当前位置:文档之家› 导数及定积分知识点总结及练习(经典)

导数及定积分知识点总结及练习(经典)

导数及定积分知识点总结及练习(经典)
导数及定积分知识点总结及练习(经典)

导数的应用及定积分

(一)导数及其应用

1.函数y =f (x )在x =x 0处的瞬时变化率是lim

Δx →0

Δy

Δx =lim Δx →

f (x 0+Δx )-f (x 0)Δx .我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim

Δx →0

Δy

Δx =lim Δx →

f (x 0+Δx )-f (x 0)Δx 。 2.导数的几何意义

函数y =f (x )在x =x 0处的导数,就是曲线y =f (x )在x =x 0处的切线的斜率 ,即k =f ′(x 0)=lim

Δx →0

f (x 0+Δx )-f (x 0)

Δx

.

3.函数的导数

对于函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数.当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y =f (x )的导函数(简称为导数),即f ′(x )=y ′=lim

Δx →0

f (x 0+Δx )-f (x 0)

Δx

.

4.函数y =f(x)在点x 0处的导数f ′(x 0)就是导函数f ′(x)在点x =x 0处的函数值,即f ′(x 0)=f ′(x)|x =x 0。

5.常见函数的导数

(x n )′=__________.(1

x )′=__________.(sin x )′=__________.(cos x )′=__________.

(a x )′=__________.(e x )′=__________.(log a x )′=__________.(ln x )′=__________. (1)设函数f (x )、g (x )是可导函数,则:

(f (x )±g (x ))′=________________;(f (x )·g (x ))′=_________________. (2)设函数f (x )、g (x )是可导函数,且g (x )≠0,??

??

f (x )

g (x )′=___________________.

(3)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为yx ′=y u ′·u x ′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.

6.函数的单调性

设函数y =f(x)在区间(a ,b)内可导,

(1)如果在区间(a ,b)内,f ′(x)>0,则f(x)在此区间单调__________; (2)如果在区间(a ,b)内,f ′(x)<0,则f(x)在此区间内单调__________.

(2)如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化较__________,其图象比较__________.

7.函数的极值

x ,如果都有________,则称函数f(x)在点x 0处取得________,并把x 0称为函数f(x)的一个_________;如果都有________,则称函数f(x)在点x 0处取得________,并把x 0称为函数f(x)的一个________.极大值与极小值统称为________,极大值点与极小值点统称为________.

8.函数的最值

假设函数y =f(x)在闭区间[a ,b]上的图象是一条连续不断的曲线,该函数在[a ,b]上一定能够取得____________与____________,若该函数在(a ,b)内是__________,该函数的最值必在极值点或区间端点取得.

9.生活中的实际优化问题

(1)在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系式给予表示,还应确定函数关系式中__________的取值范围.

(2)实际优化问题中,若只有一个极值点,则极值点就是__________点. (二)定积分

1.曲边梯形的面积

(1)曲边梯形:由直线x =a 、x =b(a≠b)、y =0和曲线________所围成的图形称为曲边梯形.

(2)求曲边梯形面积的方法与步骤:

①分割:把区间[a ,b]分成许多小区间,进而把曲边梯形拆分为一些_______________; ②近似代替:对每个小曲边梯形“___________”,即用__________的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的________;

③求和:把以近似代替得到的每个小曲边梯形面积的近似值________;

④取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个________,即为曲边梯形的面积.

2.求变速直线运动的路程

如果物体做变速直线运动,速度函数为v =v(t),那么也可以采用________、________、________、________的方法,求出它在a≤t≤b 内所作的位移s.

3.定积分的概念

如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0

i 1f(ξi )Δx

=_____________(其中Δx 为小区间长度),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的_________,记作

?

b

a

f (x)dx ,即?b

a

f (x )d x

=_________.

