当前位置:文档之家› 光合作用发现历史资料整理

光合作用发现历史资料整理

光合作用发现历史资料整理
光合作用发现历史资料整理

光合作用发现历史资料整理

一、传统史料---光合作用反应式的发现

1.过去,人们一直以为,小小的种子之所以能够长成参天大树,古希腊哲学家亚里士多德认为,植物生长所需的物质完全依靠于土壤。

2. 1648年,一位荷兰科学家范·赫尔蒙特对此产生了怀疑,于是他设计了盆栽柳树称重实验,得出植物的重量主要不是来自土壤而是来自水的推论。虽然他没有认识到空气中的物质参与了有机物的形成,但从此拉开了光合作用的研究史。赫尔蒙特把90千克的土壤放在花盆中,然后种上2千克重的柳树,并经常浇水,5年过去了,柳树长到76千克重,而花盆中的土壤只少了60克。

3.早在1637年,我国明代科学家宋应星在《论气》一文中,已注意到空气和植物的关系,提出“人所食物皆为气所化,故复于气耳”。可惜因受当时科学技术水平的限制,未能用实验来证明这一精辟的论断。直到1727年,英国植物学家斯蒂芬·黑尔斯才提出植物生长时主要以空气为营养的观点。而最先用实验方法证明绿色植物从空气中吸收养分的是英国著名的化学家约瑟夫·普利斯特利。在1771年发现植物可以恢复因蜡烛燃烧而变“坏”了的空气。

4.1779年,荷兰科学家英恩豪斯(Jan Ingenhousz)进一步证明只有植物的绿色部分在光下才能起使空气变“好”的作用,而其他所有器官即使在白天也会使空气变坏。这些实验结果为后来人们认识植物绿色部分和光在植物光合作用中的重要性奠定了基础。

5.1872年,科学家塞尼比尔(J.Senebier)如何做实验证明光和CO2的必要性。

6.1804年,瑞士学者德·索苏尔研究了植物光合作用过程中吸收的二氧化碳与放出的氧之间的数量关系,结果发现植物制造的有机物和释放出的氧的总量,远远超过它们所吸收的二氧化碳的量。由于实验中只使用植物、空气和水,别无他物,因此,他断定植物在进行光合作用合成有机物时不仅需要二氧化碳,水也必然是光合作用的原料。他认为是CO2和H2O 乃是植物体有机物之来源。此结论不仅证实了海尔蒙脱关于柳树生长过程中合成植物体的物质主要来自水的推论,而且把人们对光合作用本质的认识提高到一个崭新的阶段。德·索叙尔实验告诉我们,定量分析法在科学研究中的重要性,

7、1845德国科学家梅耶R。Mayer.据能量转化定律指出,植物在进行光合作用时,把光能转化成化学能储存起来。

8.德国的又一位科学家萨克斯在1864年用紫苏进行实验。这一实验成功地证明了绿色叶片在光合作用中产生了淀粉。因此,最终确定了至今人们还在沿用的光合作用总反应式。

二、近代思想与技术应用,光反应和暗反应概念提出

1、1880年,德国科学家恩格尔曼(C.Engelmann)用水绵进行了进行了光合作用的实验。恩吉尔曼的实验巧妙地证明了光合作用的场所是叶绿体。

2、19世纪60年代,科学家总结出光合作用的反应式能不能解决光合作用产生的氧是来自什么物质?应该注意到光合作用反应式中所有的反应物和产物都含有氧,而上面两式并没有指出释放的O2是来自CO2还是H2O。很多年来,人们一直以为光能将CO2分解成O2和C,C与H2O 结合成(CH2O ) 。

3、1931年微生物学家尼尔(C.B.Van Niel)将细菌光合作用与绿色植物的光合作用加以比较,提出了以下光合作用的通式:CO2+2H2A→(CH2O)+2A+H2O ,这里的H2A代表一种还原剂,可以是H2S、有机酸等,紫色硫细菌(purple-sulfur bacteria)和绿色硫细菌(green-sulfur bacteria)利用H2S为氢供体,在光下同化CO2:CO2+2H2S→(CH2O)+2S+H2O ,光合细菌在光下同化CO2而没有O2的释放,O2不是来自二氧化碳而是水。因此他第一次提

出光在光合作用中的作用是将水光解。同时认为光合作用放出的O2不是来源于CO2,而是来源于H2O。绿色植物光合作用中的最初光化学反应是把水分解成氧化剂(OH)与还原剂(H)。还原剂(H)可以把CO2还原成有机物质;氧化剂(OH)则会通过放出O2而重新形成H2O。

4、1941年鲁本(S.Ruben)制备的同位素标记的H218 O和C18 O2分别进行光合作用实验,证明了O2来源于水。

5、光合作用需要光,然而是否其中每一步反应过程都需要有光呢?20世纪初英国的布莱克曼(Blackman/1905、德国的瓦伯格(O.Warburg)等人在研究光强、温度和CO2浓度对光合作用影响时发现,在弱光下增加光强能提高光合速率,但当光强增加到一定值时,再增加光强则不再提高光合速率。这时要提高温度或CO2浓度才能提高光合速率。据测定,在10~30℃的范围内,如果光强和CO2浓度都适宜的话,光合作用的Q10=2~2.5(Q10为温度系数,即温度每增加10℃,反应速度增加的倍数)。按照光化学原理,光化学反应是不受温度影响的,或者说它的Q10接近1;而一般的化学反应则和温度有密切关系,Q10为2~3,这说明光合过程中有化学反应的存在。用藻类进行闪光试验,在光能量相同的前提下,一种用连续照光,另一种用闪光照射,中间隔一定暗期,发现后者光合效率是连续光下的200%~400%。这因此,Blackman认为光合作用中存在两个反应,一个是叶绿素对光能的吸收反应,称为光反应,另一个是受温度影响的酶促反应,称为暗反应,也称为Blackman反应。光合作用是光反应和暗反应共同作用的结果。

光反应————→暗反应—————→光合作用

↑↑

受光影响受温度影响(CO2)

光反应受光影响,暗反应受温度和CO2影响。Blackman反应发现的意义是:证明光能不是直接用于CO2的同化,而是经过转化,否则受温度影响就小。

后来的试验表明,光反应和暗反应可在时间上分隔。正在光下进行光合作用的植物材料,短暂闭光,使之处于黑暗中,仍能吸收14CO2。这说明光反应的作用可能是吸收和转换光能,而暗反应是利用光反应转换的能量,同化CO2。这也证实了Blackman发现的正确性。但是,这时科学家仍不清楚光反应将光能转换为何种化学能形式。(希尔反应说明光反应将光能转化成电能)

三、暗反应研究历程

1946年后,美国的马尔文·卡尔文与他的同事们研究一种小球藻,以确定植物在光合作用中如何固定CO2。经9年左右的时间,他终于弄清了光合作用中二氧化碳同化的循环式途径。1.采用什么技术探明CO2中碳的途径?

14C示踪技术和双向纸层析法技?简介同位素标记法、双向层析法和显微自显影技术。此时

术都已经成熟,卡尔文正好在实验中用上此两种技术。他们将培养出来的藻放置在含有未标记CO2的密闭容器中,然后将14C标记的CO2注入容器,培养相当短的时间之后,将藻浸入热的乙醇中杀死细胞,使细胞中的酶变性而失效。接着他们提取到溶液里的分子。然后将提取物应用双向纸层析法分离各种化合物,再通过放射自显影分析放射性上面的斑点,并与已知化学成份进行比较。在双相纸层析放射自显影图谱中鉴定出20余种带有C标记的化合物,包括糖磷酸酯、有机酸和氨基酸等。

2.怎样才能按反应顺序找到生成的各种化合物?

缩短时间依次测定出的化合物种类为ABCD---ABC----AB,推测化合物产生的顺序

3.怎么确定第一个生成的化合物是什么?

