当前位置:文档之家› 高等传热学课程论文--沸腾传热特点简介

高等传热学课程论文--沸腾传热特点简介

高等传热学课程论文--沸腾传热特点简介
高等传热学课程论文--沸腾传热特点简介

研究生“高等传热学”论文重庆大学动力工程学院

沸腾传热特点的综述

摘要:介绍了水平管内及竖直管内流动沸腾的流型图,池沸腾及管内流动沸腾的传热强化技术,窄微流道内沸腾的传热特性。并对沸腾传热的研究方进行了展望。

关键词:沸腾传热、流型图、强化技术、传热特性

1、引言

沸腾传热和汽液两相流是由本质上十分复杂的沸腾和两相流动两种物理现象耦合在一起的一种热流体流动过程,在核能、火箭、航天、材料等技术领域和能源、动力、石油、化工、冶金、制冷、食品、造纸等工业中得到了广泛的应用。管内流动沸腾按管道布置方式主要有水平管内流动沸腾,竖直管内流动沸腾两种方式;按流道结构分主要有圆管内流动沸腾与矩形流道内的流动沸腾;按流道的尺寸分主要有常规流道及窄微流道两种。本文主要对不同管内流动方式的特点进行综述。

2、水平管内流动及竖直管内流动沸腾

2.1 水平管内的流型

水平流动下流场受到重力场作用,呈较显著的相分布不均匀性。常见的水平同向流动的流型主要有弥散泡状流、层状流、间歇流和弥散环状流。

弥散泡状流的示意图如图1所示,从图中可以看出汽泡收到浮力影响,弥散在流道顶部。随着流速增大汽泡成泡沫状弥散与整个流道。

图1 弥散泡状流的示意图

层状流又可细分为纯层状流和波状层状流。纯层状流的示意图如图2所示,从图中可以看出汽相在流道上部流动,液相在流道底部流动,重力使两相完全分离,两相交界面光滑。随着汽相流速增大,汽液相界面呈波状,便进入波状层状流,其示意图如图3所示。

图2纯层状流示意图

图3波状层状流示意图

间歇流的示意图如图4所示,从图中可以看出间歇流是液相和汽相各自呈不同的构形在流道内交替出现。其中间歇流又可细分为塞状流、半弹状流和弹状流。塞状流:汽泡呈弹状且偏离于流道顶部流动。弹状流:液相呈连续相,夹杂有小液滴的汽块偏置于流道顶部并与泡沫状液块相同。这两种流型的间歇性都可能导致压力突然变化,引起工程中最感困惑的流道振荡破坏。半弹状流与弹状流的差异仅是泡沫状液块界面呈波状且不与流道顶部相接触。

图4间歇流的示意图

弥散环状流的示意图如图5所示,从图中可以看出水平弥散环状流的基本特征与垂直流动下的相同。主要差异是因重力作用液膜厚度周向不均匀,流道底部处膜厚大于顶部处的液膜厚度。一般不出现纯环状流流动,汽芯中往往夹带着大量弥散液滴。

图5弥散环状流的示意图

2.2 竖直管内流动沸腾的流型

实验表明垂直向上两相流动经常出现以下五种类型的流型:泡状流、弹状流、搅拌流、环状流、液束环状流。

泡状流:液相呈连续状态,汽相以大小不同、形状各异的汽泡弥散在连续液相内,并与液相一起流动。

弹状流:大块弹状汽泡与含有弥散小汽泡的液块间隔出现,在弹状汽泡的外围,液相呈降落膜状态。当泡状流中的汽相流量增大到一定值时可能发生汽泡聚合,甚至会聚合成接近管径大小的大块弹状流汽泡。Radovcich和Moissis在分析了泡状流的特征后认为:当空泡份额α≤0.1,汽泡碰撞频率较低;大于此临界值后,碰撞频率陡增;当α=0.3过渡到弹状流。

搅拌流:在孔径较大的流道中,液相呈不定型形状上下振荡运动,呈搅拌状态。在弹状流动下,若流速进一步增大,汽泡发生破裂,伴随发生在这类振荡运动。但是在小孔径流道中,不一定发生这类搅拌运动。可能发生弹状流向环状流

直接平稳过渡。

环状流:液相沿管壁呈膜状流动,汽相在流道芯部流动。实际上,纯环状流工况的参数范围很窄,通常呈环状弥散流状态,亦即部分液相以液滴状态混杂在连续汽芯中一起流动。有时液膜内会夹杂少量汽泡。

液束环状流:当液相流量进一步增大时,汽液交界面呈波状流动,汽芯卷吸的液量增加,使汽芯的夹带液滴浓度增大,聚合成束状液块。

弥散流:在这种流型中,通道内的流体变成许多细小的液滴悬浮在蒸汽主流中随着蒸汽流动。而且越接近通道的出口,液滴的数量越少,液滴的尺寸也越小,直到形成单相蒸汽时为止。