________,x 叫做________,f(x)dx 叫做________.

4.定积分的几何意义

如果在区间[a ,b ]上函数f (x )连续且恒有___________,那么定积分

?

b

a

f (x)dx 表示由

_________________________,y =0和_____________所围成的曲边梯形的面积.

5.定积分的性质 ①?

b

a

kf(x)dx =__________________(k 为常数);

②?b

a

(x)]dx f ±(x)[f 2

1

=________________;

?

b

a

f (x)dx =?c

a

f (x)dx +_______________(其中a

6.微积分

(1)微积分基本定理

如果F (x )是区间[a ,b ]上的________函数,并且F ′(x )=________,那么?

b

a

f (x)dx =

___________.

(2)用微积分基本定理求定积分,关键是找到满足F ′(x )=f (x )的函数F (x ),即找被积函数的________,利用求导运算与求原函数运算互为逆运算的关系,运用基本初等函数求导公式和导数的四则运算法则从反方向上求出F (x ).

(3)被积函数的原函数有很多,即若F (x )是被积函数f (x )的一个________,那么F (x )+C (C 为常数)也是被积函数f (x )的________.但是在实际运算时,不论如何选择常数C (或者是忽略C )都没有关系,事实上,以F (x )+C 代替式中的F (x )有?

b

a

f (x)dx =[F (b )+C ]-[F (a )

+C ]=F (b )-F (a ).

(4)求定积分的方法主要有:①利用定积分的________;②利用定积分的___________;③利用_______________。

(5)常用公式 ①?b

a cdx =cx |b

a (c

为常数); ②

?

b

a dx x n =

1n +1

x n +1|b

a (n ≠-1); ③?

b

a

1x

d x =ln x |b a (b >a >0); ④?b

a

sinxdx =-cos x |b a

⑤?b

a

cosxdx

=sin x |b a ;

?

b

a

dx e x =e x |b a ;

⑦?

b

a

dx a x

=a x ln a |b

a (a >0且a ≠1).

1.若直线y =-x +b 为函数y =1

x 的图象的切线,求b 及切点坐标.

2.曲线y =2

3x 2在点(3,6)处的切线与x 轴、直线x =2所围成的三角形的面积为

________________.

3.设y =sin x

1+cos x ,-π

4.求下列函数的导数.

①y =x 2sin x ②y =x 2(x 2-1) ③y =1

x +22x +33x

④y =x ·tan x ⑤y =ln sin x

x

⑥y =x 1-x

⑦y =sin x

2????1-2cos 2x 4

5.已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0. (1)求a ,b 的值;

1

6.设函数f (x )=ax -a x

-2ln x .

(1)f ′(2)=0,求函数f (x )的单调区间;

(2)若f (x )在定义域上是增函数,求实数a 的取值范围.

7.已知f(x)=x 3

+3ax 2

+bx +a 2

在x =-1时有极值0,求常数a 、b 的值.

8.设函数f(x)=x 3

+ax 2

-a 2

x +m(a>0). (1)求函数f(x)的单调区间;

(2)若函数f(x)在x ∈[-1,1]内没有极值点,求a 的取值范围;

(3)若对任意的a ∈[3,6],不等式f(x)≤1在x ∈[-2,2]上恒成立,求m 的取值范围.

9.设f (x )=-13x 3+1

2

x 2+2ax .

(1)若f (x )在(2

3

,+∞)上存在单调递增区间,求a 的取值范围;

(2)当0

3,求f (x )在该区间上的最大值.

10.某工厂生产某种产品,已知该产品的月产量x (吨)与每吨产品的价格P (元/吨)之间的关系为P =24200-1

5x 2,且生产x 吨的成本为R =50000+200x 元.问该产品每月生产多

少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本).

11.计算?

-3

3

(9-x 2-x 3)d x 的值;

12.求下列定积分: (1)?

3

1

?

???2x -1x 2d x (2)?9

4x (1+x )d x (3)

?

26

π

πcos 2x d x (4)

?

-2

2

2|x -x |d x .

13.求直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积.

6题:(1)由已知得x >0,故函数f (x )的定义域为(0,+∞). ∵f ′(x )=a +a x 2-2x ,∴f ′(2)=a +a 4-1=0,∴a =4

5.

∴f ′(x )=45+45x 2-2x =2

5x

2(2x 2-5x +2),

令f ′(x )>0,得02,令f ′(x )<0,得1

2

(2)若f (x )在定义域上是增函数,则f ′(x )≥0对x >0恒成立,因为f ′(x )=a +a x 2-2

x =

ax 2-2x +a

x 2

,所以需x >0时ax 2-2x +a ≥0恒成立, 即a ≥2x

x 2+1

对x >0恒成立.