他发现当把光照时间缩短为几分之一秒时,磷酸甘油酸(C3)占全部放射性的90%,在5秒钟的光合作用后,卡尔文找到了含有放射性的C3、C5和C6。

实验表明:CO2—C3(酸)—C3(糖)------C5(C6)

4.怎么确定CO2的受体是什么

最初推测二氧化碳受体为二碳化合物,实验中没有找到。

卡尔文发现在光照下C3 (酸)和C5很快达到饱和并保持稳定。如果在光照下突然中断二氧化碳的供应,则C5就积累起来,C3 (酸)浓度就急速降低。但当把灯关掉后,C3(酸)的浓度急速升高,同时C5的急速降低。确定二氧化碳的受体是核酮糖-1,5-二磷酸。

由于第一个被提取到的产物是一个三碳分子, 所以将这种CO2固定途径称为C3途径,后来研究还发现,CO2固定的C3途径是一个循环过程,人们称之为C3循环。这一循环又称卡尔文循环。他证明碳同化的过程需要消耗ATP与NADPH。

采用科学的研究方法和最新的实验技术,卡尔文一步步揭示出碳的行踪。图示卡尔文循环的复杂过程,用九年时间、五吨滤纸的具体数字说明卡尔文所付出的努力

四、光反应的研究历史--光反应产物与意义。

1、1939希尔实验

希尔反应是在离体叶绿体(实质是被膜破裂的匀浆)悬浮液中,加入适当的电子受体(如草酸铁),照光时可使水分解而释放氧气:

4Fe3++2H2O→4Fe2++4H++O2

反应的标准吉布斯自由能变ΔrGm=- ZFE= 2 ×96485 × 1. 3469J·mol= 259. 911 ×103J·mol,

希尔反应所需光子的波长:根据希尔反应的平衡常数,通过计算推导可得到希尔反应能够进行的最大波长λ= 686nm,即希尔反应进行所需的光子的波长为K< 686nm。这一理论值与产生红降现象的波长( λ> 685nm) 相吻合, 可以说, 红降现象的产生是由希尔反应的热力学所决定的。

最初他用离体的叶绿体加叶片提取液,测到有氧放出。接着加上其他氧化剂如高铁氰化钾,能测到更多的氧,表明离体叶绿体能进行光合作用光反应。这证明在光中产生的氧气是与一个氢受体或电子受体相对应的。在光下进行的催化反应之一是草酸高铁钾到低价铁的还原。如果叶绿体所表现的这个性能是光合作用一部分的话,似乎氧必然是从水中来的。由此,他预言:这种叶匀浆的铁-氧反应也许指示着一种与二氧化碳同化有关的机理。

希尔进一步研究证实,植物光合作用的光反应是氧分子的产生,而不是二氧化碳的还原,氧的产生是由于叶绿体以草酸铁作受氢体所致,其机理与完整细胞光合放氧过程相一致。

希尔反应的意义是:证明了光合作用在叶绿体中进行;是第一次用离体的叶绿体做试验,把对光合作用的研究深入到细胞器水平,为光合作用研究开创了新的途径。

植物放出的氧是水在光下被分解和氧化,这种水的光氧化反应与CO2的还原可分开进行,氧的释放与CO2还原是两个不同的过程。因而划分出光反应和暗反应两个阶段;

发现了光反应中有光诱导的电子传递和水的光解及O2释放;发现了水在光反应中起到的是供氢体和电子供体的双重作用。

2、1951年,科学家们发现,离体叶绿体可在光下将NADP+还原。

这是一个振奋人心的消息,因为科学家们早已知道,NADPH是生物体内的重要的还原剂。生物中重要的氢载体NADP+也可以作为生理性的希尔氧化剂,从而使得希尔反应的生理意义得到了进一步肯定。

1954年美国科学家阿农(D.I.Arnon)等在给叶绿体照光时发现,当向体系中供给无机磷、

ADP和NADP时,体系中就会有ATP和NADPH产生。同时发现,只要供给了ATP和NADPH+,即使在黑暗中,叶绿体也可将CO2转变为糖。由于ATP和NADPH是光能转化的产物,具有在黑暗中同化CO2为有机物的能力,所以被称为“同化力”(assimilatory power)。可见,光反应的实质在于产生“同化力”去推动暗反应的进行,而暗反应的实质在于利用“同化力”将无机碳(CO2)转化为有机碳(CH2O)。暗反应不直接需要光。可在暗中进行。因此,光合作用的总过程可分为光反应和暗反应两个阶段,光反应的作用是利用光能合成ATP和NADPH+H+,而暗反应则是利用ATP和NADPH来同化CO2,即固定CO2,并还原为糖。由于光反应中产生的ATP和NADPH用于CO2同化,因此称为同化力。

进一步研究发现光、暗反应对光的需求不是绝对的。即在光反应中有不需光的过程(如电子传递与光合磷酸化),在暗反应中也有需要光调节的酶促反应。现在认为,“光”反应不仅产生“同化力”,而且产生调节“暗”反应中酶活性的调节剂,如还原性的铁氧还蛋白。

五、光反应的研究历史--光反应的结构系统光合单位

1、释放一个氧分子需要吸收几个光量子?需要多少个叶绿素分子参与?在研究这些问题的过程中,提出了“光合单位”的概念。在研究光能转化效率时,需要知道光合作用中吸收一个光量子所能引起的光合产物量的变化(如放出的氧分子数或固定CO2的分子数),即量子产额(quantum yield)或叫量子效率(quantum efficiency)。量子产额的倒数称为量子需要量,(quantum requirement)即释放1分子氧和还原1分子二氧化碳所需吸收的光量子数。1922年,瓦伯格等计算出最低量子需要量为4,而他的学生爱默生(R.Emersen)等则测定出最低量子需要量为8。后来的实验证据都支持了爱默生的观点,于是8的最低量子需要量得到了普遍的承认,这个数值相当于0.125的量子效率。根据光化学定律(一个分子吸收一个量子,发生一次光化学变化),如果植物的每个叶绿素分子都能进行光化学反应,按还原1个CO2和释放1个O2需吸收8个光量子算,则每当有8个叶绿素分子在一起时,一次足够强的闪光就会造成1个O2的释放。但在1932年,爱默生及阿诺德(W.Arnold)对小球藻(chlorella)悬浮液做闪光试验,计算每次闪光的最高产量是约2 500个叶绿素分子产生1个O2分子,似乎在光合组织中是以2 500个叶绿素分子组成1个集合体进行放氧的,于是当时就把释放1分子氧或同化1分子CO2所需的2 500个叶绿素的分子数目称作1个“光合单位”(photosynthetic unit)。以后又认为,光合是以吸收光量子开始的,应以量子基础计算“光合单位”,1个光合单位应是300(2 500÷8≈300)个叶绿素分子。为什么要300个叶绿素分子吸收1个光子?其解释是:闪光可能被几百个叶绿素分子吸收,可是激发能需传递到1个能够产生光化学反应的“反应中心”(reaction center)区域才能有效。这个反应中心的反应中心色素分子(reaction center pigment)是一种特殊性质的叶绿素a分子,它不仅能捕获光能,还具有光化学活性,能将光能转换成电能。其余的叶绿素分子和辅助色素分子一起称为聚(集)光色素(light harvesting pigment)或天线色素(antenna pigment),它们的作用好象是收音机的“天线”,起着吸收和传递光能的作用。这样就把原来以叶绿素分子数为指标的光合单位看作了能进行光化学反应的光合机构,光合单位成了天线色素系统和反应中心的总称(图4-2)。天线色素捕获的一个光量子传递到反应中心色素分子,在那里发生光化学反应进行电荷分离。

2、进一步研究表明,高等植物光反应中电子的传递不只经过一个反应中心,而是要经过两个反应中心,引起两次光化学反应。20世纪40年代,以小球藻为材料研究不同光质的

量子产额,发现大于680nm的远红光(far-red light)虽然仍被叶绿素吸收,但量子产额(吸收一个光量子所能引起的光合产物量的变化(如放出的氧分子数或固定CO2的分子数,即量子产额)急剧下降,这种现象被称为红降现象(red drop)。1957年,爱默生观察到小球藻在用远红光照射时补加一点稍短波长的光(例如650nm的光),则量子产额大增,比这两种波长的光单独照射的总和还要高。这种在长波红光之外再加上较短波长的光促进光合效率的现象被称为双光增益效应,或叫爱默生增益效应(Emerson enhancement effect)。双光增益效应为位置上的一前一后对波长不同选择的进行光合作用的两个光系统的学说存在提供了有利的证据。

据上述实验结果,希尔(1960)等人提出了双光系统(two photosystem)的概念,把吸收长波光的系统称为光系统Ⅰ(photosystemⅠ,PSⅠ),吸收短波长光的系统称为光系统Ⅱ(photosystemⅡ,PSⅡ)。1986年,霍尔(Hall)等人指出,光合单位应是包括两个反应中心的约600个叶绿素分子(300×2)以及连结这两个反应中心的光合电子传递链。它能独立地捕集光能,导致氧的释放和NADP+的还原。PSI和PSII以串联方式协同完成电子从H2O向NADP+的传递。由氧化还原电位的高低可以看出,这一电子传递途径是不能自发进行的,有二处(P680→P680*和P700→P700*)是逆电势梯度的“上坡”电子传递,需要聚光色素复合体吸收与传递的光能来推动。除此之外,电子都是从低电势向高电势的自发“下坡”运动。光合链中的电子传递体是质体醌(plastoquinone,PQ),细胞色素(cytochrome,Cyt)b6/f复合体,铁氧还蛋白(ferredoxin,Fd)和质蓝素(plastocyanin,PC)。其中以PQ最受重视,因为它不仅数量多(菠菜叶绿体内PQ含量达全叶绿素干重的七分之一),而且它是双电子双H+传递体,它既可传递电子,也可传递质子,在传递电子的同时,把H+从类囊体膜外带入膜内,在类囊体膜内外建立跨膜质子梯度以推动ATP的合成。光合链中PSI、Cyt b-f和PSI在类囊体膜上,难以移动,而PQ、PC和Fd可以在膜内或膜表面移动,在三者间传递电子。

