当前位置:文档之家› 第二章基因工程制药 第四节基因表达

第二章基因工程制药 第四节基因表达

第二章基因工程制药 第四节基因表达
第二章基因工程制药 第四节基因表达

第二章基因工程制药第四节基因表达

使用教材:夏焕章,熊宗贵,主编.生物技术制药(第二版)[M], 北京:高等教育出版社,2006.4。为面向21世纪课程教材。

克隆蛋白质药物基因的一个主要目的是为了高效的表达该基因,从而大量的生产原来难以获得的药物。

基因表达是指结构基因在生物体中的转录、翻译以及所有加工过程。基因高效表达研究是指外源基因在某种细胞中的表达活动,即剪切下一个外源基因片段,拼接到另一个基因表达体系中,使其能获得既有原生物活性又可高产的表达产物。

进行基因表达研究的主要问题是目的基因的表达产量,表达产物的稳定性、产物的生物学活性和表达产物的分离纯化。因此,建立最佳的基因表达体系,是基因表达设计的关键。

一、宿主菌的选择

宿主菌应满足以下要求:

(1)具有高浓度、高产量、高产率;

(2)能利用易得廉价原料;

(3)不致病、不产生内毒素;

(4)发热量低,需氧低,适当的发酵温度和细胞形态;

(5)容易进行代谢调控;

(6)容易进行重组DNA技术;

(7)产物容易提取纯化。

宿主细胞的分类:

(1)原核细胞:常用的有大肠杆菌、枯草芽孢杆菌、链霉菌等;

(2)真核细胞:常用的有酵母、丝状真菌、哺(bu)乳动物细胞等。

1原核细胞

(1)大肠杆菌

因为对其分子遗传学的研究较深入,故目前仍是基因工程研究中采用最多的原核表达体系。

表达产物的形式:细胞内不溶性表达(包含体)、胞内可溶性表达、细胞周质表达,极少还可分泌到胞外表达。不同的表达形式具有不同的表达水平,且会带来完全不同的杂质。

特点:

A、大肠杆菌中的表达不存在信号肽,故产品多为胞内产物,提取时需

破碎细胞,此时细胞质内其他蛋白质也释放出来,因而造成提取困

难。

B、由于分泌能力不足,真核蛋白质常形成不溶性的包含体(inclusion

body),表达产物必须在下游处理过程中,经过变性和复性处理才能

恢复其生物活性。

C、在大肠杆菌中表达不存在翻译后修饰作用,故对蛋白质产物不能糖

基化。因此大肠杆菌只适于表达糖基化等翻译后修饰对其生物功能

并非必须的真核蛋白质,在使用上受到一定限制。

由于翻译常从甲硫氨酸的AUG密码子开始,故目的蛋白质的N端常多一个甲硫氨酸残基,容易引起免疫反应。大肠杆菌会产生很难除去的内毒素,还会产生蛋白酶而破坏目的蛋白质。

(2)枯草芽孢杆菌:

分泌能力强,可将蛋白质产物直接分泌到培养液中,不形成包含体。该菌也不能使蛋白质产物糖基化,另外由于它还有很强的胞外蛋白酶,会对产物进行不同程度的降解,因此,它的应用也受到限制。

(3)链酶菌:是重要的工业微生物。

特点:

a.不致病、使用安全;

b.分泌能力强,可将表达产物直接分泌到培养液中;

c.具有糖基化能力;

d.变铅青链霉菌限制修饰能力弱,可以作为理想的受体菌;

e.已构建一系列有效的载体;

f.下游培养工艺成熟。

2 真核细胞

(1)酵母----是研究基因表达调控最有效的单细胞真核微生物。

繁殖迅速,可廉价的大规模培养,而且没有毒性,基因工程操作与原核生物相似,表达产物直接分泌到细胞外,简化了分离纯化工艺。

表达产物能糖基化。特别是某些在细菌系统中表达不良的真核基因,在酵母中表达良好。目前以酿酒酵母应用最多。干扰素和乙肝表面抗

原基因已经在酵母中获得成功克隆和表达。

(2)丝状真菌

特点:

a.具有很强的分泌能力;

b.能正确进行翻译后加工,包括肽剪切和糖基化,其糖基化方式与

高等真核生物相似;

c.被确认是安全菌株,有成熟的发酵和后处理工艺。

(3)动物细胞

由于外源基因的表达产物可由重组转化的细胞分泌到培养液中,培养液成分完全由人控制,从而使产物纯化变得容易。产物是糖基化的,接近或类似于天然产物。但动物细胞生产慢,产率低,而且培养条件苛刻,费用高。

虽然从理论上讲,各种微生物都可以用于基因表达,但由于克隆载体,DNA导入方法以及遗传背景等方面的限制,目前使用最广泛的宿主菌仍然是大肠杆菌和酿酒酵母。原因在于:一方面它们的遗传背景研究得比较清楚,建立了许多适合它们的克隆载体和DNA导入方法;另一方面许多外源基因在这两种宿主菌中表达成功。

二、大肠杆菌体系中的基因表达

大肠杆菌作为外源基因的表达宿主,其优点有:遗传背景清楚;技术操作简单;大规模发酵经济。目前是应用最广泛、最成功的高效表达体系。

(一)表达载体

真核基因要在大肠杆菌中复制与表达,必须要有合适的表达载体把真核基因导入宿主菌中,然后将外源基因表达成蛋白质。

表达载体必须具备的条件:

a.能够独立地复制;

b.应具有灵活的克隆位点和方便的筛选标记。且克隆位点应在启动子

系列后,以使克隆的外源基因得以表达。

c.具有很强的启动子(promoter),能为大肠杆菌的RNA聚合酶所识

别;

d.具有阻遏子(reprssor),使启动子受到控制,只有当诱导时才能转

录;

e.具有很强的终止子,以便使RNA聚合酶集中力量转录克隆的外源基

因,而不转录其他无关的基因;

f.所产生的mRNA必须具有翻译的起始信号,即起始密码AUG和SD序列

(mRNA中5’端富含嘌呤的短核苷酸序列,一般位于mRNA的起始密

码AUG的上游的5-10个碱基处),以便转录后能顺利翻译。

1 pBV220系统

中国预防医学科学院病毒学研究所构建。已成功的用于表达IL-2/3/4/6/8、TNF、G-CSF、GM-CSF等多种细胞因子。

2 pET系统.