因为2x x 2+1

=2x +1x ≤1,当且仅当x =1时取等号,所以a ≥1.

7题:因为f (x )在x =-1时有极值0,且f ′(x )=3x 2

+6ax +b .

所以???

??

f ′(-1)=0f (-1)=0,即?

????

3-6a +b =0

-1+3a -b +a 2

=0,

解得?

??

??

a =1

b =3,或?

??

??

a =2

b =9 .

当a =1,b =3时,f ′(x)=3x 2+6x +3=3(x +1)2≥0, 所以f(x)在R 上为增函数,无极值,故舍去;

当a =2,b =9时,f ′(x)=3x 2+12x +9=3(x +1)(x +3). 当x ∈[-3,-1]时,f(x)为减函数; 当x ∈[-1,+∞)时,f(x)为增函数,

所以f(x)在x =-1时取得极小值.因此a =2,b =9. 8题:(1)∵f ′(x )=3x 2

+2ax -a 2

=3(x -a

3

)(x +a ),

又a >0,∴当x <-a 或x >a 3时,f ′(x )>0;当-a

3

时,f ′(x )<0.

∴函数f (x )的单调递增区间为(-∞,-a ),(a 3,+∞),单调递减区间为(-a ,a

3).

(2)由题设可知,方程f ′(x )=3x 2

+2ax -a 2

=0在[-1,1]上没有实根,

∴?

??

??

f ′(-1)<0,

f ′(1)<0,∴?

????

3-2a -a 2

<0,

3+2a -a 2

<0,

∵a >0,∴a >3.

(3)∵a ∈[3,6],∴a

3

∈[1,2],-a ≤-3, 又x ∈[-2,2],∴当x ∈[-2,a 3)时,f ′(x )<0,f (x )单调递减,当x ∈(a

3

,2]时,

f (x )单调递增,故f (x )的最大值为f (2)或f (-2).

而f(2)-f(-2)=16-4a 2

<0,f(x)max =f(-2)=-8+4a +2a 2

+m , 又∵f(x)≤1在[-2,2]上恒成立, ∴-8+4a +2a 2

+m ≤1,

∵9-4a -2a 2

的最小值为-87, ∴m ≤-87.

9题:(1)由f ′(x )=-x 2

+x +2a =-(x -12)2+14

+2a ,

当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=29+2a ;令29+2a >0,得a >-1

9,所以,

当a >-19时,f (x )在(2

3

,+∞)上存在单调递增区间.

(2)令f ′(x )=0,得两根

x 1=

1-1+8a 2,x 2=1+1+8a

2

, 所以f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增. 因为0

2

+6a <0,所以f (4)

所以f (x )在[1,4]上的最小值为f (4)=8a -403=-16

3,得a =1,x 2=2,从而f (x )在[1,4]

上的最大值为f (2)=10

3

10题:每月生产x 吨时的利润为

f (x )=(24200-15x 2)x -(50000+200x )=-15

x 3+24000x -50000 (x ≥0).

由f ′(x )=-35

x 2

+24000=0,解得x 1=200,x 2=-200(舍去).

因f (x )在[0,+∞)内只有一个点x =200使f ′(x )=0,故它就是最大值点,且最大值为:f (200)=-15

×2003

+24000×200-50000=3150000(元)

答:每月生产200吨产品时利润达到最大,最大利润为315万元. 11题由定积分的几何意义得

?

-3

3

9-x 2

d x =π×32

2=9π

2

?-3

3x 3d x =0,由定积分性质得

?

-3

3

(9-x 2

-x 3

)d x =

?

-3

3

9-x 2

d x -

?

-3

3

x 3d x =

2

. 13题:(1)如图所示

由?

????

y =4x ,y =x 3

.解得?

??

??

x =2,y =8,

或?

??

x =-2,

∴第一象限的交点坐标为(2,8)

由定积分的几何意义得,

S= 20(4x-x3)d x=(2x2-44x)|20=8-4=4.