3.另外,从理论上讲一个量子引起一个分子激发,放出一个电子,那么释放一个O2,传递4个电子(2H2O→4H++4e+O2↑) 只需吸收4个量子,而实际测得光合放氧的最低量子需要量为8~12。这也证实了光合作用中电子传递要经过两个光系统,有两次光化学反应。

4、20世纪60年代以后,人们已能直接从叶绿体中分离出PSⅠ和PSⅡ的色素蛋白复合体颗粒,分析各系统的组成与功能,证明了光系统Ⅰ与NADP+的还原有关,光系统Ⅱ与水的光解、氧的释放有关。可见,随着光合研究的深入,“光合单位”的含义已多次被修改。究竟一个“光合单位”包多少个叶绿素分子?这要依据这个“光合单位”所执行的功能而定。

就O2的释放和CO2的同化而言,光合单位为2500;就吸收一个光量子而言,光合单位为300;就传递一个电子而言,光合单位为600个叶绿素分子。目前多数人赞同霍尔的看法,认为:所谓的“光合单位”,就是指存在于类囊体膜上能进行完整光反应的最小结构单位。

六、水的还原发现。20世纪60年代,法国的乔利尔特(P. Joliot)发明了能灵敏测定微

量氧变化的极谱电极,用它测定小球藻的光合放氧反应。他们将小球藻预先保持在暗中,然后给以一系列的瞬间闪光照射(如每次闪光5~10μs,间隔300ms)。发现闪光后氧的产量是不均量的,是以4为周期呈现振荡,即第一次闪光后没有O2的释放,第二次释放少量O 2,第三次O2的释放达到高峰,每4次闪光出现1次放氧峰。用高等植物叶绿体实验得到同样的结果。氧形成量大约在第20个闪光后体系放O2的周期性会逐渐消失,放O2量达到某一平稳的数值。(Joliot,1965 )

科克(B.Kok,1970)

等人根据这一事

实提出了关于H2

O裂解放氧的“四

量子机理假说”:

①PSⅡ的反应中

心与H2O之间存

在一个正电荷的

贮存处(S) ②每

次闪光,S交给PS Ⅱ反应中心1个e-;③当S失去4e-带有4个正电荷时能裂解2个H2O释放1个O2(图13),图中S即为M,按照氧化程度(即带正电荷的多少)从低到高的顺序,将不同状态的M 分别称为S0、S1、S2、S3和S4。即S0不带电荷,S1带 1 个正电荷,……S4带4个正电荷。每一次闪光将状态S 向前推进一步,直至S4。然后S4从 2 个H2O中获取4 个e-,并回到S0。

七、其它发现及进展

以上仅就光合作用反应式的确定、光暗反应、光合单位、两个光系统等概念的建立介绍了光合作用研究历史中的部分情况。其实,还有许多杰出的成就值得一提。例如,叶绿素分子结构的确定(H.Fischer 1930);光合碳循环的阐明(M.Calvin 1954);叶绿素分子的人工合成(R.B.Woodward 1960);CAM途径的确定(M.Thomas 1960);磷酸化的化学渗透学说的提出(P.Mitchell 1961);叶绿体DNA的分离(R.Sagar M.Ishida 1963);C4途径的确定(M.D.Hatch 1966 C.B.Slack);PSⅡ放氧反应中心复合体的分离(葛培根1982等);光合细菌反应中心三维空间结构的阐明(J.Deisenhofer 1982 H.Michel 1982 R.Huber)光电子传递理论的确定(Marcus 1992);ATP酶的结构与反应机理的研究(Walker 1997 Boyer 1997);……

中国的光合作用研究自20世纪50年代开始,取得了长足的进展。如中国科学院上海植物生理研究所在光合作用能量转换、光合碳代谢的酶学研究等方面,中国科学院植物研究所在光合作用的原初反应和光合色素蛋白复合体研究等方面都有所发现和创新。2004年3月8日,中科院生物物理所和植物研究所发表“菠菜主要主要捕光复合物LHC-Ⅱ2.72A分辨率的晶体结构”。是蛋白质、色素、类胡萝卜素、脂质组成的复杂分子体系,镶嵌在生物膜中,具有很强的疏水性,难以分离和结晶。测定其晶体结构是国际公认的高难课题,也是一个国家结构生物学研究水平的重要标志。破解其晶体结构之谜,可以为人类彻底认识进而控制光合作用奠定基础。

总之,光合作用研究历史不算长,从1771年至今才200多年,然而由于各国科学工作者的努力探索,已取得了举世瞩目的进展,为指导农业生产提供了充分的理论依据。当前光合作用的研究拟将进一步阐明以下几个关键问题:①光合作用结构与功能的关系及其遗传控制②反应中心的结构与功能③放氧复合体的结构与功能④能量转换与电子、质子传递的规律⑤CO2同化调节机理等。只有弄清了光合作用的机理,人类才能更好地利用太阳能,以至模拟光合作用人工合成有机物。此外航天事业的迅猛发展也迫切需要为宇宙飞船、太空空间站乃至为开发其他星球提供氧气和食品等。这些都使光合作用的研究面临新的挑战与机遇。

呼吸作用的发现历史

一、糖酵解的发现历史。1897年,德国生化学家E.毕希纳发现离开活体的酿酶具有活性以后,极大地促进了生物体内糖代谢的研究。酿酶发现后的几年之内,就揭示了糖酵解是动植物和微生物体内普遍存在的过程。英国的F.G.霍普金斯等于1907年发现肌肉收缩同乳酸生成有直接关系。英国生理学家A.V.希尔,德国的生物化学家O.迈尔霍夫、O.瓦尔堡等许多科学家经历了约20年,从每一个具体的化学变化及其所需用的酶、辅酶以及化学能的传递等各方面进行探讨,于1935年终于阐明了从葡萄糖(6碳)转变其中乳酸(3碳)或酒精(2碳)经历的12个中间步骤,并且阐明在这过程中有几种酶、辅酶和ATP等参加反应。

二、他的成就就是继承了前人工作的结晶。早在1910年就有科学家利用组织的匀浆对某些有机化合物的氧化进行了比较,发现乳酸、琥珀酸、苹果酸、顺乌头酸、柠檬酸等都比较能够迅速的氧化。①进而在1937年有科学家发现由柠檬酸氧化生成α-酮戊二酸,异柠檬酸、顺乌头酸则是其中间产物。在此基础上,②Krebs发现柠檬酸可经过顺乌头酸、异柠檬酸、α-酮戊二酸而生成琥珀酸。因③已知琥珀酸可经过延胡索酸、苹果酸可生成草酰乙酸,④这样就使从柠檬酸→→→到草酰乙酸间的关系已经清楚。之后,Krebs又发现了一个极关键的反应,就是在肌肉中如果加入草酰乙酸便有柠檬酸的产生。由于这一发现使上述8个有机酸的代谢呈一个环状的关系。由于当时已知在无氧的条件下从葡萄糖可生成丙酮酸,所以⑤Krebs当时认为,丙酮酸在体内可与少量存在的草酰乙酸缩合成柠檬酸,之后柠檬酸在生成CO2不断放出氢的同时经一系列变化生成草酰乙酸。由此便可完全解释体内有机化合物的氧化机制。在此同时,Krebs又证明了在体内,碳水化合物、脂肪及蛋白质等经氧化分解,在生成CO2及水的同时并释放出能量。至此,一个完整的三羧酸循环途径诞生,而至今尚无人能推翻和改变这一代谢过程。在人们感叹之余不由得由衷地对他的洞察力所折服。

Krebs:1900年8月25日出生于德国希尔德海姆(Hildesheim)犹太血统。父亲是一位耳鼻喉科医生,他在1919-1923年曾先后就读于德国的格丁根、弗赖堡、柏林大学,1925年毕业于汉堡大学。而后作为1931年诺贝尔奖的获得者瓦尔堡(Otto Heinrich Warburg)的助手直到1930年。在名师的指导下他渡过了充实、有意义的5年时光,并为以后的研究打下了坚实的基础。1933年因其犹太血统而受迫害逃亡至英国,并获剑桥大学硕士。1935-1945年先后任谢菲尔德大学药理讲师及生物化学教授。1952年起任牛津大学的生化教授。1981年11月22日在英国牛津逝世