(二)影响目的基因在大肠杆菌中表达的因素

外源基因的表达产量与单位容积产量呈正相关,而单位容积产量与细胞

浓度和每个细胞平均表达产量呈正相关。细胞浓度与生长速率、外源基因拷贝数和表达产物产量之间存在一个动态平衡,只有保持最佳的动态平衡才能获得最高产量;单个细胞的产量又与外源基因拷贝数、基因表达效率、表达产物的稳定性和细胞代谢负荷等有关,因此必须从这些因素入手,寻找提高外源基因表达效率的有效途径。

(1)外源基因的拷贝数:与载体在宿主中的拷贝数直接相关。

(2)外源基因的表达效率与以下因素有关

a.启动子的强弱要使目的基因高效表达,需要强启动子;

b.核糖体结合位点的有效性-要想高效表达,必须增加核糖体结合点

的有效性,消除在核糖体结合位点及其附近的潜在二级结构。

c.SD序列和起始密码的间距要保持适当;

d. 密码子组成密码子“偏爱性”是影响翻译效率的因素之一。所以

应选择使用大肠杆菌偏爱的密码子。

(3)表达产物的稳定性

提高表达产物在菌体内的稳定性的方法:

a.组建融合基因,产生融合蛋白,该蛋白在菌体内比较稳定,不易被细菌酶

类降解;

b.利用信号肽,把真核基因产物搬到胞浆周质的空隙中,该产物不易被细菌

酶类降解;

c. 利用位点特异性突变的方法,改变真核蛋白质中二硫键的位置,从而增加

蛋白质的稳定性;利用蛋白酶缺陷型大肠杆菌,有望减弱表达产物的降解。

(4)细胞的代谢负荷:

大量的外源基因表达产物可能打破宿主细胞的生长平衡从而影响其代谢过程或表达产物本身对宿主细胞就有害。

减轻宿主细胞的代谢负荷的措施:

a.将细胞的生长和外源基因的表达分为两个阶段;

b.将宿主细胞的生长与重组质粒的复制分开;

c.某些蛋白质在真核系统中表达为可溶性蛋白质,而在大肠杆菌中表达的

却是不溶性蛋白质,形成一种水不溶性包含体,可以大大降低表达产物对宿主的毒害作用。

(5)工程菌的培养条件

涉及到宿主(host)---载体(vector)---克隆基因(cloning gene)和环境条件,故必须优化基因工程菌的培养条件,进一步提高基因表达水平。

(三)真核基因在大肠杆菌中表达的形式

(1)以融合蛋白的形式表达药物基因:

由一条短的原核多肽和真核蛋白结合在一起的蛋白质称为融合蛋白,其氨基端是原核序列,羧基端是真核序列。

优点: 操作简便;蛋白质在菌体内比较稳定,不易被细菌酶类降解;容易实现高效表达。

缺点:只能作抗原用,因为融合蛋白中含有一段原核多肽序列,可能会影响真核蛋白的免疫原性。

(2)以非融合蛋白的形式表达药物基因

优点:能较好地保持原来的蛋白活性

缺点:易被蛋白酶破坏;N端有甲硫氨酸,易引起免疫反应。

(3)分泌性表达蛋白药物基因

外源蛋白的分泌表达是通过将外源基因融合到编码原核蛋白信号肽序列的下游而实现的。

特点:

a.一些可被细胞内蛋白酶所降解的蛋白质在外周质中是稳定的;

b.有些在细胞内表达时无活性的蛋白质分泌表达时则具有活性,因为这些

蛋白质能按适当正确的方式折叠。

c.分泌后的蛋白质产物不含氨基端起始密码AUG所编码的甲硫氨酸等。

缺点:产量不高;信号肽不被切割或不在特定位置上切割等。

三、酵母体系中的基因表达

1表达载体

酵母载体是可以携带外源基因在酵母细胞内保存和复制,并随酵母分裂传递到子代细胞的 DNA或RNA。

(1)载体的复制序列

A) Yep类(Yeast episomal plasmid)

B) YRp 类(Yeast replication plasmid)

C) YCp 类(yeast centromeric plasmid):复制序列为ARS,并含有酵

母染色体中心粒、端粒成分,稳定性好,但拷贝数只有一个,转化频

率103~104/μg DNA。

D)YIp(yeast integrative plasmid):含有可与酵母染色体重组的序列,

可以完全整合到染色体中。因此它依靠酵母染色体进行复制,具有很

好的稳定性。拷贝数只一个,转化频率1~100 / μg DNA。

(2)克隆载体

向酵母载体中引入大肠杆菌质粒pBR322的ori 部分和Ampr 或Tetr 部分,这样构成的载体同时带有细菌和酵母的复制原点和选择标记。

(3)表达载体

将酵母菌的启动子和终止子等有关控制序列引入载体的适当位点后,就

构成了酵母菌的表达载体。分普通表达载体和精确表达载体。

(二)影响目的基因在酵母菌中表达的因素

(1)外源基因的拷贝数:高度稳定、高拷贝---高表达

(2)外源基因的表达效率:启动子

(3)外源蛋白的糖基化:酵母分泌的异源蛋白糖基化产物与天然产物完全相同。

(4)宿主菌珠的影响:菌体生长力强;菌体内源蛋白酶要弱;菌株性能稳定;分泌能力强。

四、动物细胞中的基因表达

外源基因的表达产物可由重组转化的细胞分泌到培养液中,培养液成分完全由人工控制,从而使产物纯化变得容易。基因产物是糖基化的,接近或类似于天然产物。但动物细胞生长慢,单位体积的生产率低,培养条件苛刻,费用高。目前用于表达外源基因的细胞均为传代细胞。

三类主要基因工程表达体系的比较

表达体系产物产生部位培养方式提纯产物活性潜在危险大肠杆菌多肽、蛋白菌体内容易一般对原核好不大融合蛋白部分可高产

酵母多肽、蛋白菌体内容易菌体内真核接近不大糖基化蛋白分泌出细胞可高产复杂天然

动物细胞完整分泌出细胞较难简单几乎可为可能有致糖基化蛋白成本高天然产物癌因素

可高产

最新生物制药复习题

第一章绪论 1、生物药物广泛应用于医学各领域,按功能用途可分为三类,分别是()、()、() 2、生物技术制药发展历程经历了飞速发展的四个十年,分别是()、()、()、()。 3、生物技术所含的主要技术范畴有()、()、()、()、()、()、()、()和()。 4、下列哪个产品不是用生物技术生产的() A 青霉素 B 淀粉酶 C 乙醇 D 氯化钠 5、我国科学家承担了人类基因组计划()的测序工作 A 10% B 5% C 1% D 7% 6、生物技术 7、生物技术药物 8、生物技术制药 第二章基因工程制药 1、基因工程药物制造的主要步骤是:()、()、()、()、()、()。 2、目的基因获得的主要方法是()、()、()、()。 3、基因表达的微生物宿主细胞分为2大类。第一类为(),目前常用的主要有();第二类 为(),常用的主要有()。 4、基因工程药物的分离纯化一般不应超过5个步骤,包括()、()、()、()和()。 5、在基因工程药物分离纯化过程中,基因重组蛋白的分离比较困难,可用()、()、()、 ()的方法,达到初步分离的目的。 6、人工化学合成DNA新形成的核苷酸链的合成方向是(),合成的DNA 5’末端是(),3’ 末端是()。 7、凝胶过滤法是依赖()来分离蛋白组分 A、分子大小 B、带电状态 C、分子质量 D、解离状态 8、可用于医药目的的蛋白质和多肽药物都是由相应的()合成的 A RNA B 基因 C 氨基酸 D 激素 9、用反转录法获得目的基因,首先必须获得() P13cDNA文库法 A tRNA B cDNA C rRNA D mRNA 10、那一类细菌不属于原核细胞() A 大肠杆菌 B 枯草芽孢杆菌 C 酵母 D 链霉菌 11、基因工程菌的生长代谢与()无关 A 碳源 B RNA聚合酶 C 核糖体 D产物的分子量 12、基因工程菌的高密度发酵过程中,目前普遍采用()作为发酵培养基的碳源 A 葡萄糖 B 蔗糖 C 甘油 D甘露醇 13、下列那种色谱方法是依据分子筛作用来纯化基因工程药物() A 离子交换色谱 B 亲和色谱 C 凝胶色谱 D气相色谱 简答: 1、基因工程制药的概念? 2、什么是载体?载体主要有哪几种? 3、质粒载体的三种构型是什么?质粒载体的性质?用于克隆表达质粒载体的三个要素是 什么? 4、目的基因常用的制备方法有哪四种?这四种方法的基本步骤是什么?