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

最新【强烈推荐】高二数学-导数定积分测试题含答案

高二数学周六(导数、定积分)测试题 (考试时间:100分钟,满分150分) 班级 姓名 学号 得分 一、选择题(共10小题,每小题5分,共50分) 1. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为 ( ) A.1 B.2 C.-1 D. 0 2. 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 ( ) A .(x-1)3+3(x-1) B .2(x-1)2 C .2(x-1) D .x-1 3. 已知函数()f x 在1x =处的导数为1,则 0(1)(1)3lim x f x f x x →--+= ( ) A .3 B .23- C . 13 D .32- 4. 函数y =(2x +1)3在x =0处的导数是 ( ) A. 0 B. 1 C. 3 D. 6 5.函数)0,4 (2cos π 在点x y =处的切线方程是 ( ) A .024=++πy x B .024=+-πy x C .024=--πy x D .024=-+πy x 6.曲线3cos (0)2 y x x π=≤≤ 与坐标轴围成的面积是 ( ) A. 4 B. 52 C. 3 D. 2 7.一质点做直线运动,由始点起经过ts 后的距离为s=4 1t 4-4t 3+16t 2,则速度为零的时刻是 ( ) A.4s 末 B.8s 末 C.0s 与8s 末 D.0s,4s,8s 末 8.函数3 13y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C. 极小值-1,极大值3 D. 极小值-2,极大值2 9. 已知自由下落物体的速度为V=gt ,则物体从t=0到t 0所走过的路程( )

(完整版)定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数 dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ))(2 122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、3 23xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 23xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π ? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、1 2 二、填空 (2小题,共5分) 得分 阅卷人

§_5_定积分习题与答案

第五章 定积分 (A) 1.利用定积分定义计算由抛物线12 +=x y ,两直线)(,a b b x a x >==及横轴所 围成的图形的面积。 2.利用定积分的几何意义,证明下列等式: ? =1 12)1xdx 4 1) 21 2π = -? dx x ?- =π π0sin ) 3xdx ?? - =2 2 20 cos 2cos )4π ππ xdx xdx 3.估计下列各积分的值 ? 33 1arctan ) 1xdx x dx e x x ?-0 2 2)2 4.根据定积分的性质比较下列各对积分值的大小 ?2 1 ln )1xdx 与dx x ?2 1 2)(ln dx e x ?10)2与?+1 )1(dx x 5.计算下列各导数

dt t dx d x ?+20 2 1)1 ?+32 41)2x x t dt dx d ?x x dt t dx d cos sin 2)cos()3π 6.计算下列极限 x dt t x x ?→0 20 cos lim )1 x dt t x x cos 1)sin 1ln(lim )20 -+?→ 2 2 20 )1(lim )3x x t x xe dt e t ? +→ 7.当x 为何值时,函数? -=x t dt te x I 0 2 )(有极值? 8.计算下列各积分 dx x x )1 ()12 1 42? + dx x x )1()294+?

? --212 12) 1()3x dx ? +a x a dx 30 2 2) 4 ?---+2 11)5e x dx ?π20sin )6dx x dx x x ? -π 3sin sin )7 ? 2 )()8dx x f ,其中??? ??+=22 11)(x x x f 1 1>≤x x 9.设k ,l 为正整数,且l k ≠,试证下列各题: ?- =π π 0cos )1kxdx πππ =?-kxdx 2cos )2 ?- =?π π 0sin cos )3lxdx kx ?-=π π 0sin sin )4lxdx kx