光合作用发现历史

光合作用发现历史资料整理 一、传统史料---光合作用反应式的发现 1.过去,人们一直以为,小小的种子之所以能够长成参天大树,古希腊哲学家亚里士多德认为,植物生长所需的物质完全依靠于土壤。 2. 1648年,一位荷兰科学家范·赫尔蒙特对此产生了怀疑,于是他设计了盆栽柳树称重实验,得出植物的重量主要不是来自土壤而是来自水的推论。虽然他没有认识到空气中的物质参与了有机物的形成,但从此拉开了光合作用的研究史。赫尔蒙特把90千克的土壤放在花盆中,然后种上2千克重的柳树,并经常浇水,5年过去了,柳树长到76千克重,而花盆中的土壤只少了60克。 3.早在1637年,我国明代科学家宋应星在《论气》一文中,已注意到空气和植物的关系,提出“人所食物皆为气所化,故复于气耳”。可惜因受当时科学技术水平的限制,未能用实验来证明这一精辟的论断。直到1727年,英国植物学家斯蒂芬·黑尔斯才提出植物生长时主要以空气为营养的观点。而最先用实验方法证明绿色植物从空气中吸收养分的是英国著名的化学家约瑟夫·普利斯特利。在1771年发现植物可以恢复因蜡烛燃烧而变“坏”了的空气。 4. 1779年,荷兰科学家英恩豪斯(Jan Ingenhousz)进一步证明只有植物的绿色部分在光下才能起使空气变“好”的作用,而其他所有器官即使在白天也会使空气变坏。这些实验结果为后来人们认识植物绿色部分和光在植物光合作用中的重要性奠定了基础。 5.1872年,科学家塞尼比尔(J.Senebier)如何做实验证明光和CO2的必要性。 6.1804年,瑞士学者德·索苏尔研究了植物光合作用过程中吸收的二氧化碳与放出的氧之间的数量关系,结果发现植物制造的有机物和释放出的氧的总量,远远超过它们所吸收的二氧化碳的量。由于实验中只使用植物、空气和水,别无他物,因此,他断定植物在 进行光合作用合成有机物时不仅需要二氧化碳,水也必然是光合作用的原料。他认为是CO 2 O乃是植物体有机物之来源。此结论不仅证实了海尔蒙脱关于柳树生长过程中合成植物和H 2 体的物质主要来自水的推论,而且把人们对光合作用本质的认识提高到一个崭新的阶段。德·索叙尔实验告诉我们,定量分析法在科学研究中的重要性,

《光合作用的探究历程》教学设计(省获奖教案

《光合作用的探究历程》教学设计 [教材分析] 本节课为高中必修1《分子与细胞》(人教版)第5章第4节能量之源——光与光合作用中的内容。 第4节包括“捕获光能的色素和结构”、“光合作用的原理和应用”两大部分,其中“光合作用的探究历程”这部分内容往往被许多老师在上课时一带而过,并未加以重视。事实上,光合作用探究过程中的经典实验,从一定程度上反映了科学探究的一般方法,是培养学生科学精神、科学态度和科学研究方法的好素材,为后面众多的实验打下一个良好的感知基础,也为讲述光合作用的原理、过程做好知识铺垫。 因此,“光合作用的探究历程”这部分内容相当重要,不容忽视。 [教学目标] 知识性目标: 1.说出光合作用的探究历程。 2.初步掌握科学探究的一般方法。 技能性目标: 尝试分析实验、设计实验。 情感性目标: 1.关注科学工作的方法和过程,形成严谨的科学态度及创新、合作的科学精神。 2.体验科学发现的艰难和科学家们的智慧力量,确立进行科学研究的欲望和信心。 [教学重点]

1.光合作用的探究历程。 2.科学探究实验的基本方法。 [教学难点] 真正领悟探究实验的科学原理和方法,并很好地运用到设计实验中。 [教学方法] 探究与发现式教学;小组合作学习 [教学媒体] 实物投影、多媒体课件 [教学设计思路] 本节课以“光合作用的探究历程”为主线,遵循科学家的探索思路,通过对几个经典实验的讨论分析,采取“提出问题—探究—解决问题”的教学方法,层层递进,环环相扣,让学生对科学探究有一个比较完整的认识,从中领悟科学探究的原则和一般方法。 在教学中,采用多元化的教学方式:利用视频动画、录像等教学手段,让学生对实验过程有直观感性的认识;通过学生课前设计表格、角色扮演、代表介绍等手段,充分调动学生学习主动积极性;把学生分为若干小组活动,使学生在较短的时间内确定实验方案,培养团队合作精神;通过师生共同总结并同步板书,让学生更深入地理解光合作用的概念和总反应式中的各个部分;通过课堂实验设计,及时加深巩固本节课所学习、涉及到的实验原理和方法,培养学生的科学素质和创新精神。 在探究问题的过程中,使学生感受到知识产生与发展是受当时科学发展水平限制的,并通过一些具体的数据:500多次、300多年,让学生体会到科学上的每一项发明和发现的背后都凝聚着无数探索者的辛勤劳动,更好地理解为什么说生物学的发展史就是一部众多生物学家不计个人名利为科学事业奉献毕生精力的奋斗史,对学生进行情感教育,这也是本节课的重中之重。

光合作用的探究历程

第五章第4节能量之源——光与光合作用 二、光合作用的原理和应用 光合作用的探究历程 一、教材分析 新课标对光合作用的认识过程从原来的“了解”水平提高到了“说明”水平,教材中本部分内容从回顾科学家对光合作用的探究历程开始,让学生感知他们探索的科学精神和实事求是的科学态度,学习科学探究的一般方法和实验设计的原则,并且得出光合作用的反应式。教材中详细描述了各探究实验的关键环节,对学生的探究思维具有很好的启发性。 二、教学目标 1.知识目标: 1.知道光合作用被发现的基本过程 2.简述出光合作用的原料、产物、条件和反应场所。 2.能力目标: 1.重新走进科学家发现光合作用的有关实验,学会运用科学探究的手段发现问题、解决问题,发展科学探究能力; 2.在实验探究中掌握科学探究的一般原则,重点是对照实验原则和单因子变量原则 3.过读书和师生的讨论活动,培养学生自学和主动探索新知识的技能、技巧。 3.情感、态度和价值观目标: 1.体验科学探究历程,体会科学概念是在不断观察、实验、探索和争论中形成; 2.认同科学家不仅要继承前人的科研成果,而且要善于吸收不同学科中的有关知识,还要具有质疑、创新及勇于实践的科学精神和科学态度; 3.学会参与、合作和交流探究的内容和结果; 4.认识到技术的发展在科学研究中的作用,尊重科学且用发展的观点看待科学、树立辨证的科

学观。 三、教学重点难点 重点:光合作用的发现及研究历史过程中的各实验设计、优缺点和结论。 难点:光合作用的发现过程中各实验如何巧妙地连接起来,如何过渡,如何引导学生进行思考探究从而得出正确结论。 四、学情分析 学生在初中生物课中学习过有关光合作用的知识,而且生活实践中也对光合作用有所了解。但是,对于光合作用的发现历史却很陌生,关键对于我们这节课要达到的目标“科学探究的一般方法”知之甚少。高中学生具备了一定的观察和认知能力,分析思维的目的性、连续性和逻辑性也已初步建立,但还很不完善,对事物的探索好奇,又往往具有盲目性,缺乏目的性,并对探索科学的过程与方法及结论的形成缺乏理性的思考。在教学过程中,教师要尽量创设学生活动的机会,让学生成为学习活动的主体,教师只是为学生的学习提供必要的指导和知识铺垫。 五、教学方法 探究式教学,结合问题、讨论、比较、归纳多种教学方法,并配以多媒体辅助教学,引导学生再现科学发现过程,并进行分析、讨论、归纳和总结。新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1. 学生的学习准备 学生收集了解关于光合作用研究历史。兴趣小组做关于光合作用的探究实验。 2. 教师的教学准备 指导学生预习教材、收集了解关于光合作用研究历史;制作的多媒体课件;准备实物投影等课堂用品。 3. 教学用具的设计和准备 (1)多媒体课件(2)实物投影仪 七、课时安排:1课时

光合作用的发现史资料

光合作用的发现史资料 玉米在拔节期间,每天可以长高8cm以上,大牡竹曾有每天增高41㎝的记录。植物在生长发育中所需要的物质是从何而来的呢? ⒈早在两千多年前,古希腊著名哲学家亚里士多德认为,植物是由“土壤汁”构成的。直至十七世纪初,人们都相信植物是从土壤中获得生活需要的全部元素。 ⒉17世纪上半叶,比利时学者海尔蒙特(j.b.vanhelmont)所做的柳树试验,使他自然而然地相信:柳树生长所需要的物质,来自于浇灌的水。这个结论首次提出了水参与植物有机物制造,但没有考虑到空气对植物体物质形成的作用。 早在1637年,我国明代学者宋应星在《论气》一文中指出“人所食物皆为气所化,故复于气而”,已注意到空气和植物的关系。1727年,英国植物学家斯蒂芬.黑尔斯(stephenhales)也指出,植物在生长时主要用空气当养分。但是,他们都没有通过实验来验证自己的