【2019年整理】基因工程制药技术研究进展

基因工程制药技术研究进展 信息检索课程(综述)中文摘要 以DNA重组技术为核心的现代生物技术是一个正在不断发展的高技术综合体系,也是国际上优先发展的高技术领域之一。自20世纪70年代基因工程诞生以来,最先应用基因工程且目前最为活跃的研究领域便是医药科学。DNA重组技术不仅直接提供干扰素、红细胞生成素(EPO)等基因工程药物,供临床治疗使用,提高对恶性肿肿瘤、心脑血管病、重要传染病和遗传病的防治水平,而且也广泛应用丁改造已有的抗生素和生物制品等传统医药工业。基因工程药物已形成一个巨大的高新技术产业 关键词基因工程,药物,研究,发展

信息检索课程(综述)外文摘要 Title Genetic engineering pharmaceutical technology Research progres Abstract With recombinant DNA technology as the core of modern biological technology is a continuous development of high technology integrated system, is also the international priority development of one of the high technology fields. Since the 1970 s genetic engineering since birth, the first application of genetic engineering and now the most active field of research is medical science. Recombinant DNA technology not only directly provide interferon, erythropoietin (EPO), and other genetic engineering drugs for clinical use, improve the malignant swollen tumor, cardio-cerebrovascular disease, important infectious disease and genetic disease prevention level, but also widely used in reconstruction of the existing antibiotics and biological products, and other traditional Chinese medicine industry. Genetic engineering drugs has formed a huge new and higl technology industries. Keywords Genetic engineering, medicine, research, development

基因工程知识点总结归纳更新版

基因工程 绪论 1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。作动词:基因的分离和重组的过程。 2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。供体、受体和载体是基因工程的三大要素。 3、基因工程诞生的基础 三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。 三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现 3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶 1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。 2、限制酶的命名:属名(斜体)+种名+株系+序数 3、II型限制性内切酶识别特定序列并在特定位点切割 4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。 5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。 6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。 7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。 8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单

生物技术制药考试复习资料整理版

第一章、绪论 1. 生物技术制药:采用现代生物技术,借助某些微生物、植物或动物来生产所需的医药品,称为生物技术制药。 2. 生物技术药物:采用DNA重组技术或其他生物新技术研制的蛋白质或核酸类药物,称为生物技术药物。 3. 生物药物:指运用生物学、医学、生物化学等的研究成果,综合利用物理学、化学、生物化学、生物技术和药学等学科的原理和方法,利用生物体、生物组织、细胞、体液等制造的一类用于预防、治疗和诊断的制品。 4. 现代生物药物四大类型:⑴应用重组DNA技术制造的基因重组多肽,蛋白质类治疗剂; ⑵基因药物 ⑶来自动物、植物和微生物的天然药物; ⑷合成与部分合成的生物药物。 5. 生物药物功能用途分类:⑴治疗药物,⑵预防药物⑶诊断药物。 6. 生物技术制药的特征:⑴高技术⑵高投入⑶长周期⑷高风险⑸高收益 7. 生物技术在制药中的应用:⑴基因工程制药:①基因工程药物品种的开发、②基因工程疫苗、③基因工程抗体、④基因诊断与基因治疗、⑤应用基因工程技术建立新药的筛选模型、⑥应用基因工程技术改良菌种,产生新的微生物药物、⑦基因工程技术在改进药物生产工艺中的应用、⑧利用转基因动、⑨植物生产蛋白质类药物 ⑵细胞工程制药:①单克隆抗体技术、②动物细胞培养 ⑶酶工程制药 ⑷发酵工程制药 8. 我国生物技术制药现状和发展前景(自己阐述观点)

第二章基因工程制药 1.基因工程生产哪些药:⑴免疫性蛋白,如各种抗原和单克隆抗体。⑵细胞因子,如各种干扰素、白细胞介素、集落刺激生长因子、表皮生长因子及凝血因子。⑶激素,如胰岛素、生长激素、心钠素⑷酶类,如尿激酶、链激酶、葡激酶、组织型纤维蛋白溶酶原激活剂及超氧化物歧化酶等。 2. 利用基因工程技术生产药品的优点在于: ⑴利用基因工程技术可大量生产过去难以获得的生理活性蛋白和多肽(如胰岛素、干扰素、细胞因子等),为临床使用建立有效的保障。 ⑵可以提供足够数量的生理活性物质,以便对其生理、生化和结构进行深入的研究,从而扩大这些物质的应用范围。 ⑶利用基因工程可以发现挖掘更多的内源性生理活性物质。 ⑷内源生理活性物质在作为药物使用时,存在不足之处,可以通过基因工程和蛋白质工程读起进行改造。 ⑸利用基因工程技术可以获得新型化合物,扩大药物筛选来源。 3. 上游阶段:是研究开发比不可少的基础,主要是分离目的基因、构建工程菌(细胞)。上游阶段的工作主要咋实验室内完成。 4. 下游阶段:是从工程菌(细胞)的大规模培养直到产品的分离纯化、质量控制等。下游阶段是将实验室成果产业化、商品化。 5. 制备基因工程药物的基本过程:获得目的基因→组建重组质粒→构建基因工程菌(或细胞)→培养工程菌→产物分离纯化→除菌过滤→半成品检定→成品检定→包装 6. 宿主菌应该满足以下要求:⑴具有高浓度、高产量、高产率;⑵能利用易得廉价原料; ⑶不致病、不产生内毒素;⑷发热量低,需氧低,适当的发酵温度和细胞形态;⑸容易进行代谢调控;⑹容易进行重组DNA技术;⑺产物容易提取纯化 7. 宿主细胞分为两大类:⑴原核细胞:大肠杆菌、枯草杆菌、芽孢杆菌、链霉菌等;⑵真核细胞:酵母、丝状真菌 8. 表达载体必须具备以下条件(特点): ⑴载体能够独立地复制 ⑵应具有灵活的克隆位点和方便的筛选标记,以利于外源基因的克隆、鉴定和筛选。而且克隆位点应位于启动子序列后,以使克隆的外源基因得以表达。 ⑶应具有很强的启动子,能为大肠杆菌的RNA聚合酶所识别。 ⑷应具有阻遏子,使启动子收到控制,只有当诱导时候才能进行转录。 ⑸应具有很强的终止子,以便使RNA聚合酶集中力量转录克隆的外源基因,而不转录其他无关的基因,同时很强的终止子所产生的mRNA较为稳定。 ⑹所产生的mRNA必须具有反义的起始信号,即起始密码AUG和SD序列,以便转录后能顺利翻译。 ⒐密码子的偏爱性:在基因组中把使用频率高的同义密码子称为主密码子或偏爱密码子。此现象被称为密码子偏爱性 ⒑融合蛋白:由一条短的原核多肽和真核蛋白结合在一起的,称为融合蛋白。 ⒒酵母的复制序列的几种不同载体:⑴YEp类(酵母附加体质粒) ⑵YRp类(酵母复制型质粒) ⑶YCp类(酵母着丝粒质粒) ⑷Yip类(酵母整合型质粒) ⒓基因工程菌的不稳定性:基因工程菌在传代过程中经常出现质粒不稳定的现象,质粒不稳定分为分裂不稳定和结构不稳定。