图6竖直流动沸腾的流型示意图

竖直流道内流动沸腾的流型示意图如图所示,从左至右依次为:泡状流、弹状流、搅拌流、环状流、弥散流。

3、窄微流道内的流动沸腾

流道的几何尺寸影响流动沸腾换热现象,根据流道特征尺寸,一般可分为常规流道(>5.0 mm),窄空间流道或者受限空间流道(0.5~5.0 mm),微通道(0.01~0.5 mm),毛细流道(<0.01 mm)。由于窄流道的换热强化、组成元件结构紧凑等显著特点,特别适合用于高压下的结构,在工程中,近十年来,得到了广泛的应用。

与常规流道不同,在窄微流道内由于汽泡极易长大到与流道尺寸相当的大小,因此在窄微流道内汽泡的生长特性、汽泡的脱离行为及汽泡行为对压降的影响。目前,有很多学者采用了不同方法研究了不同的流道结构、不同过冷度、不同热流密度、不同质量流速等,对窄微流道内汽泡的演化特性。但是,由于窄微流道流道内的沸腾换热过程相当的复杂,并且受到很多的不确定性因素的影响,目前,还没有统一的能描述窄微流道内沸腾换热过程的数学表达式及统一相关理论,学者们大多得到的是一些适用于特定流道结构及特定的工况范围经验理论。因此,对窄微流道内的沸腾换热特性的研究具有重要意义。

4、沸腾传热强化技术

沸腾传热强化技术是强化传热领域中一个非常重要的方面。其目的是为了进一步提高换热设备的效率,减少能量传递过程的不可逆损失,更合理和有效地利用能源;减少换热面积,降低金属消耗;尽可能地降低换热元件的壁面温度,保证换热设备的安全运行。此外,降低制造成本,减少运行费用等也是改进换热设备时所必须考虑的。

无论是大容器的池沸腾还是管内沸腾,在加热面上产生汽泡是其共同的特点,也是使沸腾换热比无相变的传热强烈的最基本因素。因此,强化沸腾传热的基本原则就是尽量增加加热面上汽化核心,及产生汽泡的地点。由于,加热面上的微小凹坑最容易形成汽化核心,近几十年来强化沸腾传热主要思想是增加汽化核心密度和提高汽泡脱离频率。

4.1 池沸腾传热强化技术

(1)流体特性参数的影响

汽体压力增高能使汽化核心增多,汽泡脱离频率增大,因而能使沸腾传热增强。流体与换热表面的接触角小,则汽泡脱离频率增高,因而能增强沸腾传热。

(2)换热面特性的影响

换热面的加工方法、表面粗糙度、材料特性以及新旧程度都能影响沸腾传热的强弱。试验表明,同一液体在抛光壁面上沸腾传热时,其传热系数比在粗糙壁面上沸腾传热时低,这主要是由于光洁表面上汽化核心较少的缘故。液体在新的换热面上沸腾时,传热系数较高,随着运行时间增长,一部分汽化核心丧失了汽化能力,于是传热系数逐渐下降到某一稳定值。传热面材料能否被液体湿润,对传热系数也有相当影响,同样条件下,液体和材料特性组合得好,湿润程度大,则传热系数高。

(3)换热面布置及形状的影响

当换热面为水平平板且由上向下放热时,由于汽泡不易从换热面上散出,因而传热系数低于换热面由下向上放热的情况。对水平放置的管束,由于上升的蒸汽在上部流速较大,引起了附加扰动,因而位于其上部管子的传热系数比下部管子的传热系数高。此外,换热面和容器的几何形状,对汽泡运动和沸腾传热均有影响。

4.2 管内流动沸腾的传热强化技术

(1)各种特殊加工和处理表面

内螺纹槽管的强化沸腾传热在低热流下,该强化管的效果最为明显,在高热流下,强化效果虽然有所下降,但仍然是相当不错的。内表面带有螺旋肋的管子可以延迟核沸腾向膜沸腾的过渡,即使在高含汽率下也是如此。螺旋槽管对流动