论断。 ⒊1771年-1777年间,英国著名科学家约瑟夫.普里斯特利(josephpriestley)通过对呼吸和燃烧一系列实验研究认为,绿色植物能逆转动物的呼吸过程。1771年,通过“小鼠、蜡烛和薄荷”的实验使他相信:植物能更新因燃烧或动物呼吸而变污浊的空气。由于普里斯特利所做的这个出色的实验,人们把1771年定为发现光合作用的年代。但是,普里斯特利把植物改善空气的作用归功于植物的缓慢生长过程,没有认识到光对植物的作用。这样,当有人重复普利斯特利的实验时,有人成功,有人不成功,甚至得到完全相反的结论,认为植物不仅不能净化空气,反而使空气受到更严重的污染。 ⒋1779年,荷兰医生英格豪斯(janingenhousz)通过实验确认,植物确实有净化空气的作用。他进一步指出,植物净化空气的作用不是普利斯特利说的是由于植物缓慢生长过程所致,而是由于太阳光照射植物的结果,这种净化作用在几小时内便可完成,并不需要让植物生长若干天。

光合作用的研究历史

时间事件 1648 荷兰人van Helmont 。柳树种植实验,认为柳树增加的重量来自于灌溉用的水。1727 英国Stephan Hales 《静力学短论,包括植物静力学或关于植物浆液的一些静力学试验的考察》。植物从空气中得到了一部分营养。 1748,177 0 1748 俄国罗蒙诺索夫 1770 法国Antoine Lavoisier 质量守恒定律 1770-178 5 化学家气体收集及分析 1771 及之Joseph Priestley1776 《对不同种空气的试验和观察》植物改善空气的发现 后 1773 荷兰人Jan Ingenhouse 听闻上述实验.1773 年,做了500 次以上关于植物影响空气的实验。10 月,发表《关于植物的实验,它们是日光下改善空气和在阴 暗处和夜间损坏空气的强大力量的发现》 1782 瑞士Jean Senebier 《关于日光影响的三界物质,特别是植物界所起变化的物理化学论文集》固定的空气(二氧化碳)溶于水就是植物从周围空气中吸取的 营养,这也是它们转化固定空气,供应纯净空气的来源。 1804 日内瓦Nicolas Theodore de Saussure 《关于植物化学的研究》植物产生的有机物质总量以及它们释放的氧量,远远超过它们消耗的固定空气(二氧化碳) 的量。光合作用必定还用水作为反应物。 1817 法国化学家P.J.Pollotier 和J.B.Caventou 提出“chorophyll ”叶绿素一词。来源于希腊文?“chloros ”绿色和“phyllon ”叶。

1845 德国医生Julius Robert Mayer 《有机体的运动及其与代谢的关系》植物取得一种力量——光,并产生另一种力量——化学差异。将能量转化定律公式化。 1864 法国植物生理学家T.B. Boussinganltu ,研究多种陆生植物,发现光合作用比值“吸收二氧化碳量/释放氧气量=1 ” 1864 德国植物生理学家Julius Sachs 植物半叶实验。认为叶绿素存在于某种比细胞还小的结构内。 1870 德国化学家 A.von.Bayer 光合作用中二氧化碳的转化,先合成甲醛,再合成有机物。 1883 K.Schimper 将Sachs 所指的小体命名为叶绿体。 1883 德国植物学家J.Reinke 光合作用速率随着光照强度的增加而按比例增加。在光足够强时,达到饱和状态。 1883-188 5 德国生理学家Th.W.Engelman, 提出,叶绿素吸收的光能也是在其光合作用中所利用的光能。 1905 英国植物生理学家 F.F.Blakman 首次将光合作用曲线形状解释为光反应和暗反应两个步骤。 1913 德国化学家L.Michaelis 首先提出酶促反应的一般机理。 1913,191 Richard Willstatter 和Arthur Stoll 否定了胡萝卜素吸收的光在光合作用不起作 7 用。指出叶绿素是卟啉类化合物,含有铁而不是镁。 1915 年诺Richard Willstatter 阐明在叶肉细胞中叶绿素a:b 为3:1 。研究出将叶绿素制成奖纯品的方法。 1922 Otto Warburg 和E.Negelein 测定小球藻光合作用最高量子产额。 1929 德国化学家H.Fisher 合成铁血红素。

光合作用的研究历史

第三节光合作用探究历程 【学习目标】 1.说出有关光合作用研究的科学家及其经典实验的结论,能用一个简单的方程式表示光合作用,并能简述出光合作用的原料、产物、条件和反应场所。 2. 分析光合作用探究实验的过程及其设计思路,将大量文字转换成简洁明了的图文,学会在复杂的情景中分析实验的变量和对照的设置。 3. 体验科学探究历程,认同科学概念是在不断的观察、实验、探索和争论中前进的。 【自主探究】 一、阅读教材P100—102的内容,按时间顺序列表总结光合作用的探究历程。 二、探究历程 1、公元前三世纪,亚里士多德:土壤是构成植物的 原材料。1648年,比利时的范·海尔蒙特用了五年 时间完成了一个实验,如图: 植物生长需要养料来自哪里? 2、普里斯特利实验说明谁可以更新空气? 他所指的污浊的空气里有什么?被更新的 空气里有什么?要使实验更有说服力,还 应设置几组实验?依照图示设计画出对照 实验

3、萨克斯的实验目的是什么?黑暗处理的目的是什么?实验的自变量和因变量是什么?如何检测本实验结果?酒精脱色的目的是什么? 此实验除了能证明光合作用的产物有淀粉外, 还能说明什么问题? (实战演练) 实验设计:验证二氧化碳是光合作用的原料 材料:相同大小的绿色植物2盆,透明密闭的玻璃罩2个,NaOH 溶液,CO2释放剂,酒精,碘液 提示:单一因素变量是什么?怎么操控?检测何种实验结果?如何根据所提供的材料进行检测? 4、恩格尔曼实验的自变量和因变量是什么? 该实验的巧妙之处: 实验材料为什么用水绵? 为什么用好氧细菌? 为什么在没有空气的环境中? 为什么在黑暗环境中? 为什么用的是极细的光束? 为什么临时装片要重新暴露在光下? 5、光合作用是指绿色植物通过 ,利用 能,把 和 转化成 ,并且释放出 的过程。 反应式: 6、鲁宾、卡门实验的自变量和因变量是什么?实验的巧妙之处是?

光合作用的研究历史

《光合作用的研究历史》教学设计 一.教学设计的指导思想 “光合作用的发现”凝聚了众多科学家两百多年探究历程中的心血和智慧,在生物学发展史 上堪称经典。大胆的推测、巧妙的实验设计和严密的逻辑推理反映了科学探索的过程,其中经典实验为培养学生实验能力、科学素养提供了非常好的素材。教师通过多媒体方式展示实验过程—设置问题—探究讨论—得出结论的模式,为学生搭设了一个探索、思考、分析、谈论的平台。教师进行有目的、有序的设问,激发学生的思维,从中领悟实验的科学原理和方法,提高学生分析实验,设计实验的能力。 二.教学内容分析 1、教材分析: 《光合作用的研究历史》是高中《生命科学》第四章“生命的物质变化和能量转换”第二节内容。光合作用不仅为植物本身的物质代谢提供了基础,也直接或间接的为动物和人类的生存提供了食物和能源。光合作用是地球上最重要的化学反应,在自然界具有极其重要的意义,这部分教学内容是整个高中生命科学中的重点和难点。老教材的编排上直接介绍叶绿体结构和光合作用的基本过程,教师对这部分科学史要么忽略,要么附带简单介绍。而新教材在编排上更加突出科学史教育,单独安排了一课时介绍几个经典的实验,得出光合作用的原料、产物、场所、条件,获得完整的光合作用概念。这符合学生的认知水平。安排了光合作用的发现过程的目的是:不仅让学生了解这个科学发现的历史,更重要的是让学生认识到科学研究方法的重要性、科学研究的思维方式的重要性,体验到科学家们智慧的力量和创造的快乐,学习科学家们“不断挑战权威、不断创新”精神,提高科学素养。 2、教学重点、难点 重点:光合作用的发现过程 难点:科学研究的过程和方法 3、教学策略 通过问题设置,引导学生讨论经典实验,分析他们精巧的设计思路,体验科学研究的过程和方法。并让学生运用这些设计思想进行实验设计,加深对经典实验的理解。 三.学情分析 学生在初中课程中学习过相关光合作用知识。对光合作用的原料、产物、场所、条件几个方面有一定的认知。也知道可以用简单的化学方法验证绿色植物放出的气体和制造的有机物。但光合作用是怎样被人们发现的,二氧化碳和水怎样转变成有机物的,受学生本身年龄和知识结构限制,无法深入下去。高中生命科学以较高的起点,重新认识光合作用,体验科