基因工程制药复习提纲

名词解释 1.基因工程基因工程是值在体外合成或重组特定的DNA,再与载体连接,最后导入到宿 主细胞内表达、扩增出人们需要的蛋白质,而且使这种性状可遗传给后代的技术。包括上游技术和下游技术。 2.基因工程制药基因工程制药是通过基因工程的方法生产药物,具体包括获得目的基因、 构建重组质粒、构建基因工程菌、培养工程菌、产物分离纯化、产品加工检验等步骤。 3.逆转录逆转录(reverse transcription)是某些RNA病毒由逆转录酶直接利用RNA为模 板合成DNA的过程。 4.CDNA以生物细胞的mRNA为模板,在逆转录酶的作用下合成cDNA的第一条链,然后 在合成双链DNA,并将合成的cDNA双链重组到质粒载体或噬菌体载体上,倒入宿主细胞进行增殖。在这个过程中合成的双链DNA叫做cDNA。 5.引物引物是人工合成的单链DNA小片段,碱基顺序分别与所要扩增的模板DNA双链的 5’端相同。是PCR的起始点。 6.表达载体所谓表达载体(expression vector)是指具有宿主细胞基因表达所需的调节控制 序列,能使外源基因在宿主细胞内转录和翻译的载体。 7.克隆载体克隆载体(cloning vector)是把一个有用的制药DNA片段通过重组DNA技术, 送进受体细胞中进行繁殖的工具。 8.载体载体(vector),指在基因工程重组DNA技术中将DNA片段(目的基因)转移至 受体细胞的一种能自我复制的DNA分子。 9.报告基因载体分子上有一种特殊意义的基因序列,它们表达的目的是为了证明载体已经 进入宿主细胞,并将含有外源基因的宿主细胞从其他细胞中区分并挑选出来。这种基因就是报告基因。 10.启动子启动子是位于结构基因5'端上游的DNA序列,能被RNA聚合酶识别并结合,具 有转录起始的特异性 11.PCR聚合酶链式反应是一种体外放大扩增特定DNA片段的分子生物学技术,它主要包括 变性、退火、延伸三个过程,并且多次循环。 12.包涵体包涵体(inclusion body)是存在于细胞质中的一种不可溶的蛋白质聚集折叠而 形成的晶体结构物。通常包涵体虽然具有正确的氨基酸序列,但是空间结构却是错误的。 13.蛋白表达系统蛋白表达系统是指由宿主、外源基因、载体和辅助成分组成的体系,通过 这个体系实现外源基因在宿主细胞中表达的目的。 14.单克隆抗体由单一B细胞克隆产生的高度均一、仅针对某一特定抗原表位的抗体,称为 单克隆抗体。 15.基因工程抗体基因工程抗体就是按不同的目的和需求,对抗体基因进行加工、改造和 重新装配,然后导入适当的受体细胞中表达得到的抗体分子。 16.改形抗体改性抗体(reshaped antibody,RAb)是指利用基因工程技术,将人抗体可变区 (V)中互补决定簇序列改换成鼠源单抗互补决定簇。重构成既具有鼠源性单抗的特异性又保持抗体亲和力的人源化抗体。 17.嵌合抗体在基因水平上将鼠源单克隆抗体可变区和人抗体恒定区连接起来并在合适的 宿主细胞中表达,这种抗体叫做嵌合抗体(chimeric antibody)。 18.镶面抗体将鼠源单抗可变区中氨基酸残基改造成人源的,消除了异源性且不影响可变区 的整体空间构象。 19.单链抗体单链抗体(single chain antibody fragment,scFv),是由抗体重链可变区和轻链 可变区通过15~20个氨基酸的短肽(linker)连接而成。scFv能较好地保留其对抗原的亲