沸腾也有很好的强化效果。

(2)肋化表面

为了取得高换热率和低压力损失,可以采用较低的肋片高度和比较紧密的螺距。高肋片管、微肋片管和插入扭带管的沸腾换热过程均比光滑管的传热系数高很多。

(3)移置式强化物

将强化物置于非传热面而使传热得到强化,这是移置式强化物的特征。如将扰流环置于环形通道的外套管内,不但可使内管的沸腾传热得以强化,而且可以提高临界热负荷。

(4)涡流装置

最普遍采用的涡流装置是扭曲带,这种装置结构简单、制造方便、成本低廉,并且不必对已有设备作大的改动,就可应用于现有设备。扭曲带的应用,对于沸腾两相流的各种流型都有强化效果。对于过冷流动沸腾,其主要效果是提高临界热流。已有的研究表明,对于水,临界热流可以提高一倍之多。对于环状流,扭曲带可以增加壁面上液膜的稳定性,这是因为离心力作用的结果,从而使传热得以改善。此外,扭曲带在极广阔的含汽量范围内,都使临界热流得到提高。在临界状态之后的两相流沸腾传热也可以用扭曲带来强化。螺旋管也是一种有效的涡流装置,目前在研究和应用方面均形成了一定的规模。螺旋管对流动沸腾的强化是十分有效的,螺旋管的曲率半径越小,强化效果越显著。因为在管内出现了二次流,在离心力作用下形成两个对称的涡流,促进了传热过程。但是,其强化效果与两个参数,即几何条件参数和两相流参数,有很密切的关系。如果参数不适当,可能效果不明显,甚至有恶化的可能,对此必须十分谨慎。

(5)振动

有研究表明振动对低热流下的核沸腾传热会有所加强,但临界热流未受此影响,而对高热流下的核沸腾传热则影响不大。对于充分发展的沸腾传热,超声波的振动作用不大。

(6)添加剂

添加剂对流动沸腾的影响比对池内沸腾更为复杂。已有的研究表明,由于添加剂含量的不同,沸腾传热可能改善也可能恶化。无论对于水或有机介质,静电场使核沸腾、临界热流和膜沸腾的传热强度都得到提高。

5、展望

沸腾流动传热相比于一般的单相流动传热其具有较高的传热系数,因此在近几十年来得到了广泛的研究和应用,如果航空航天、反应堆工程、微电子等领域。

目前,很多学者采用不同的方法实验方法及数值模拟的方法,研究了不同的流道结构、不同系统压力、不同过冷度、不同热流密度、不同质量流道等对沸腾传热的影响。除了研究上述传统参数对沸腾传热的影响,随着研究的发展,根据科学技术的需要很多学者已经开始研究不同介质,如:低熔点的金属,锂、钠等,微重力条件下,在流体中加入各种添加剂、在流道内加入电场、磁场等附加势场的研究。目前,传统参数对沸腾换热过程的研究已经得到了相当成熟的理论,但是对一些现象的描述在不同的参数下仍然没有形成统一的理论,此外,随着科学技术的发展,沸腾传热过程的研究不断出现新的内容,因此,对沸腾传热是一个非常前沿的课题。

高等传热学作业

1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: →→→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθd r rd t T k q r r sin ???-= ?θθθθd r dr T r k q sin ???-= (1-3) θ? θ? ?rd dr T r k q ???- =sin 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ?θ?θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2 222222sin )(sin sin )( (1-6)

2-3、一长方柱体的上下表面(x=0,x=δ)的温度分别保持为1t 和2t ,两侧面(L y ±=)向温度为1t 的周围介质散热,表面传热系数为h 。试用分离变量法求解长方柱体中的稳态温度场。 解:根据题意画出示意图: (1)设f f f t t t t t t -=-=-=2211,,θθθ,根据题意写出下列方程组 ????? ??? ?? ?=+??==??======??+??00 000212222θθ λθθθδθθθ θh y L y y y x x y x (2-1) 解上述方程可以把θ分解成两部分I θ和∏θ两部分分别求解,然后运用叠加原理∏+=θθθI 得出最终温度场,一下为分解的I θ和∏θ两部分:

高等传热学讲义

第2章边界层方程 第一节Prandtl 边界层方程一.边界层简化的基本依据 外:粘性和换热可忽略 )(t δδ , l l t <<<<δδ或内:粘性和换热存在 )(t δδ特征尺寸 —l

二.普朗特边界层方程 常数性流体纵掠平板,层流的曲壁同样适用)。 δ v l u ∞∞ ∞u l v v l u δδ~~,可见,0=??+??y v x u )()((x x R δ>>曲率半径y x u v ∞ ∞T u ,w T ∞ ∞T u ,δ l

)(122 22 y u x u x p y u v x u u ??+??+??-=??+??νρδ δ ∞ ∞ u u l l u u ∞∞ 2 l u ∞ν2 δ ν ∞ u ) (2 l u ∞ 除以无因次化11 Re 12 ) )(Re 1 (δ l

因边界层那粘性项与惯性项均不能忽略,故 项可忽略,且说明只有Re>>1时,上述简化才适用。)(12 2 22y v x v y p y v v x v u ??+??+??-=??+??νρ1~))(Re 1(2 δ l l δ ;可见22 22 x u y u ??>>??δδ 1 ) (2 ∞u l l u l u /)(∞∞δ 2 /)(l u l ∞δ ν2 /)(δδ ν∞u l : 除以l u 2 ∞ )(Re 1l δ))(Re 1(δ l l δ