光合作用发现史学习资料

光合作用发现史 1、早在两千多年前,古希腊著名哲学家亚里士多德认为,植物是由“土壤汁”构成的。这一观点一直沿用到18世纪中期。17 世纪上半叶,比利时学者海尔蒙特所做的柳树试验,使他自然而然地相信:柳树生长所需要的物质,来自于浇灌的水。这个结论首次提出了水参与植物有机物制造,但没有考虑到空气对植物体物质形成的作用。 2、我国明代学者宋应星、英国植物学家斯蒂芬.黑尔斯也曾指出:植物在生长时主要用空气当养分。但他们并未用实验证明这一判断。 3、1771年,英国科学家普利斯特利通过实验证实,植物可以更新因蜡烛燃烧或小白鼠呼吸而变得污浊的空气。由于普里斯特利所做的这个出色的实验,人们把1771 年定为发现光合作用的年代。但是,他并没有发现光在植物更新空气中的作用,而是将空气的更新归因于植物的生长。当时有人重复他的实验,却得到完全相反的结论。因此这个实验引起人们的关注。 4、1779年,荷兰科学家英格豪斯做了500多次植物更新空气的实验,得出结论:绿色植物只有在光下才能更新空气。直到1785年,人们才明确绿叶在光下放出的气体是氧气,吸收的是二氧化碳。 5、1782年,瑞士牧师吉恩.谢尼伯证实了英格豪斯的发现,并指出植物“净化”空气的活性,除光合作用外,还取决于“所固定的空气”。 6、1804年,瑞士学者索热尔研究植物光合作用过程中,二氧化碳吸收量、有机物生成量、氧气释放量之间的数量关系。他发现,植物制造的有机物质总量和氧气释放量,远远超过二氧化碳吸收量。根据实验中除植物、空气和水以外,没有其他物质,他断定光合作用除吸收二氧化碳外,二氧化碳水也是光合作用的反应物。 7、1817年,法国的两位植物学家,佩利蒂欧和卡文陶从叶片中分离出叶绿素。后来有人证明叶绿素对于光能的吸收、传递和转化起着极为重要的作用。 8、1845年,德国科学家梅耶根据能量转化与守恒定律明确指出,植物在进行光合作用时,把光能转换成化学能储存起来。当时人们用下式表示光合作用: 绿色植物 CO2 + H2O + 光——→O2 + 有机物质+ 能量 9、1864 年,法国植物生理学家鲍辛高特根据阿伏伽德罗定律,精密地测定多种陆生植物,发现它们在进行光合作用时,放出的氧气和吸收的二氧化碳体积的比值接近1。 10、1864 年,德国著名植物生理学家朱利叶斯.萨克斯用实验成功地证明植物叶片在光合作用中形成淀粉。他先把绿叶放在黑暗中数小时,在这段时间内,由于叶片中的物质的输出和呼吸代谢的结果,使原先存在于叶片里的淀粉消失。然后把经黑暗处理的叶片一半曝光,另一半叶片仍然置于黑暗中,经过一定时间后,用碘蒸汽处理叶子,结果发现处于黑暗的一半叶片无颜色变化,而曝光的一半叶片显示出深蓝色。这是由于碘与淀粉形成淀粉-碘络合物的结果。 11、1880 年,德国科学家恩吉尔曼把装有水绵和嗜氧细菌悬浮液的载玻片置于没有空

第一节 光合作用的研究历史

光合作用(photosynthesis)通常是指绿色植物吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程。地球上一年中通过光合作用约吸收2.0×1011t 碳素(6400t/s),合成5×1011t 有机物,同时将3.2×1021 J 的日光能转化为化学能,并释放出5.35×1011t 氧气。光合作用是地球上规模最巨大的把太阳能转变为可贮存的化学能的过程,也是规模最巨大的将无机物合成有机物和从水中释放氧气的过程。自从有了光合作用,需氧生物才得以进化和发展。由于光合作用中氧的释放和积累而逐渐形成了大气表面的臭氧(O 3)层,O 3能吸收阳光中对生物有害的紫外辐射,使生物可从水中到陆地上生活和繁衍。光合作用是生物界获得能量、食物以及氧气的根本途径,所以光合作用被称为“地球上最重要的化学反应”。没有光合作用也就没有繁荣的生物世界。当今人类社会面临着日趋严峻的食物不足、能源危机、资源匮乏和环境恶化等问题,这些问题的解决无一不与植物的光合作用有着密切的关系。因此深入探讨光合作用的规律,揭示光合作用的机理,使之更好地为人类服务,愈加显得重要和迫切。 一、光合作用总反应式的确定 18世纪以前,人们都认为植物是从土壤中获得生长所需的全部元素的。1771年英国化学家普利斯特利(J.Priestley)发现将薄荷枝条和燃烧的蜡烛放在一个密闭的钟罩里,蜡烛不易熄灭;将小鼠与植物放在同一钟罩里,小鼠也不易窒息死亡。因此,他提出植物可以“净化”空气,现在就把1771年定为发现光合作用的年代。以后又经许多人的研究(见绪论),到了19世纪末,人们写出了如下的光合作用的总反应式: 6CO 2+6H 2O→ C 6H 12O 6+6O 2 (4-1) 从(4-1)式中可以看出:光合作用本质上是一个氧化还原过程。其中CO 2是氧化剂,CO 2中的碳是氧化态的,而C 6H 12O 6中的碳是相对还原态的,CO 2被还原到糖的水平。H 2O 是还原剂,作为CO 2还原的氢的供体。(4-1)式用了几十年,后来又把它简化成下式: CO 2+H 2O→(CH 2O)+O 2 (△G°′=4.78×105 J) (4-2) (4-2)式用(CH 2O)表示一个糖类分子的基本单位,比较简洁。用叶绿体代替绿色植物,说明叶绿体是进行光合作用的场所。由于葡萄糖燃烧时释放2870 kJ·mol -1的能量,因而每固定1mol CO 2(即12g 碳)就意味着转化和贮存了约478kJ 的能量。 应该注意到光合作用反应式中所有的反应物和产物都含有氧,而上面两式并没有指出释放的O 2是来自CO 2还是H 2O 。很多年来,人们一直以为光能将CO 2分解成O 2和C ,C 与H 2O 结合成(C H 2O ),然而以下三方面研究证实了光合作用释放的O 2来自于H 2O 。 1.细菌光合作用 能进行光合作用的细菌称之为光合细菌(photosynthetic bacteria)。光合细菌包括蓝细菌、紫细菌