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

导数与定积分单元测试

导数与定积分测试卷 一、 选择题(共10小题,每小题5分,共50分) 1.曲线2)(3 -+=x x x f 在点P 处的切线平行于直线14-=x y ,则点P 的坐标为( ) )0,1.(A )8,2.(B )0,1.(C 和)4,1(-- )8,2.(D 和)4,1(-- 2.若2)(0'-=x f ,则=--+→h h x f h x f h ) ()(000 lim ( ) 2.-A 4.-B 6.-C 8.-D 3.函数13)(3 +-=x x x f 在]0,3[-上的最大、最小值分别是( ) 1,1.-A 17,1.-B 17,3.-C 19,3.-D 4.若函数b bx x x f 33)(3 +-=在)1,0(内有极小值,则b 的取值范围是( ) 10.<b C 2 1.< b D 5.由曲线x x f = )(和3 )(x x g =所围成图形的面积可用定积分表示为( ) dx x dx x A ? ? + 1 3 1 . dx x dx x B ? ?- 1 1 03 . dx x dx x C ? ? - - 1 1 3 . dx x dx x D ? ? - 1 3 1 . 6.设))(()(),...,()(),()(,sin )('1'12'010N n x f x f x f x f x f x f x x f n n ∈====+,则=)(2011x f ( ) x A sin . x B sin .- x C cos . x D cos .- 7.设653 1)(2 3+++= x ax x x f 在区间]3,1[上为单调函数,则实数a 的取值范围为( ) ),5.[+∞- A ]3,.(--∞ B ),5[]3,.(+∞- ?--∞C ]5, 5.[- D 8.已知函数2 2 3 )(a bx ax x x f +++=在1=x 处有极值10,则b a +的值为( ) 07.或-A 16-.或B 0.C 7.-D 9.设)100)...(3)(2)(1()(----=x x x x x f ,则=)1(' f ( ) 99.-A ! 100.-B ! 100.C ! 0.D 10.由曲线1,2,===y x e y x 围成的区域的面积为( ) e e A -2 . 1.2 --e e B 3.2 -e C e D -3.

定积分练习习题及标准标准答案.doc

第五章 定积分 (A 层次 ) 1. 2 sin x cos 3 xdx ; 2 . x 2 a 2 x 2 dx ; 3 . 3 dx ; a 1 x 2 1 x 2 1 4. 1 xdx ; 4 5. 5 4x 1 dx ; 1 dx ; x 1 6. 3 1 x 1 4 e 2 7. 1 dx ; dx ; 9 . 1 cos2xdx ; 8 . x 2 2x 2 x 1 ln x 2 10. x 4 sin xdx ; 11 . 2 4 cos 4 xdx ; 12 . 3 sin 2 x dx ; 5 x 2 5 x 4 2x 2 1 13. 3 x dx ; 14 . 4 ln x dx ; 15 . 1 xarctgxdx ; 2 1 4 sin x x 16. 2 e 2x cosxdx ; 17 x sin x 2 dx ; 18 e . 0 . 1 sin ln x dx ; 0 19. 2 cos x cos 3 xdx ; 20 . 4 sin x dx ; 21 . x sin x dx ; 4 0 1 sin x 0 1 cos 2 x 1 1 x 1 x 2 2 x ln dx ; 23 . 24 . 2 ln sin xdx ; 22. 0 1 x 1 x 4 dx ; 0 25. dx dx 0 。 1 x 2 1 x (B 层次 ) y t x 所决定的隐函数 对 的导数 dy 。 1.求由 cos 0 y x e dt tdt dx 2.当 x 为何值时,函数 I x x te t 2 dt 有极值? 3. d cos x 2 dt 。 cos t dx sin x 4.设 f x x 1, x 1 2 ,求 f x dx 。 1 2 , x 1 0 2 x x arctgt 2 5. lim 0 dt 。 x 2 x 1

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

定积分单元测试题

定积分单元测试题 一、填空题 1、 dx x ? +4 1 1=___________。 2、广义积分43 x dx - +∞ =? 3、________1 1 02=+?dx x x 。 4、()________1202 =-?dx x 。 5、设 ()32 1 2-=? -x dt t f x ,则()=2f 。6、=+? 3 1 ln 1e x x dx 。 7、()=?? ????++++??-dx x x x x x π πcos 113sin 222 4 。8、x dt t x x ?→0 20cos lim =____________ 9、12 12|| 1x x dx x -+=+? 。 10、= -?dx x 201. 11、2 22sin 1cos x x dx xdx π π-+=+? 12、已知()2 cos ,x F x t dt =?则()F x '= 13、已知()2 x t x F x te dt -=?,则()F x '= 二、单项选择 1、若连续函数 ()x f 满足关系式()2ln 220+?? ? ??=?x dt t f x f ,则()x f 等于( )。 (A )2ln x e ; (B ) 2ln 2x e ; (C ) 2ln +x e ; (D ) 2ln 2+x e 。 2、设 )(x f 连续,则=-?x dt t x tf dx d 0 22)(( ) (A ))(2x xf ; (B ))(2x xf -; (C ))(22x xf ; (D ))(22x xf -。 3、设 )(x f 是连续函数,且?+=10 )(2)(dt t f x x f ,则)(x f =( ) (A )1-x ; (B )1+x ; (C)1+-x ; (D )1--x 。 4、设()()x a x F x f t dt x a = -?,其中()f x 为连续函数,则lim ()x a F x →=( ) (A )a (B ))(a af (C ))(a f (D )0 5、 =?dt e dx d b x t 2( ) (A)2x e (B)2x e - (C)22x b e e - (D)2 2x xe - 6、=-+?→x dt t x x cos 1)1ln(lim 2sin 0 ( ) (A)8 (B)4 (C)2 (D)1 7、反常积分收敛的是( )