可见,各项均比u 方程对应项小得多可简化为 于是u 方程压力梯度项可写为。 )(2 2 22y T x T a y T v x T u ??+??=??+??,0=??y p dx dp ρ1-),(l δ 乘了δθδ w u l )(∞l u w θ∞2 l a w θ除以: l u w θ∞Pe /12 )(/1δ l Pe 12δ θw a 1 ) (∞-=T T w w θPr) Re (?====∞∞贝克列数—导热量对流热量w w p l k u c a l u Pe θθρ

专升本《工程传热学》_试卷_答案

专升本《工程传热学》 一、 (共18题,共156分) 1. 说明得出导热微分方程所依据的基本定律。 (8分) 标准答案:能量守恒方程和傅利叶定律。 2. 写出肋效率的定义。对于等截面直肋,肋效率受哪些因素影响? (8分) 标准答案: 3. 在液体沸腾过程中一个球形汽泡存在的条件是什么?为什么需要这样的条件? (8分) 标准答案:在液体沸腾过程中一个球形汽泡存在的条件是液体必须有一定的过热度。这是因为从汽泡的力平衡条件得出 ,只要汽泡半径不是无穷大,蒸汽压力就大于液体压力,它们 各自对应的饱和温度就不同有 ;又由汽泡热平衡条件有 ,而汽泡存在必须保持其 饱和温度,那么液体温度,即大于其对应的饱和温度,也就是液体必须过热。 4. 什么是速度边界层?动量方程在热边界层中得到简化所必须满足的条件是什么?这样的简化有何好处? (8分) 标准答案:流体流过壁面时流体速度发生显著变化的一个薄层。 动量方程得以在边界层中简化,必须存在足够大的Re 数,也就是具有的数量级。 此时动量扩散项才能够被忽略。从而使动量微分方程变为抛物型偏微分方程,成为可求解的形式。 5. 在导热过程中产生了Bi 数,而在对流换热过程中产生了Nu 数,写出它们的物理量组成,并指出它们之间的差别是什么? (8分) 标准答案: 从物理量的组成来看,Bi 数的导热系数 为固体的值,而 Nu 数的则为流体的值;Bi 数的特征尺寸Ls 在固体侧定义,而Nu 数的Lf 则在流体侧定义。从物理意义上看,前者反映了导热系统同环境之间的换热性能与其导热性能的对比关系,而后者则反映了换热系统中流体与壁面地换热性能与其自身的导热性能的对比关系。 6. 外径为50mm ,表面温度为180 的圆筒,在它的外面用导热系数为0.14W/ 的保温材料 包扎起来,保温材料的厚度为 30mm 。要求外表面温度小于60,试计算每米管道的散热量。如 果将保温材料换成导热系数为0.034 W/的保温材料,导热量同上,其它条件也不变。试计算 新保温材料的厚度。 (12分) 标准答案: 7. 针对如下导热微分方程写出方程各项的含义,并说明得出导热微分方程所依据的基本定律? (8 分) 标准答案: 导热微分方程所依据的基本定律是傅里叶定律和导热微分方程。 8. 写出Bi 数的定义式并解释其意义。在Bi 0 的情况下,一初始温度为t0的平板突然置于温度为的流体中冷却(如图1 ),粗略画出τ=τ1>0和 时平板附近的流体和平板的温度分布。 (8分) 标准答案:反映了导热系统同环境之间的换热性能与其导热性能的对比关系。