光合作用发现历史资料整理知识讲解

光合作用发现历史资 料整理

光合作用发现历史资料整理 一、传统史料---光合作用反应式的发现 1.过去,人们一直以为,小小的种子之所以能够长成参天大树,古希腊哲学家亚里士多德认为,植物生长所需的物质完全依靠于土壤。 2. 1648年,一位荷兰科学家范·赫尔蒙特对此产生了怀疑,于是他设计了盆栽柳树称重实验,得出植物的重量主要不是来自土壤而是来自水的推论。虽然他没有认识到空气中的物质参与了有机物的形成,但从此拉开了光合作用的研究史。赫尔蒙特把90千克的土壤放在花盆中,然后种上2千克重的柳树,并经常浇水,5年过去了,柳树长到76千克重,而花盆中的土壤只少了60克。 3.早在1637年,我国明代科学家宋应星在《论气》一文中,已注意到空气和植物的关系,提出“人所食物皆为气所化,故复于气耳”。可惜因受当时科学技术水平的限制,未能用实验来证明这一精辟的论断。直到1727年,英国植物学家斯蒂芬·黑尔斯才提出植物生长时主要以空气为营养的观点。而最先用实验方法证明绿色植物从空气中吸收养分的是英国著名的化学家约瑟夫·普利斯特利。在1771年发现植物可以恢复因蜡烛燃烧而变“坏”了的空气。 4. 1779年,荷兰科学家英恩豪斯(Jan Ingenhousz)进一步证明只有植物的绿色部分在光下才能起使空气变“好”的作用,而其他所有器官即使在白天也会使空气变坏。这些实验结果为后来人们认识植物绿色部分和光在植物光合作用中的重要性奠定了基础。 5.1872年,科学家塞尼比尔(J.Senebier)如何做实验证明光和CO2的必要性。 6.1804年,瑞士学者德·索苏尔研究了植物光合作用过程中吸收的二氧化碳与放出的氧之间的数量关系,结果发现植物制造的有机物和释放出的氧的总量,远远超过它们所吸收的二氧化碳的量。由于实验中只使用植物、空气和水,别无他物,因此,他断定植物在进行光合作用合成有机物时不仅需要二氧化碳,水也必然是光合作用的原料。他认为是CO2和H2O乃是植物体有机物之来源。此结论不仅证实了海尔蒙脱关于柳树生长过程中合成植物体的物质主要来自水的推论,而且把人们对光合作用本质的认识提高到一个崭新的阶段。德·索叙尔实验告诉我们,定量分析法在科学研究中的重要性, 7、1845德国科学家梅耶R。Mayer.据能量转化定律指出,植物在进行光合作用时,把光能转化成化学能储存起来。 8.德国的又一位科学家萨克斯在1864年用紫苏进行实验。这一实验成功地证明了绿色叶片在光合作用中产生了淀粉。因此,最终确定了至今人们还在沿用的光合作用总反应式。 二、近代思想与技术应用,光反应和暗反应概念提出 1、1880年,德国科学家恩格尔曼(C.Engelmann)用水绵进行了进行了光合作用的实验。恩吉尔曼的实验巧妙地证明了光合作用的场所是叶绿体。 2、19世纪60年代,科学家总结出光合作用的反应式能不能解决光合作用产生的氧是来自什么物质?应该注意到光合作用反应式中所有的反应物和产物都含有氧,而上面两式并没有指出释放的O2是来自CO2还是H2O。很多年来,人们一直以为光能将CO2分解成O2和C,C与H2O 结合成(CH2O ) 。 3、1931年微生物学家尼尔(C.B.Van Niel)将细菌光合作用与绿色植物的光合作用加以比较,提出了以下光合作用的通式:CO2+2H2A→(CH2O)+2A+H2O ,这里的H2A代表一种还原剂,可以是H2S、有机酸等,紫色硫细菌(purple-sulfur bacteria)和绿色硫细菌(green-sulfur bacteria)利用H2S为氢供体,在光下同化CO2:CO2+2H2S→

光合作用的探究历程教学设计

光合作用的探究历程教 学设计 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

《光合作用的探索历程》教学设计 抚宁一中杨滨 [教材分析] 本节课为高中必修1《分子与细胞》(新人教版)第5章第4节能量之源——光与光合作用中的内容。第4节包括“捕获光能的色素和结构”、“光合作用的原理和应用”两大部分,其中“光合作用的探究历程”这部分内容往往被许多老师在上课时一带而过,并未加以重视。事实上,光合作用探究过程中的经典实验,从一定程度上反映了科学探究的一般方法,是培养学生科学精神、科学态度和科学研究方法的好素材,为后面众多的实验打下一个良好的感知基础,也为讲述光合作用的原理、过程做好知识铺垫。因此,“光合作用的探究历程”这部分内容相当重要,不容忽视。 [教学目标] 知识性目标: 1.说出光合作用的探究历程。 2.初步掌握科学探究的一般方法。 技能性目标: 尝试分析实验、设计实验。 情感性目标: 1.关注科学工作的方法和过程,形成严谨的科学态度及创新、合作的科学精神。

2.体验科学发现的艰难和科学家们的智慧力量,确立进行科学研究的欲望和信心。 [教学重点] 1.光合作用的探究历程。 2.科学探究实验的基本方法。 [教学难点] 真正领悟探究实验的科学原理和方法,并很好地运用到设计实验中。[教学方法] 探究与发现式教学;小组合作学习 [教学媒体] 实物投影、多媒体课件 [教学设计思路] 本节课以“光合作用的探究历程”为主线,遵循科学家的探索思路,通过对几个经典实验的讨论分析,采取“提出问题—探究—解决问题”的教学方法,层层递进,环环相扣,让学生对科学探究有一个比较完整的认识,从中领悟科学探究的原则和一般方法。 在教学中,采用多元化的教学方式:利用视频动画、录像等教学手段,让学生对实验过程有直观感性的认识;充分调动学生学习主动积极性;把学生分为若干小组活动,使学生在较短的时间内确定实验方案,培养团队合作精神;通过师生共同总结并同步板书,让学生更深入地理解光合作用的概念和总反应式中的各个部分;通过课堂实验设计,及时加深巩固本节课所学习、涉及到的实验原理和方法,培养学生的科学素质和创新精神。

光合作用的探究历程教案

《光合作用的探究历程》教案 一、教材分析 新课标对光合作用的认识过程从原来的“了解”水平提高到了“说明”水平,教材中本部分内容从回顾科学家对光合作用的探究历程开始,让学生感知他们探索的科学精神和实事求是的科学态度,学习科学探究的一般方法和实验设计的原则,并且得出光合作用的反应式。教材中详细描述了各探究实验的关键环节,对学生的探究思维具有很好的启发性。 二、教学目标 1.知识目标: 1.知道光合作用被发现的基本过程 2.简述出光合作用的原料、产物、条件和反应场所。 2.能力目标: 1.重新走进科学家发现光合作用的有关实验,学会运用科学探究的手段发现问题、解决问题,发展科学探究能力; 2.在实验探究中掌握科学探究的一般原则,重点是对照实验原则和单因子变量原则 3.情感、态度和价值观目标: 1.体验科学探究历程,体会科学概念是在不断观察、实验、探索和争论中形成; 2.认同科学家不仅要继承前人的科研成果,而且要善于吸收不同学科中的有关知识,还要具有质疑、创新及勇于实践的科学精神和科学态度; 三、教学重点难点 重点:光合作用的发现及研究历史过程中的各实验设计、优缺点和结论。 难点:光合作用的发现过程中各实验如何巧妙地连接起来,如何过渡,如何引导学生进行思考探究从而得出正确结论。 四、学情分析 学生在初中生物课中学习过有关光合作用的知识,而且生活实践中也对光合作用有所了解。但是,对于光合作用的发现历史却很陌生,关键对于我们这节课要达到的目标“科学探究的一般方法”知之甚少。高中学生具备了一定的观察和认知能力,分析思维的目的性、连续性和逻辑性也已初步建立,但还很不完善,对事物的探索好奇,又往往具有盲目性,缺乏目的性,并对探索科学的过程与方法及结论的形成缺乏理性的思考。在教学过程中,教师要尽量创设学生活动的机会,让学生成为学习活动的主体,教师只是为学生的学习提供必要的指导和知识铺垫。 五、教学方法 探究式教学,结合问题、讨论、比较、归纳多种教学方法,并配以多媒体辅助教学,引导学生再现科学发现过程,并进行分析、讨论、归纳和总结。新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备 1. 学生的学习准备 学生收集了解关于光合作用研究历史。兴趣小组做关于光合作用的探究实验。 2. 教师的教学准备 指导学生预习教材、收集了解关于光合作用研究历史;制作的多媒体课件 3. 教学用具的设计和准备 多媒体课件 七、课时安排:1课时

高考生物复习题光合作用的探究历程与基本过程检测含解析

光合作用的探究历程与基本过程 [基础达标] 1.(2019·黑龙江哈尔滨六中高三开学段考)下列对叶绿体和光合作用的分析,正确的是( ) A.没有叶绿体的细胞不能进行光合作用 B.用8%的盐酸处理叶绿体有利于各种色素的提取 C.将叶绿体粉碎加工成匀浆并给予一定的光照,光合作用仍能正常进行 D.叶绿体能产生和消耗ATP,两个过程完全在叶绿体内完成 解析:选D。蓝藻没有叶绿体,但细胞内含藻蓝素和叶绿素,可以进行光合作用,A错误。叶绿体色素是脂溶性色素,可以通过加入无水乙醇溶解色素,便于提取;色素不溶于盐酸,不能用盐酸提取色素,B错误。将叶绿体粉碎加工成匀浆后,其中色素分子可能被破坏,光合作用相关酶的活性可能丧失,所以即便给予一定的光照,光合作用也不一定能正常进行,C错误。叶绿体中光反应产生的ATP,完全被叶绿体内暗反应所利用,D正确。 2.(2019·甘肃武威六中高三段考)下图所示为叶绿体中色素蛋白等成分在膜上的分布。下列关于相关过程以及发生场所的说法,不正确的是( ) A.H2O→[H]+O2发生在光反应阶段,场所是叶绿体类囊体薄膜 B.膜上的叶绿素主要吸收蓝紫光和红光用于光合作用 C.发生的能量转换是光能→化学能 D.产生的ATP可用于植物体的各项生理活动 解析:选D。水的光解发生在光反应阶段,场所是叶绿体的类囊体薄膜,A项正确;叶绿素主要吸收蓝紫光和红光,类胡萝卜素主要吸收蓝紫光,B项正确;光能在类囊体薄膜上转换为ATP中的化学能,C项正确;叶绿体类囊体薄膜上经光反应产生的ATP只能用于暗反应,D项错误。 3.(2019·山西太原期末)下列关于叶绿体色素在光合作用过程中作用的描述,错误的是( ) A.叶绿体色素与ATP的合成有关 B.叶绿体色素参与ATP的分解 C.叶绿体色素与O2和[H]的形成有关 D.叶绿体色素能吸收和传递光能