基因工程制药复习提纲

名词解释 1. 基因工程基因工程是值在体外合成或重组特定的DNA,再与载体连接,最后导入到宿 主细胞内表达、扩增出人们需要的蛋白质,而且使这种性状可遗传给后代的技术。包括上游技术和下游技术。 2. 基因工程制药基因工程制药是通过基因工程的方法生产药物,具体包括获得目的基因、构建重 组质粒、构建基因工程菌、培养工程菌、产物分离纯化、产品加工检验等步骤。 3. 逆转录逆转录(reverse transcription )是某些RNA病毒由逆转录酶直接利用RNA为模 板合成DNA的过程。 4. CDNA以生物细胞的mRNA为模板,在逆转录酶的作用下合成cDNA的第一条链,然后 在合成双链DNA,并将合成的cDNA双链重组到质粒载体或噬菌体载体上,倒入宿主细胞进行增殖。在这个过程中合成的双链DNA叫做cDNA。 5. 引物引物是人工合成的单链DNA小片段,碱基顺序分别与所要扩增的模板DNA双链的 5'端相同。是PCR的起始点。 6. 表达载体所谓表达载体(expression vector)是指具有宿主细胞基因表达所需的调节控制序列,能 使外源基因在宿主细胞内转录和翻译的载体。 7. 克隆载体克隆载体(cloning vector)是把一个有用的制药DNA片段通过重组DNA技术,送进受 体细胞中进行繁殖的工具。 8. 载体载体(vector),指在基因工程重组DNA技术中将DNA片段(目的基因)转移至 受体细胞的一种能自我复制的DNA分子。 9. 报告基因载体分子上有一种特殊意义的基因序列,它们表达的目的是为了证明载体已经进入宿 主细胞,并将含有外源基因的宿主细胞从其他细胞中区分并挑选出来。这种基因就是报告基因。 10. 启动子启动子是位于结构基因5'端上游的DNA序列,能被RNA聚合酶识别并结合,具 有转录起始的特异性 11. PCR聚合酶链式反应是一种体外放大扩增特定DNA片段的分子生物学技术,它主要包括 变性、退火、延伸三个过程,并且多次循环。 12. 包涵体包涵体(inclusion body)是存在于细胞质中的一种不可溶的蛋白质聚集折叠而形成的晶体 结构物。通常包涵体虽然具有正确的氨基酸序列,但是空间结构却是错误的。 13. 蛋白表达系统蛋白表达系统是指由宿主、外源基因、载体和辅助成分组成的体系,通过这个体系 实现外源基因在宿主细胞中表达的目的。 14. 单克隆抗体由单一B细胞克隆产生的高度均一、仅针对某一特定抗原表位的抗体,称为单克隆抗 体。 15. 基因工程抗体基因工程抗体就是按不同的目的和需求,对抗体基因进行加工、改造和重新装配, 然后导入适当的受体细胞中表达得到的抗体分子。 16. 改形抗体改性抗体(reshaped antibody,RAb )是指利用基因工程技术,将人抗体可变区 (V)中互补决定簇序列改换成鼠源单抗互补决定簇。重构成既具有鼠源性单抗的特异性又保持抗体亲和力的人源化抗体。 17. 嵌合抗体在基因水平上将鼠源单克隆抗体可变区和人抗体恒定区连接起来并在合适的宿主细胞中 表达,这种抗体叫做嵌合抗体( chimeric antibody )。 18. 镶面抗体将鼠源单抗可变区中氨基酸残基改造成人源的,消除了异源性且不影响可变区的整体 空间构象。 19. 单链抗体单链抗体(single chain antibody fragment,scFv),是由抗体重链可变区和轻链可变区 通过15?20个氨基酸的短肽(linker)连接而成。scFv能较好地保留其对抗原的亲 和活性,并具有分子量小、穿透力强和抗原性弱等特点。

基因工程名词解释(全)

名词解释: 1.Gene Engineering基因工程:在体外把核酸分子(DNA的分离、合成)插入载体分子,构成遗传物质的新组合(重组DNA),引入原先没有这类分子的受体细胞内,稳定地复制表达繁殖,培育符合人们需要的新品种(品系),生产人类急需的药品、食品、工业品等。 2.HGP人类基因组计划:是一项规模宏大,跨国跨学科的科学探索工程。其宗旨在于测定组成人类染色体(指单倍体)中所包含的30亿个碱基对组成的核苷酸序列,从而绘制人类基因组图谱,并且辨识其载有的基因及其序列,达到破译人类遗传信息的最终目的。 3.Gene Therapy 基因治疗:是指将外源正常基因导入靶细胞,取代突变基因,补充缺失基因或关闭异常基因,达到从根本上治疗疾病的目的。 .基因诊断:是利用重组DNA 技术作为工具,直接从DNA水平监测人类遗传性疾病的基因缺陷。 Vector载体:是把外源DNA(目的基因)导入宿主细胞,使之传代、扩增或表达的工具。 plasmid质粒:是生物细胞内固有的、能独立于宿主染色体而自主复制、并被稳定遗传的一类核酸分子。shuttle vector穿梭载体:是指含有两个亲缘关系不同的复制子,能在两种不同的生物中复制的。 质粒不相容性;同种的或亲缘关系相近的两种质粒不能同时稳定地保持在一个细胞内的现象,称为质粒不相容性. multiple cloning sites,MCS多克隆位点:DNA载体序列上人工合成的一段序列,含有多个限制内切酶识别位点。能为外源DNA提供多种可插入的位置或插入方案。 α-互补:LacZ’基因的互补:lacZ基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酶基因的突变体之间实现互补。 粘性末端:指DNA分子的两端具有彼此互补的一段突出的单链部分, 这一小段单链部分和同一分子的另一端或其它分子末端的单链部分如果互补的话,则能通过互补碱基之间的配对, 形成双链。并在DNA连接酶的作用下, 使同一DNA分子的两端连接成环状,或使两个分子连成一大的线状分子。 cos位点:当λDNA进入细菌细胞后,便迅速通过黏性末端配对形成双链环状的DNA分子,这种黏性末端结合形成双链的区域称为cos位点。 Cosmid考斯质粒:由于λ-DNA包装蛋白只识别粘性末端的一小段顺序cos区。将这段DNA与质粒连在一起,构建的重组质粒,可装载DNA(32~45.5kb)。 pBR322:是一个人工构建的重要质粒,有万能质粒之称。它是由pSF2124、pMB1及pSC101三个亲本质粒经复杂的重组过程构建而成的。 phagemid or phasmid噬菌粒:是一类人工构建的含有单链噬菌体包装序列、复制子以及质粒复制子、克隆位点、标记基因的特殊类型的载体。 人造染色体载体:利用染色体的复制元件来驱动外源DNA片段复制的载体称之为。 BAC细菌人工染色体:是指一种以F质粒为基础建构而成的细菌染色体克隆载体,常用来克隆150kb左右大小的DNA片段,最多可保存300kb个碱基对。 YAC酵母人工染色体:是一种能够克隆长达400Kb的DNA片段的载体,含有酵母细胞中必需的端粒、着丝点和复制起始序列。 19.工具酶;基因工程中分子水平的操作,是依赖于一些重要的酶(如限制性核酸内切酶,连接酶等)作为工具对DNA进行切割和拼接,我们把这些有关的酶统称为基因工程进行切割和拼接,我们把这些有关的酶统称为基因工程工具酶。 20.R-M System限制与修饰系统:限制性内切酶将侵入细菌体内的外源DNA切成小片断,细菌自身的DNA 碱基被甲基化酶甲基化修饰所保护,不能被自身的限制性内切酶识别切割。 21.同裂酶:又称异源同序酶或异源同工酶,是指识别位点与切割位点均相同的不同来源的酶识别相同序列. 22.同尾酶:是指识别位点不同,但切出的DNA片段具有相同的末端序列的一类酶,同尾酶的切割产物互为粘性末端,并能互补连接,但连接后二个酶的识别序列均被破坏。 23.star activity星活性:在极端非标准条件下,限制酶能切割与识别序列相似的序列,这个改变的特殊性称星

生物制药 (完整版)