材料科学与人类文明论文.docx

材料科学与人类文明论文 摘要:材料科学对于很多领域的发展都有着极其重要的影响与推动作用,本文主要探讨材料科学对于能源与动力工程专业的发展起到的重要影响。同时,本文对于材料的发展史进行探讨,并对于纳米材料的最新进展进行归纳总结综述其设计思路、特异性能和影响因素,并对其未来的发展进行展望。 关键词:材料科学,能源与动力工程,影响,材料发展史,纳米材料 一.材料科学对能源与动力工程专业的影响与重要作用 作为能源与动力工程专业的学生,我认为材料科学对于能源与动力领域发 展的影响是极为重要的。 首先从我们专业的课程设置以及我们通过学习需要掌握的知识来看。在我 们专业的学习中,主要课程有这些:工程力学、机械设计基础、机械制图、电 工与电子技术、工程热力学、流体力学、传热学、控制理论、测试技术、燃烧 学等,而在这些课程的学习过程中,我们需要掌握工程制图、工程数学、理论 力学、材料力学、机械设计基础、金属工艺学、电工学、电子技术基础、工程 流体力学、工程热力学、传热学、计算机原理与应用、自动控制原理等方面的 知识。在这些课程与知识中,工程力学、机械设计基础、机械制图、流体力 学、传热学、工程制图、材料力学、金属工艺学、工程流体力学等均与材料科 学有着密不可分的联系。特别是材料力学与金属工艺学与材料的关系最为紧 密,而在工程制图、机械制图、机械设计基础中,如何设计锅炉与零件,以什 么材料制造锅炉,在什么部位需要何种材料,都需要材料科学方面的知识。 之后再从材料科学对于能源与动力工程的影响方面谈起。在锅炉的制造上,对于材料的选择十分重要。钢中成份,如碳、硫、磷、硅、锰、铬等对钢材性能有着重要的影响,电站锅炉所耗用的金属材料数量大、品种规格多,除少量有色金属和铸铁外,绝大多数为钢材。其中有钢管、钢板、棒材、工字钢、槽钢、角钢以及铸锻件等。一部分钢材为普通钢,用来制作锅炉的普通结构件,性能要求并不高。另一部分则用来制作高温、高压条件下或处于腐蚀性介质中长期工作的元件。这些锅炉钢是综合性能要求很高的材料。 由此可见,材料科学对于能源与动力工程的发展有着重要的影响与推进作用。 二.材料的发展与酚醛树脂的发明 材料的发展经历了几个阶段,从使用树木、兽皮等纯天然材料的旧石器时代到新石器时代,再到铜器时代和铁器时代,再到现代合成材料的阶段,材料的复合化与智能化阶段。在高分子材料的发展阶段,有一个非常重要的事件就是贝克兰德发明酚醛树脂的事件。 20世纪初,由于电器工业的发展而需要大量的绝缘材料。当时的绝缘材料 是虫胶,但是其产量远远不能满足,仅美国年需虫胶量就需要159亿只紫胶 虫。因此在当时寻找虫胶的替代物成为科学家的研究热点。

传热学作业

沈阳航空航天大学 预测燃气涡轮燃烧室出口温度场 沈阳航空航天大学 2013年6月28日

计算传热学 图1模型结构和尺寸图 1.传热过程简述 计算任务是用计算流体力学/计算传热学软件Fluent求解通有烟气的法兰弯管包括管内烟气流体和管壁固体在内的温度分布,其中管壁分别采用薄壁和实体壁两种方法处理。在进行分析时要同时考虑导热、对流、辐射三种传热方式。 (1) 直角弯管内外壁面间的热传导。注意:如果壁面按薄壁处理时,则不用考虑此项,因为此时管壁厚度忽略不计,内壁和外壁温度相差几乎为零。 (2) 管道外壁面与外界环境发生的自然对流换热。由于流体浮生力与粘性力对自然对流的影响,横管与竖管对流换热系数略有不同的。计算公式也不一样。同时,管道内壁面同烟气发生的强制对流换热。 (3) 管道外壁和大空间(环境)发生辐射换热 通过烟气温度和流量,我们可以推断出管道内烟气为湍流流动。这在随后的模

沈阳航空航天大学 拟计算中可以得到证实。 2.计算方案分析 2.1 控制方程及简化 2.1.1质量守恒方程: 任何流动问题都要满足质量守恒方程,即连续方程。其积分形式为: 0vol A dxdydz dA t ρρ?+=?????? 式中,vol 表示控制体;A 表示控制面。第一项表示控制体内部质量的增量,第二项表示通 过控制面的净通量。 直角坐标系中的微分形式如下: ()()()0u v w t x y z ρρρρ????+++=???? 上式表示单位时间内流体微元体中质量的增加,等于同一时间段内流入该微元体的净增量。 对于定常不可压缩流动,密度ρ为常数,该方程可简化为 0u v w x y z ???++=??? 2.1.2动量守恒方程: 动量守恒方程也是任何流动系数都必须满足的基本定律。数学式表示为: F m dv dt δδ= 流体的粘性本构方程得到直角坐标系下的动量守恒方程,即N-S 方程: ()()()u u p div Uu div gradu S t x ρρμ??+=+-?? ()()()v v p div Uv div gradv S t y ρρμ??+=+-?? ()()()w w p div Uw div gradw S t z ρρμ??+=+-?? 该方程是依据微元体中的流体的动量对时间的变化率等于外界作用在该微元体上的各种力之和。式中u S 、v S 、w S 是动量方程中的广义源项。和前面方程一样上式