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

高中数学导数及微积分练习题

1.求导:(1)函数y= 2cos x x 的导数为-------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x ) 2 ------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3)---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A). 54 (B).52 (C).51 (D).5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1 ()1()()0()1 2f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22 =与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3 x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1 ,则=a _________ 。 8.已知抛物线2y x b x c =++在点(1 2),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.

导数与定积分

洞口三中2008年下学期高二数学(理科)训练测试试题 姓名________ 学号_____ 测试内容:选修2-2:导数、定积分以及其简单应用 一、选择题: 1、曲线 3y x =在点)8,2(处的切线方程为( ) A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 2.设2 1sin x y x -=,则'y =( ) A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin )1(sin 22--- 3.由抛物线x y 22 =与直线4-=x y 所围成的图形的面积是( ). A .18 B .38/3 C .16/3 D .16 4.函数y=2x 3-3x 2 -12x+5在[0,3]上的最大值与最小值分别是( ) A 、5 、-15 B 、5 、 4 C 、-4、 -15 D 、5 、 -16 5.设y=x-lnx ,则此函数在区间(0,1)内为( ) A .单调递增 B 、有增有减 C 、单调递减 D 、不确定 6、设()ln f x x x =,若0'()2f x =,则0x =( B ) A. 2e B. e C. ln 2 2 D. ln 2 7、由直线21=x ,x=2,曲线x y 1 =及x 轴所围图形的面 积是( ) A. 415 B. 417 C. 2ln 21 D. 2ln 2 8、若21()ln(2)2 f x x b x =-++∞在(-1,+)上是减函数, 则b 的取值范围是( ) A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞- 9、设a ∈R ,若函数3ax y e x =+,x ∈R 有大于零的极值点,则( ) A .3a >- B .3a <- C .a>-1/3 D .a<-1/3 10、已知函数(),()y f x y g x ==的导函数的图象如下图,那么(),()y f x y g x ==图 象可能是 二、填空题

定积分知识点总结.doc

定积分知识点总结 北京航空航天大学 李权州 一、定积分定义与基本性质 1.定积分定义 设有一函数f(x)给定在某一区间[a,b]上. 我们在a 与b 之间插入一些分点b x x x x a n =<<<<=...210. 而将该区间任意分为若干段. 以||||π表示差数 )1,...,1,0(1-=-=?+n i x x x i i i 中最大者. 在每个分区间],[1+i i x x 中各取一个任意的点i x ξ=. )1,...,1,0(1-=≤≤+n i x x i i i ξ 而做成总和 ∑-=?=1 0)(n i i i x f ξσ 然后建立这个总和的极限概念: σπ0 ||||lim →=I 另用""δε-语言进行定义: 0>?ε,0>?δ,在||||πδ<时,恒有 εσ<-||I 则称该总和σ在0→λ时有极限I . 总和σ在0→λ时的极限即f(x)在区间a 到b 上的定积分,符号表示为 ?=b a dx x f I )( 2.性质 设f(x),g(x)在[a,b]上可积,则有下列性质 (1) 积分的保序性 如果任意)(),(],,[x g x f b a x ∈,则??≥b a b a dx x g dx x f ,)()(