光合作用的原理和过程

光合作用的原理和过程

————————————————————————————————作者:————————————————————————————————日期:

光合作用的原理和过程 一、教材分析与教学设计思路?光合作用是植物体最基本的新陈代谢,是生物界物质和能量的基本来源。光合作用知识的掌握为生态系统结构和功能的学习奠定基础,当今人类社会面临的粮食、资源、环境等问题与光合作用有着密切联系,所以光合作用知识在全书教材中占有重要地位,是整个高中阶段的重点,也是高考必考的知识点。?本节教学设计意图沿着光合作用的发现历程对光合作用的光反应和暗反应这两个阶段从物质变化和能量转化的高度作深入的探讨和研究,引导学生从物质和能量转变的角度去理解光合作用的实质,掌握本节重点;同时希望通过对教材中科学家关于光合作用探究过程的经典实验的学习和分析,使学生体会经典实验所蕴含着科学探究的一般方法,初步建立科学探究的能力。 二、教学目标设计?1、知识目标:?(1)学生能够描述光合作用的认识过程。(2)描述光反应暗反应过程的物质变化和能量转化。?2、能力目标:?(1)尝试进行实验设计,学会控制自变量、设置对照实验。?(2)在有关实验、资料分析、思考与与讨论、探究等的问题讨论中,运用语言表达的能力及分享信息的能力。 3、情感、态度和价值观目标:?通过光合作用的探究历程,学生能体验前人设计实验的技能和思维方式,同时能认识到科学是在不断的观察、实验和探索中前进的。通过光反应和暗反应关系的分析,能树立科学的辨证观点。

三、重点难点及确立依据: 1.教学重点 (1)光合作用的发现及研究历史。(2)光合作用的光反应、暗反应过程及相互关系。 2.教学难点?光反应和暗反应的过程。?学生了解了在光合作用探索历程中所出现的问题和解决的方法,等于沿着科学家的发现思路作了一次思维的探究。这有利于培养学生的科学精神和科学思维,同时为讲述光合作用的原理做好知识铺垫。因此,光合作用的发现及研究历史是教学的重点。 光反应和暗反应过程的物质变化和能量转化比较抽象,又是理解光合作用实质、探究影响光合作用强度的环境因素的基础。因此,光合作用的光反应、暗反应过程及相互关系是教学的重点和难点。?四、教法学法及媒体选择 1.教法及媒体选择 根据新课程理念,针对本节内容,我主要采取探究式教学与多媒体辅助教学相结合的方法。在教学过程中,以光合作用发现历程的经典实验为线索,启发学生从现象入手提出问题,进而设计实验进行验证,通过探究性学习,使学生积极主动地参与教学过程中,探索光合作用的实质,充分体现学生的主体地位。 因为光反应和暗反应过程的物质变化和能量转化比较抽象,而多媒体它不仅使教学视听化、形声化,而且使课堂的直观性更加突出;更重

光合作用发现历史

光合作用发现历史Last revision on 21 December 2020

光合作用发现历史资料整理 一、传统史料---光合作用反应式的发现 1.过去,人们一直以为,小小的种子之所以能够长成参天大树,古希腊哲学家亚里士多德认为,植物生长所需的物质完全依靠于土壤。 2. 1648年,一位荷兰科学家范·赫尔蒙特对此产生了怀疑,于是他设计了盆栽柳树称重实验,得出植物的重量主要不是来自土壤而是来自水的推论。虽然他没有认识到空气中的物质参与了有机物的形成,但从此拉开了光合作用的研究史。赫尔蒙特把90千克的土壤放在花盆中,然后种上2千克重的柳树,并经常浇水,5年过去了,柳树长到76千克重,而花盆中的土壤只少了60克。 3.早在1637年,我国明代科学家宋应星在《论气》一文中,已注意到空气和植物的关系,提出“人所食物皆为气所化,故复于气耳”。可惜因受当时科学技术水平的限制,未能用实验来证明这一精辟的论断。直到1727年,英国植物学家斯蒂芬·黑尔斯才提出植物生长时主要以空气为营养的观点。而最先用实验方法证明绿色植物从空气中吸收养分的是英国着名的化学家约瑟夫·普利斯特利。在1771年发现植物可以恢复因蜡烛 燃烧而变“坏”了的空气。 4. 1779年,荷兰科学家英恩豪斯(Jan Ingenhousz)进一步证明只有植物的绿色 部分在光下才能起使空气变“好”的作用,而其他所有器官即使在白天也会使空气变坏。这些实验结果为后来人们认识植物绿色部分和光在植物光合作用中的重要性奠定了基础。 年,科学家塞尼比尔()如何做实验证明光和CO2的必要性。 年,瑞士学者德·索苏尔研究了植物光合作用过程中吸收的二氧化碳与放出的氧之间的数量关系,结果发现植物制造的有机物和释放出的氧的总量,远远超过它们所吸收的二氧化碳的量。由于实验中只使用植物、空气和水,别无他物,因此,他断定植物在进行光合作用合成有机物时不仅需要二氧化碳,水也必然是光合作用的原料。他认为是 CO 2和H 2 O乃是植物体有机物之来源。此结论不仅证实了海尔蒙脱关于柳树生长过程中合 成植物体的物质主要来自水的推论,而且把人们对光合作用本质的认识提高到一个崭新的阶段。德·索叙尔实验告诉我们,定量分析法在科学研究中的重要性, 7、1845德国科学家梅耶R。Mayer.据能量转化定律指出,植物在进行光合作用时,把光能转化成化学能储存起来。 8.德国的又一位科学家萨克斯在1864年用紫苏进行实验。这一实验成功地证明了绿色叶片在光合作用中产生了淀粉。因此,最终确定了至今人们还在沿用的光合作用总反应式。

《光合作用的探究历程》教学设计

《光合作用的探索历程》教学设计 抚宁一中杨滨 [教材分析] 本节课为高中必修1《分子与细胞》(新人教版)第5章第4节能量之源——光与光合作用中的内容。第4节包括“捕获光能的色素和结构”、“光合作用的原理和应用”两大部分,其中“光合作用的探究历程”这部分内容往往被许多老师在上课时一带而过,并未加以重视。事实上,光合作用探究过程中的经典实验,从一定程度上反映了科学探究的一般方法,是培养学生科学精神、科学态度和科学研究方法的好素材,为后面众多的实验打下一个良好的感知基础,也为讲述光合作用的原理、过程做好知识铺垫。因此,“光合作用的探究历程”这部分内容相当重要,不容忽视。 [教学目标] 知识性目标: 1.说出光合作用的探究历程。2.初步掌握科学探究的一般方法。 技能性目标: 尝试分析实验、设计实验。 情感性目标: 1.关注科学工作的方法和过程,形成严谨的科学态度及创新、合作的科学精神。 2.体验科学发现的艰难和科学家们的智慧力量,确立进行科学研究的欲望和信心。[教学重点] 1.光合作用的探究历程。 2.科学探究实验的基本方法。 [教学难点] 真正领悟探究实验的科学原理和方法,并很好地运用到设计实验中。 [教学方法] 探究与发现式教学;小组合作学习 [教学媒体] 实物投影、多媒体课件 [教学设计思路] 本节课以“光合作用的探究历程”为主线,遵循科学家的探索思路,通过对几个经典实验的讨论分析,采取“提出问题—探究—解决问题”的教学方法,层层递进,环环相扣,让学生对科学探究有一个比较完整的认识,从中领悟科学探究的原则和一般方法。 在教学中,采用多元化的教学方式:利用视频动画、录像等教学手段,让学生对实验过程有直观感性的认识;充分调动学生学习主动积极性;把学生分为若干小组活动,使学生在较短的时间内确定实验方案,培养团队合作精神;通过师生共同总结并同步板书,让学生更深入地理解光合作用的概念和总反应式中的各个部分;通过课堂实验设计,及时加深巩固本节课所学习、涉及到的实验原理和方法,培养学生的科学素质和创新精神。 在探究问题的过程中,使学生感受到知识产生与发展是受当时科学发展水平限制的,并通过一些具体的数据:500多次、300多年,让学生体会到科学上的每一项发明和发现的背后都凝聚着无数探索者的辛勤劳动,更好地理解为什么说生物学的发展史就是一部众多生物学家不计个人名利为科学事业奉献毕生精力的奋斗史,对学生进行情感教育,这也是本节课的重中之重。

相关主题
文本预览
相关文档 最新文档