高等传热学课件对流换热-第2章-3

2-3 管槽内层流对流换热特征 工程上存在大量的管槽内对流换热问题。本节对管槽内层流强制对流换热的流动与换热特征进行分析。 一、流动特征 当流体以截面均匀的流速0u 进入管道 后,由于粘性,会在 管壁上形成边界层。 边界层内相同r 处的轴向流速随δ的增加 而降低,导致对管中心势流区的排挤作用,使势流区流速增加。当边界层厚度δ达到管内半径时,势流区消失,边界层汇合于管轴线处,同时截面内速度分布不再变化。 u o

将管入口截面至边界层汇合截面间的流动区域称为入口段,或称为未充分发展流、正在发展流。该区域内,速度分布不断变化, (,)u u x r =,同时存在径向速度(,)v x r 。 边界层汇合截面以后的流动速度不再变化,()u u r =,而径向速度 0v =,这段流动区域称为充发展段或充分发展流。 所以,管内流动存在特征不同的两个区域:入口段,充分发展段。充分发展流动又分为:简单充分发展流、复杂充分发展流两种。 1). 简单充分发展流 是指只存在轴向速度分量,而其它方向速度分量为零的充分发展流动。 对圆管: ()u u r =,0v w ==; 对矩形管道:(,)u u x y =,0v w ==。 简单充分发展流任意横截面上压力均匀,沿轴向线性变化,即

dp const dx = 证明:对简单充分发展流,径向速度0v =,根据径向动量方程: 222211()v v p v v v u v x r r r r x r νρ??????+=?+++?????? ? 0p r ?=?, 即任意横截面上压力均匀,压力仅沿轴向变化。于是,轴向动量方程为: 222211(u u dp u u u u v x r dx r r x r νρ?????+=?+++????? 又发展流0u x ?=?(速度分布不变,或由连续方程得出)?

传热学试题(答案)

①Nu准则数的表达式为(A ) ② ③根据流体流动的起因不同,把对流换热分为( A) ④A.强制对流换热和自然对流换热B.沸腾换热和凝结换热 ⑤C.紊流换热和层流换热D.核态沸腾换热和膜态沸腾换热 ⑥雷诺准则反映了( A) ⑦A.流体运动时所受惯性力和粘性力的相对大小 ⑧B.流体的速度分布与温度分布这两者之间的内在联系 ⑨C.对流换热强度的准则 ⑩D.浮升力与粘滞力的相对大小 ?彼此相似的物理现象,它们的( D)必定相等。 ?A.温度B.速度 ?C.惯性力D.同名准则数 ?高温换热器采用下述哪种布置方式更安全( D) ?A.逆流B.顺流和逆流均可 ?C.无法确定D.顺流

?顺流式换热器的热流体进出口温度分别为100℃和70℃,冷流体进出口温度分别为20℃和40℃,则其对数平均温差等于() A.60.98℃B.50.98℃ C.44.98℃D.40.98℃ ?7.为了达到降低壁温的目的,肋片应装在( D) ?A.热流体一侧B.换热系数较大一侧 ?C.冷流体一侧D.换热系数较小一侧 21黑体表面的有效辐射( D)对应温度下黑体的辐射力。 22A.大于B.小于 C.无法比较D.等于 23通过单位长度圆筒壁的热流密度的单位为( D) 24A.W B.W/m2 C.W/m D.W/m3 25格拉晓夫准则数的表达式为(D ) 26 27.由炉膛火焰向水冷壁传热的主要方式是( A ) 28 A.热辐射 B.热对流 C.导 热 D.都不是 29准则方程式Nu=f(Gr,Pr)反映了( C )的变化规律。 30A.强制对流换热 B.凝结对流换热

31 C.自然对流换热 D.核态沸腾换热 32下列各种方法中,属于削弱传热的方法是( D ) 33A.增加流体流度 B.设置肋片 34 C.管内加插入物增加流体扰动 D.采用导热系数较小的材 料使导热热阻增加 35冷热流体的温度给定,换热器热流体侧结垢会使传热壁面的温度( A ) 36 A.增加 B.减小 C.不变 D.有时增 加,有时减小 37将保温瓶的双层玻璃中间抽成真空,其目的是( D ) 38A.减少导热 B.减小对流换热 39 C.减少对流与辐射换热 D.减少导热与对流换热 40下列参数中属于物性参数的是( B ) 41A.传热系数 B.导热系数 42 C.换热系数 D.角系数 43已知一顺流布置换热器的热流体进出口温度分别为300°C和150°C,冷流体进出口温度分别为50°C和100°C,则其对数平均温差约为( )

工程热力学论文

工程热力学课程论文 柴油机实际循环的传热分析 姓名:______________________________________ 班级:______________________________________ 教学号:____________________________________ 任课老师:__________________________________

目录 前言 一、柴油机实际循环的组成 (1) 二、实际循环的特点 (2) 三、实际循环理想化 (2) 四、传热的相关基础知识 (3) 五:柴油发动机的传热分析 (4) 六:参考文献 (7)