第一章绪论 1、生物技术药物:一般来说,采用DNA重组技术或其他生物技术研制的蛋白质或核酸类 药物。 2、生物药物按其功能用途可以分为三类:(1)治疗药物;(2)预防药物;(3)诊断药物。 3、生物技术药物的特性:(1)分子结构复杂;(2)具有种属特异性;(3)治疗针对性强, 疗效高;(4)稳定性差;(5)基因稳定性;(6)免疫原性;(7)体内的半衰期短;(8)受体效应;(9)多效性和网络效应;(10)检的特异性 4、生物技术制药的特性:高技术;高投入;长周期;高风险;高收益。 第二章基因工程制药 1、基因工程制药的药物都是用传统方法很难生产的珍贵稀有的药品,主要是医用活性蛋白 和多肽类,包括:(1)免疫性蛋白,各种抗原和单克隆抗体。(2)细胞因子,如各种干扰素,白细胞介素,集落刺激生长因子,表皮生长因子及凝血因子。(3)激素,如胰岛素,生长激素,心钠素。(4)酶类,如尿激酶,链激酶,葡激酶,组织型纤维蛋白溶酶原激活剂及超氧化物歧化酶等。 2、我国科学家经过8年刻苦攻关,成功地研制出世界上第一个采用中国健康人白细胞中克 隆的A1B型干扰素基因,组建杂交质粒,传染大肠杆菌使之高效表达的人A1B干扰素。 3、基因工程技术是将所要重组对象的目的基因插入载体,拼接,转入新的宿主细胞,构建 成工程菌,实现遗传物质的重新组合,并使目的基因在工程菌内进行复制和表达的技术。 4、基因工程药物制造的主要步骤:获得目的基因—组建重组质粒—构建基因工程菌—培养 工程菌—产物分离纯化—除菌过滤—半成品检定—成品检定—包装。 5、简单叙事反转录法克隆基因的主要步骤:mRNA的纯化;CDNA第一链的合成;CDNA 第二链的合成;CDNA克隆;将重组体导入宿主细胞;CDNA文库的鉴定;目的CDNA 的分离和鉴定。 6、目前克隆真核基因常用的方法:化学合成和反转录法。 7、基因表达的微生物宿主细胞分为两类:原核生物,目前常用的有大肠杆菌,枯草芽孢杆 菌,链霉菌。真核生物,常用的有酵母,丝状真菌。 8、目前使用最广泛的宿主菌是大肠杆菌和酿酒酵母。 9、影响目的基因在大肠杆菌中表达的因素:(1)外源基因的剂量;(2)外源基因的表达效 率:启动子的强弱;核糖体结合位点的有效性;SD序列和起始密码的间距;密码子组成。(3)表达产物的稳定性;(4)细胞的代谢负荷;(5)工程菌的培养条件。 10、融合蛋白:融合蛋白的氨基端是原核序列,羧基端是真核序列,这样的蛋白质是由 一条短的原核多肽和真核蛋白结合在一起的。 11、非融合蛋白:是指在大肠杆菌中表达的蛋白以真核的mRNA的AUG为起始,在 其氨基端不含任何细菌多肽序列。 12、质粒的不稳定分为分裂不稳定和结构不稳定。 13、质粒的分裂不稳定:是指工程菌分裂时出现一定比例不含质粒的子代菌的现象,它 主要与两个因素有关,一是含质粒菌产生不含质粒子代菌的频率,质粒丢失率与宿主菌,质粒特性和培养条件有关;二是这两种菌比生长速率差异的大小。 14、提高质粒稳定性的方法:选择合适的宿主菌;选择合适的载体;选择压力;分阶段 控制培养;控制培养条件;固定化。 15、接种量:是指移入的种子液体积和培养液的体积的比例。 16、基因工程药物的分裂纯化特点:(1)目的产物在初始物料中含量低;(2)含目的产 物的初始物料组成复杂;(3)目的产物的稳定性差;(4)种类繁多;(5)应用面广。17、分离纯化的基本过程的5个步骤:包括细胞破碎,固液分离,浓缩与初步纯化,高

高中生物基因工程核心知识点

高中生物基因工程核心知识点 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

第二章基因工程制药新版5

第三节基因工程制药生产的基本过程 工具酶的分离纯化 载体的分离纯化 外源DN A 和目的基因的分离和获得 夕卜源DNA 与载体DNA 的切割与连接 宿主细胞的选择和基因导入操作 基因工程菌的稳定性及生长代谢的特点 基因工程菌中试 基因工程菌的扩増和发酵生产 基因工程药物的分离和纯化技术 变性蛋白的复性 十一、基因工程药物的质量控 制 十二、基因工程药物的制 造实例 五、 六 、 七 、 八

六.基因工程菌的稳定性及生长代谢的特点 (_)基因工程菌质粒的不稳定性 (二)质粒稳定性的分析方法 (三)质粒不稳定的原因(四)提高质粒稳定性的方法(五)基因工程菌的生长速率(六)蛋白质产量/菌体 数量比 (七)能量供应与菌体生长的关系 (八)小分子前体.催化剂供应与菌体生长的关系

■因工程菌在传代过程中常出现质粒不稳定的w. 现象,有分裂不稳定和结构不稳定。由于质粒不稳定导致的质粒丢失菌与含有质粒的菌之间生产速率不一致导致可能的生长优势,进而能在培养基中逐渐取代含质粒菌成为优势菌群,从而减少基因表达的产率,导致基因工程菌在生产过程中出现不稳定现象。 (二)质粒稳定性的分析方法

(1)将工程菌堵养液样品适当稀释,均匀涂于不含抗生素标记的平板培养基,培养10-12h ,统计所长出的菌落数A ; (2 )然后随机挑选100个菌落,接种到含有抗生素标记的平板堵养基,壇养10?12h , 统计所长出的菌落数B ; (3 )计算B/A的比值。该比值能反映质粒的稳定性?称为稳定性(stability.ST)

不稳定的原因 指基因工程菌在分裂的子代菌体中,出现一定比例不含质粒的现象。它主要与2个因素有关: (1)工程窗产生幺失质粒的概率,拷贝量低的工 程细菌,它所产生不含质粒的细菌变异株和概率较大。 (2 )丢失质粒的细菌.含有质粒的工程菌之间的 竞争力大小。 2、结构不稳定:指外源基因从质粒上丢失.或者发生 碱基重排.缺失现象,最终导致工程菌性能改变的现象。

基因工程制药(2)

基因工程制药

(一) 概述 (二) 基因工程药物生产的基本过程 (三) 目的基因的获得 (四) 基因表达 (五) 基因工程菌的稳定性 (六) 基因工程菌生长代谢的特点 (七) 基因工程菌发酵 (八) 基因工程药物的分离纯化 (九) 基因工程药物的质量控制 (十) 基因工程药物制造实例

表达系统:一个完整的表达系统通常包括配套的表达载体和表达菌株,如果是特殊的诱导表达还包括诱导 剂,如果是融合表达还包括纯化系统或者Tag检测等等。 表达载体:包括启动子,多克隆位点,终止密码,融合Tag(如果有的话),复制子,筛选标记/报告基因 等。表达菌株:不同的表达载体对应有不同的表达菌 株。

