强体的纤维增强复合材料。选择同一类型的聚乙烯树脂作为基体材料能够改善UHMPE的界面粘结性差的缺点,并且有利于回收再利用的现代环保要求。 2)填充型复合材料。这种符合材料是在以往材料的基础上,为完善其综合性能而进行

相关主题
文本预览
相关文档 最新文档