前言 在工程热力学中,我们将柴油机实际循环理想化为绝热压缩过程;定容加热过程;定压加热过程;绝热膨胀过程;定容放热过程。这样几个理想过程,而理想化的模型忽略了很大部分传热的能量损失问题,故在此讨论柴油机实际循环中的传热损失。 在研究传热损失之前,有必要了解一下了解了柴油机的各个实际循环过程。 一、柴油机实际循环的组成 柴油机有四冲程机与二冲程机二种, 一个工作循环都由进气、压缩、燃烧膨 胀、排气过程组成。如果一个工作循环 在活塞连续的四个行程中完成,称为四 冲程机;如果一个工作循环在活塞连续 的二个行程中完成,称为二冲程机。所 以本节的讨论对四、二冲程内燃机都适 用。下面以现代机械喷射四冲程柴油机 的p-V图为例,介绍其工作循环。 0-1为吸气过程:吸气过程中,由于 流动阻力,缸内气体压力略低于大气压 图9-1 四冲程柴油机示功图 力。 l-2为压缩过程:压缩早期,空气从气 缸壁吸热,q>0;压缩后期,空气向气缸壁放热,q<0。压缩过程的平均多变指数n=1.34~1.37。压缩终点空气温度约600℃~700℃,压力约3~5Mpa,超过柴油自燃点(335 ℃左右)。 2-3-4为燃烧过程:现代柴油机采用喷油泵和喷油器,将燃油在压缩冲程上止点前(2′点)喷进气缸,由于高压燃油(供油压力80~150MPa)经细小如针孔的喷孔挤出时受到强烈的摩擦、扰动以及气缸内压缩空气的阻力,被粉碎成雾状,细微的燃油被高温压缩空气加热而蒸发,与空气形成可燃混合气,当某处燃油达到自燃点燃烧,放出热量而引燃所有可燃混合气。燃油在上止点前喷入气缸到火苗出现的这段时间,称为“滞燃期”,滞燃期内积累的燃油量在活塞位于上止点附近的一瞬间燃烧放热,工质压力在一瞬间上升到6~8Mpa,使理想循环可以认为这部分热量是在定容下加入的;而火苗出现后喷入的燃油由于随喷随烧,此时活塞已向下止点方向运动,燃烧放热量使气缸

西安交通大学传热学大作业二维温度场热电比拟实验1

二维导热物体温度场的数值模拟

一、物理问题 有一个用砖砌成的长方形截面的冷空气通道, 于纸面方向上用冷空气及砖墙的温度变化很小, 可以近似地予以忽略。 在下列两种情况下试计算: 砖墙横截面上的温度分布;垂直于纸面方向的每 米长度上通过砖墙的导热量。 第一种情况:内外壁分别均匀维持在 0℃及 30℃; 第二种情况:内外壁均为第三类边界条 件, 且已知: t 1 30 C,h 1 10.35W / m 2 K 2 t 2 10 C, h 2 3.93W / m 2 K 砖墙导热系数 0.35/ m K 二、数学描写 由对称的界面必是绝热面, 态、无内热源的导热问题。 控制方程: 22 tt 22 xy 边界条件: 第一种情况: 由对称性知边界 1 绝热: 边界 2 为等温边界,满足第一类边界条件: t w 0 C ; 边界 3 为等温边界,满足第一类边界条件: t w 30 C 。 第一种情况: 由对称性知边界 1 绝热: q w 0; 边界 2 为对流边界,满足第三类边界条件: q w ( t )w h 2(t w 可取左上方的四分之一墙角为研究对象, 该问题为二维、 稳 图1-

t f ); n t 边界3 为对流边界,满足第三类边界条件:q w ( ) w h 2 (t w t f )。 w n w 2 w f

0,m 6,n 1~ 7;m 7 ~ 16,n 7 30,m 1,n 1~12;m 2 ~ 16,n 12 三、方程离散 用一系列与坐标轴平行的间隔 0.1m 的二维网格线 将温度区域划分为若干子区域,如图 1-3 所示。 采用热平衡法, 利用傅里叶导热定律和能量守恒定 律,按照以导入元体( m,n )方向的热流量为正,列写 每个节点代表的元体的代数方程, 第一种情况: 边界点: 1 边界 绝热边界) : 边界 图1-3 t m ,1 t 16,n 等温内边界) : 14 (2t m,2 1 4 (2t 15,n t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 t 16,n 1), n 8 ~ 11 边界 等温外边界) : 内节 点: 1 (t t t t ) 4 m 1,n m 1,n m ,n 1 m,n 1 m 2 ~ 5,n 2 ~11;m 6 ~ 15,n 8 ~ 11 t m,n 第二种情况 边界点: 边界 1(绝热边界) : t m ,1 1 4 (2t m,2 t m 1,1 t m 1,1),m 2 ~ 5 t 16,n 1 4 (2t 15,n t 16,n 1 t 16,n 1), n 8 ~11 4 边界 2(内对流边界) : t6,n 2t 5,n t 6,n 1 t 6,n 1 2Bi 1t 1 ,n 1~ 6 6,n 2(Bi 2) t m,n t m,n