特别地,如果任意,0)(],,[≥∈x f b a x 则?≥b a dx x f 0)( (2) 积分的线性性质 ???±=±b a b a b a dx x g dx x f dx x g x f )()())()((βαβα 特别地,有??=b a b a x f c dx x cf )()(. 设f(x)在[a,b]上可积,且连续, (1)设c 为[a,b]区间中的一个常数,则满足 ???+=b c c a b a dx x f dx x f dx x f )()()( 实际上,将a,b,c 三点互换位置,等式仍然成立. (4)存在],[b a ∈θ,使得 )()()(θf a b dx x f b a -=? 二、达布定理 1.达布和 分别以i m 和i M 表示函数f(x)在区间],[1+i i x x 里的下确界及上确界并且做总和 ∑∑=+=+-=-=n i i i i n i i i i x x m f S x x M f S 1 11 1)(),(,)(),(ππ ),(f S π称为f(x)相应于分割π的达布上和,),(f S π称为f(x)相应于分割π的达布下 和 特别地,当f(x)连续时,这些和就直接是相应于任意分割法的积分和的最小者和最大者,因为在这种情形下f(x)在没一个区间上都可以达到其上下确界. 回到一般情况,有上下界定义知道 i i i M f m ≤≤)(ξ 将这些不等式逐项各乘以i x ?(i x ?是正数)并依i 求其总和,可以得到

导数及其应用单元测试题

《导数及其简单应用》单元测试题 一、选择题(本大题共有8小题,每小题5,共40分) 1. f(x)=x 3 , 0'()f x =6,则x 0 = ( ) (A ) (B ) - (C )± (D ) ±1 2、设连续函数 0)(>x f ,则当b a <时,定积分?b a dx x f )(的符号 A 、一定是正的 B 、一定是负的 C 、当b a << 0时是正的,当0<

导数与积分经典例题以及答案

高三数学 导数与积分经典例题以及答案 一. 教学内容: 导数与积分 二. 重点、难点: 1. 导数公式: c x f y ==)( 0)(='x f n x x f y ==)( 1)(-?='n x n x f x x f y sin )(== x x f cos )(=' x x f y cos )(== x x f sin )(-=' x a x f y ==)( a a x f x ln )(=' x x f y a log )(== e x x f a log 1 )(= ' 2. 运算公式 )()(])()([x g x f x g x f '±'='± )()()()(])()([x g x f x g x f x g x f '?+'='? ) () ()()()(])()([ 2 x g x g x f x g x f x g x f '-'=' 3. 切线,过P (00,y x )为切点的)(x f y =的切线,))((000x x x f y y -'=- 4. 单调区间 不等式0)(>'x f ,解为)(x f y =的增区间,0)(<'x f 解为)(x f y =的减区间。 5. 极值 (1)),(0x a x ∈时,0)(>'x f ,),(0b x x ∈时,0)(<'x f ∴ )(0x f 为)(x f y =极大值 (2)),(0x a x ∈时0)(<'x f ,),(0b x x ∈时,0)(>'x f ∴ )(0x f 为)(x f y =的极小值。

【典型例题】 [例1] 求下列函数的导数。 (1)1731 233 +--= x x x y ; (2)||ln x y =; (3)2 1x x x y +-= ; (4)e e y x x x +-=23; (5)1 ln 2 += x x y ; (6)x x x y sin cos -=。 分析:直接应用导数公式和导数的运算法则 解析:(1))7()3()1 ( 233 '-'-'='x x x y )1('+ 0)(7)(3)(2 3 3 1+'-'-'=- x x x x x x 1493 1234 ---=- (2)当0>x 时,x y x y 1,ln = '=; 当0-k D. 21 -