组成型表达::表达载体的启动子为组成型启动子,也就是一 组成型表达 直努力不停表达目的蛋白的启动子,如pMAL系统。这类表达载体通常表达量比较高,成本低,但是不适合表达一些对宿主细菌生长有害的蛋白。 诱导型表达::表达载体采用诱导型启动子,只有在诱导剂存 诱导型表达 在的条件下才能表达目的产物。这种方法有助于解决有毒蛋白或者过量表达对细胞的影响。另外也有启动子是组成型的,但是启动子所依赖的转录酶是诱导表达的,也属于诱导表达系统。

融合表达:表达载体的多克隆位点上有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。对于特别小的分子建议用较大的Tag(如GST)以获得稳定表达;而一般的基因多选择小Tag以减少对目的蛋白的影响。His-Tag是最广泛采用的Tag。 分泌表达:在起始密码和目的基因之间加入信号肽,可以引导目的蛋白穿越细胞膜,避免表达产物在细胞内的过度累积而影响细胞生长,或者形成包含体,而且表达产物是可溶的活性状态不需要复性。通常这种分泌只是分泌到细胞膜和细胞壁之间的周质空间。 可溶性表达:大肠杆菌表达效率很高,特别是强启动子,目的蛋白来不及折叠而形成不溶的包含体颗粒,包含体容易纯化但是复性效率不高。分泌表达可以得到可溶的产物,也有部分融合Tag 有助于提高产物的可溶性,比如Thio,pMAL系统。

生物制药思考题

第一章绪论 1.生物技术的定义与内容 生物技术是指应用自然科学和工程学的原理,依靠生物作用剂的作用将物料进行加工以提供产品或为社会服务的技术。 生物技术内容:基因工程、细胞工程、酶工程、发酵工程等。 生物技术的一个主要目标就是生物物质的高效生产。 2.什么是生物药物?生物药物可分为哪些类型? 生物药物:利用生物体的初级或次级代谢产物、生物组织或整个生物体来生产用于预防、诊断或治疗疾病的医用品。 生物药物的分类(按来源与性质分类) 1. 天然生物药物:天然存在于动物、植物、微生物以及各种海洋生物等生物体内,直接通过提取、分离和纯化获得的有效的药理成分; 2. 重组药物:重组多肽、蛋白质 3. 基因药物:核酸类药物(基因治疗剂、基因疫苗、反义药物等) 4. 合成与半合成的生物药物 生物药物按功能与用途划分为: 1. 治疗药物 2. 预防药物(主要预防传染病,疫苗、类毒素) 3. 诊断药物(速度快、灵敏度高、特异性强) 3. 了解和熟悉一些常见的基因工程肽类药物。 细胞因子(cytokine):细胞分泌的具有生物活性的小分子蛋白质的统称。在很多情况下,多种免疫细胞间的相互作用是通过细胞因子介导完成的。干扰素类(interferon,IFN),白细胞介素类(interleukin,IL),集落刺激因子类(colony-stimulating facor, CSF),表皮生长因子(epidermal growth factor,EGF),神经生长因子(nerve growth factor,NGF ),肿瘤坏死因子类(tumor necrosis factor,TNF),红细胞生成素(erythropoietin,EPO),凝血因子VIII、IX。 激素:胰岛素(insulin),生长激素(growth,GH),降钙素(calcitonin ),心钠素(atrial natriuretic factor, ANF )。 药用酶及其他蛋白药物:链激酶(streptokinase,SK),尿激酶(urokinase),葡激酶(staphylokinase),组织型纤溶酶原激活剂(tissue-type plasminogen activator,t-PA ),超氧化物岐化酶(superoxide dismutases,SOD)。 第二章基因工程制药 1、写出基因工程的基本要素及制备基因工程药物的基本过程。 基因工程基本要素:工具酶,目的基因,载体,宿主

基因工程复习题答案

基因工程原理复习题思考题 基因工程绪论 1、基因工程的定义与特征。 定义:在体外把核酸分子(DNA的分离、合成)插入载体分子,构成遗传物质的新组合(重组DNA),引入原先没有这类分子的受体细胞内,稳定地复制表达繁殖,培育符合人们需要的新品种(品系),生产人类急需的药品、食品、工业品等。 特征:1、具跨越天然物种屏障的能力。 2、强调了确定的DNA片段在新寄主细胞中的扩增。 2、试述基因工程的主要研究内容。 1)、目的基因的分离 2)、DNA的体外重组(载体、受体系统等) 3)、重组DNA分子转移到受体细胞及其筛选 4)、基因在受体细胞内的扩增、表达、检测及其分析。 3、基因工程在食品工业上有何应用发展? 主要是通过基因重组,使各种转基因生物提高生产谷氨酸、调味剂、酒类和油类等有机物的产率;或者改良这些有机物组成成分,提高利用价值。 4、转基因是一把双刃剑,请客观谈谈对转基因及转基因食品安全性的认识。 转基因技术所带来的好处是显而易见的,在人类历史进步和发展中起到了积极作用。 首先,通过该项技术可以提供人们所需要的特性,改良培育新品种; 第二,延长食品保存时间或增加营养成分; 第三,将抗虫防菌基因转入到作物中,使作物本身产生抵抗病虫害侵袭的能力,减少了农药的使用量,有利于环境保护; 第四,转基因技术及基因食物在医学方面得到广泛研究和应用。 人们对转基因技术的主要担忧在于环境方面。外源基因的导入可能会造就某种强势生物,产生新物种或超级杂草、损害非目标生物、破坏原有生物种群的动态平衡和生物多样性,也即转基因生物存在潜在的环境安全问题。 转基因作物的大面积种植已有数年,食用转基因食品的人群至少有10亿之多,但至今仍未有转基因食品对生命造成危害的实例;更何况目前每一种基因工程食品在上市前,都要经过国家法律认可,食品卫生部门和环境部门的严格检测。只有测试合格了,才能投放市场。因此公众完全可以安全地消费、大胆地食用转基因食品。 第一章 DNA的分子特性与利用 1、原核生物和真核生物的基因表达调控有何差别? 1)原核基因表达调控的三个水平:转录水平调控、翻译水平调控、蛋白质加工水平的调控原核基因表达调控主要是在转录水平上的调控。 2)真核生物基因表达的特点: ● 1.基因组DNA存在的形式与原核生物不同; ● 2.真核生物中转录和翻译分开进行; ● 3.基因表达具有细胞特异性或组织特异性; ● 4.真核基因表达的调控在多个水平上进行:DNA水平的调控、转录水平调控、转 录后水平调控、翻译水平调控、蛋白质加工水平的调控; 2、什么是基因?根据基因的产物,基因可分为哪三类? 基因是具有生物学功能的、在染色体上占据一定位置的一段核苷酸序列,是分子遗传的功能