曲线积分与曲面积分单元测试

曲线积分与曲面积分单元测试 一.选择题 1、设曲线积分 dy y y x dx xy x q L q )56()4(4214?++?∫与路线无关,则q = ( ) (A) 1(B) 2(C) 3 (D) 4 2、设L 是从原点)0,0(O 经过点)1,1(A 到点)0,2(B 的有向折线,则 ∫=++L xydy dx y x 2)(2 (A) 1(B) 2(C) 4(D) 0 3、设曲线L 为圆周 922=+y x ,顺时针方向,则 ∫=?+?L dy x x dx y xy )4()22(2 (A) 0(B) π2(C) π6(D) π18 4、设)(t f 连续可微,且 ∫≠=t k dt t f 0 0)(,L 为半圆周 22x x y ?=,起点为 原点,终点为)0,2(,则∫=++L ydy xdx y x f )(22 (A) 0 (B) k (C) k 2 (D) 2 k 5 、设Σ为平面1002=?z x 在柱面 1)10(22=?+y x 内的部分的下侧,则 =?∫∫L dxdy dzdx (A) π (B) π?(C) π2(D) π2? 6、设Σ为锥面 )0(22H z y x z ≤≤+=的下侧,则 ∫∫Σ =++dxdy dydz dzdx 32 (A) 2 H π(B) 2 3H π(C) 2 2H π (D) 0 二.填空题 1、∫=?=L dy y x I )4 32(22 ,其中L 是从点)0,0(A 沿2x y =至点)4,2(B 的弧段.

2、设),(y x f 在1422≤+y x 上具有二阶连续的偏导数,L 是椭圆周 14 22 =+y x 的顺时针方向,则 []∫=++?L y x dy y x f dx y x f y ),(),(3 3、设L 是xoy 平面上顺时针方向绕行的简单闭曲线,并且 ∫?=++?L dy y x dx y x 9)34()2(则L 所围的面积= 4、xydz xzdy yzdx ++的原函数为 5、设32,,z R y Q x P ?=== 则对任意一条封闭曲线L , =++∫Rdz Qdy Pdx L 三.计算曲线积分 dy e xdx e e L y sin 2sin 2 ∫+,其中L 是从点)0,0(O 沿y=sin x 到点 )1,2 (π =B 的曲线段. 四.计算曲面积分 ∫∫?+=?++=L dxdy z y x dzdx z y dydz y x I )(2)()(33,其中 )20(:222≤=+Σvz z y x 的下侧. 五.设)(,0x f x > 为连续可微函数,且2)1(=f 对0>x 有任一闭闭线L ,有∫=+L dy x xf ydx x 0)(43. 求)(x f 和积分 ∫+xy L dy x xf ydx x )(43的值,其中是由 )0,2(A 至)3,3(B 的一段弧. 六.求 dxdy z z y f y dzdx y z y f dydz x I L ??????++??????++=∫∫)(1)(21333,其中)(t f 连续可微, Σ为曲面 4,1,22222222=++=+++=z y x z y x y x x 所围立体表面外侧. 七.用斯托克斯公式计算 ∫+++++=L dz y x dy z x dx z y I )()()(222222,其中L 为 1=++z y x 与三坐标面 的交线,它的走向使所围平面区域上侧在曲线的左侧.

导数的概念及计算、定积分检测题

导数的概念及计算、定积分检测题 (试卷满分100分,考试时间90分钟) 一、选择题(每小题5分,共40分) 1.已知函数f (x )=1 x cos x ,则f (π)+f ′????π2等于( ) A .-3 π2 B .-1π2 C .-3π D .-1π 解析:选C 因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′????π2=-1π+2 π×(-1)=-3π . 2.(2020·沈阳一中模拟)曲线f (x )=2e x sin x 在点(0,f (0))处的切线方程为( ) A .y =0 B .y =2x C .y =x D .y =-2x 解析:选B ∵f (x )=2e x sin x ,∴f (0)=0,f ′(x )=2e x (sin x +cos x ),∴f ′(0)=2,∴所求切线方程为y =2x . 3.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-3 2t 2+2t ,那么速度为 零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 解析:选D ∵s =13t 3-3 2t 2+2t ,∴v =s ′(t )=t 2-3t +2.令v =0,得t 2-3t +2=0,t 1 =1或t 2=2. 4.由曲线y =x 2和曲线y =x 围成的一个叶形图如图所示,则图中阴影部分的面积为( ) A.1 3 B.310 C.14 D.15 解析:选A 由??? y =x 2, y =x , 解得????? x =0,y =0或????? x =1,y =1,所以阴影部分的面积为??0 1 (x - x 2 )d x =????23x 32-13x 3??? 1 =13 .

相关主题
文本预览