生物技术制药课后思考题

第一章:绪论 思考题 1.什么是生物技术?生物技术所包含的内容及定义。 答:1)生物技术又称生物工程,指人们以现代生命科学为基础,结合先进的工程技术手段和 其他基础学科的科学原理,按照预先的设计改造生物体或加工生物原料,为人类生产出所需 产品或达到某种目的的技术。2)包括基因工程、细胞工程、发酵工程、酶工程、蛋白质工程、抗体工程、糖链工程、海洋生物技术及生物转化等。(具体定义见P1)。 2.生物技术药物的概念及分类。 答:1)指采用DNA重组技术或其他生物技术生产的用于预防、治疗和诊断疾病的药物,主要是重组蛋白或核酸类药物。2)a.按照用途:预防、诊断、治疗;b.按作用类型:细胞因子类、激素类、酶类、疫苗、单克隆抗体类、反义核酸、RNA干扰类、基因治疗药物;c.按照生化特性:多肽类、蛋白质类、核酸类、聚乙二醇化多肽或蛋白质。 3.生物技术药物在理化性质、药理学与作用、生产制备和质量控制方面的特性。 答:1)理化性质(从药物多是蛋白质或核酸出发):a.相对分子质量大;b.结构复杂;c.稳定性差;2)药理学作用:a.活性与作用机制明确;b.作用针对性强;c.毒性低;d.体内半衰期短; e.有种属特异性; f.可产生免疫原性;3)生产制备特性:a.药物分子在原料中含量低;b.原料 中常存在降解目标产物的杂质;c.制备工艺条件温和;d.分离纯化困难;e.产品易受有害物质 污染;4)质量控制特性:a.质量标准内容的特殊性;b.制造项下的特殊规定;c.检定项下的特殊规定。 4.生物技术制药的概念和主要研究内容与任务。 答:1)指利用基因工程、细胞工程等生物技术的原理和方法,来研究、开发和生产预防、治 疗和诊断疾病的药物的一门科学。2)主要研究内容与任务:a.生物制药技术的研究、开发与应用;b.利用生物技术研究、开发和生产药物。 第二章:基因工程制药 思考题 1.简述基因工程制药的基本原理和基本流程。 答:1)利用重组DNA技术将外源基因导入到宿主菌或宿主细胞进行大规模培养和诱导表达以获取蛋白质药物的过程称为基因工程制药。2)目的基因的获得、表达载体的选择、目的基因与载体的连接、重组DNA转入到宿主细胞、重组子的筛选与鉴定、工程菌的发酵表达重组蛋白、表达产物的分离纯化、重组蛋白制剂的生产。 2.与化学药物相比较,基因工程药物有什么特点? 答:a.基因工程药物是由活细胞代谢产生的;b.基因工程药物的相对分子质量要远远大于一 般的小分子化学药物;c.在制备基因工程药物时,需要除去宿主蛋白和核酸残留,同时还要 防止其他物质的污染,而化学药物大多是通过组合合成的,杂质是原料残留及反应副产物 等。 3.原核与真核表达体系各有什么优缺点?哪些蛋白质需要用真核表达体系? 答:1)原核表达体系优点:宿主遗传背景清楚,商品化菌种齐全,方便购买;原核细胞操作简便、繁殖快、周期短;大规模生产成本低,产量较高;下游纯化工艺简单,易于控制,生 产效率高;缺点:缺乏蛋白质折叠和翻译后加工系统;分泌能力不足,真核蛋白质常形成不 溶性的包含体,表达产物需经变性、复性才恢复活性;有的表达系统,如大肠杆菌有内毒素,很难除去;大肠杆菌中的表达不存在信号肽,产品多为胞内产物,提取困难。

第二章 基因工程制药(修改2)

第二章基因工程制药 教学目的: 了解基因工程技术在医药工业中的应用; 熟悉基因工程制药中常用的工具酶、克隆载体; 掌握基因工程药物无性繁殖系的构建过程。 教学重点: 基因工程药物无性繁殖系的构建 计划学时:4 第一节基因工程制药概述 DNA技术,是基因分子水平上的遗传工程,是70年代初期在分子遗传学基础上发展起来的一个崭新领域,是一门能人工定向改造生物遗传性状的育种新技术。 一、基因工程技术在医药工业中的应用 (1)基因工程药物品种的开发 利用基因工程细菌等表达人类—些重要基因片段,可产生具生理活性的肽类和蛋白质类药物,降低生产成本。 如应用传统的技术方法提取1mg生长激素抑制素(Somatostatin)需要用十万只羊的下丘脑,所要耗费的资金大约等于经由人造卫星从月球上搬回1kg石头。而用基因工程方法生产这一激素只需10L大肠杆菌培养液,其价格大约为每毫克0.3美元。 (2)应用基因工程技术建立新药的筛选模型 应用基因重组技术将各种酶、受体模型筛选所需的靶酶的活性中心或受体的配体、亚基等在微生物中大量表达,有利于采用机器人进行大量筛选。 (3)应用基因工程技术改良菌种,产生新的微生物药物。 (4)基因工程技术在改进药物生产工艺中的应用 用带关键酶基因的质粒转换菌种,增加菌种中的关键酶基因剂量和转录水平;抑制菌种其它非必要基因的表达,提高相应产量的同时使提取、精制、半合成等后处理工序变得更方便;将血红蛋白基因克隆进菌种后提高对缺氧环境的耐受力,减少供氧这一限制因素的影响并节约能量。 (5)利用转基因动、植物生产蛋白质类药物。 (6)基因工程抗体在医药工业中的应用 它通过原核生物细胞或昆虫细胞表达抗体的小分子有效部位进行大规模廉价生产,可用作导向药物的载体。 二、应用基因工程和蛋白质工程技术开发的新型药物简介 1.人胰岛素(Insulin) 胰岛素用于临床糖尿病的医治已有近70年的历史,长期以来,其来源仅仅是从动物的胰脏中提取,而动物胰岛素与人胰岛素在氨基酸组成上存有一定的差异,长期注射人体会产生自身免疫反应,影响治疗效果。自80年代初开始用基因工程技术大量生产人胰岛素了。 国外人胰岛素的基因工程生产一般采用两种方式:一是分别在大肠杆菌中合成A链和B链,再在体外用化学方法连接两条肽链组成胰岛素。美国Eli Lilly公司采用该法生产的重组人胰岛素Humulin 最早获准商品化;另一种方法是用分泌型载体表达胰岛素原,如丹麦Novo Nordisk工业公司用重组酵母分泌产生胰岛素原,再用酶法转化为人胰岛素。 我国,1993年,北京大学报道了以部分牛凝乳酶原B基因与人胰岛素原基因进行融合,高表达出融合蛋白,经加工后可得到具有天然活性的人胰岛素原纯品。 2 人生长激素(Human growth hormone, hGH) 主要用途是治疗侏儒症,临床试验认为对慢性肾功能衰竭和Turner综合症也有很好疗效。 3 干扰素(Interferon,IFN)

相关主题
文本预览
相关文档 最新文档