传热学小论文 自由论文

地热耦合水源热泵供暖系统可行性分析 邹志胜,刘俊杰,朱能 (天津大学环境科学与工程学院,天津300072) 摘要:针对天津市某高层写字楼的冬季热负荷变化情况,对采用地热耦合水源热泵,同时 结合消防水池蓄热的供暖系统进行了分析,研究了此系统的技术可行性,经过传热计算,验证了此 系统可以满足建筑热负荷的要求,分析了其优越性。 关键词:地热;水源热泵;供暖;蓄热 热泵作为一种节能装置,可以节约大量的一次 能源,并可减少环境污染,具有明显的经济、社会效 益[1 ~ 5]。将地热水利用与水源热泵相结合组成地热 耦合热泵系统,可提高地热利用率,并具有节能与环 保效果[6]。本文对某高层写字楼使用地热耦合热 泵+ 消防水池蓄热的供暖系统进行可行性分析。 !" 供暖热负荷分析 天津市某高层写字楼,总建筑面积约7 × 104 m2。写字楼内大部分办公室在夜间不办公,如果冬 季夜间仍然按照原来的供暖室内设计温度供暖,会 造成大量的能源浪费。所以,夜间可以考虑将大部 分房间按值班供暖室内设计温度供暖,这样可以大 大降低夜间能源消耗,节省运行费用。 在计算供暖热负荷时,供暖室外计算参数由不 保证天数法确定,为最不利工况下的静态值,偏于保 守。从供暖热负荷计算方法上来看,供暖热负荷为 供暖室外计算温度的简单线性函数[7]。供暖热负 荷计算公式为: Φ = a(T i ' - T o ')(1) 式中Φ———供暖热负荷,W a———建筑物温差负荷系数,即在室内外单位 温差下的供暖热负荷,W/ K T i '———供暖室内计算温度,K T o '———供暖室外计算温度,K 对于该高层写字楼供暖系统,供暖室外计算温 度为- 9. 0 ℃。白天设计工况,供暖室内计算温度 为20. 0 ℃,设计供暖热负荷为4 850. 0 kW,建筑物 温差负荷系数为167. 2 W/ K。夜间设计工况,值班

最新生活中的传热学-(问答题整理答案)

硕士研究生《高等工程热力学与传热学》作业 查阅相关资料,回答以下问题: 1、一滴水滴到120度和400度的板上,哪个先干?试从传热学的角度分析? 答:在大气压下发生沸腾换热时,上述两滴水的过热度分别是△ t=tw–ts=20℃和△t=300℃,由大容器饱和沸腾曲线,前者表面发生的是泡态沸腾,后者发生膜态沸腾。虽然前者传热温差小,但其表面传热系数大,从而表面热流反而大于后者。所以水滴滴在120℃的铁板上先被烧干。 2、锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,为什么? 答:是因为木料是热的不良导体,以便在烹任过程中不烫手。 3、滚烫的砂锅放在湿地上易破裂。为什么? 答:这是因为砂锅是热的不良导体, 如果把烧得滚热的砂锅,突然放到潮湿或冷的地方,砂锅外壁的热就很快地被传掉,而内壁的热又一下子传不出来,外壁冷却很快的收缩,内壁却还很热,没什么收缩,加以陶瓷特别脆,所以往往裂开。 或者:烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而内壁温度降低慢,砂锅内外收缩不均匀,故易破裂。 4、往保温瓶灌开水时,不灌满能更好地保温。为什么? 答:因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失。

5、煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。为什么? 答:因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。 6、用焊锡的铁壶烧水,壶烧不坏,若不装水,把它放在火上一会儿就烧坏了。为什么? 答:这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点,更达不到铁的熔点,故壶烧不坏.若不装水在火上烧,不一会儿壶的温度就会达到锡的熔点,焊锡熔化,壶就烧坏了。 7、冬天水壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧靠壶嘴的地方看不见“白气”。这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 答:这是因为紧靠壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低;壶嘴出来的水蒸气放热液化成小水滴,即“白气”。 8、某些表演者赤脚踩过炽热的木炭,从传热学角度解释为何不会烫伤?不会烫伤的基本条件是什么? 答:因为热量的传递和温度的升高需要一个过程,而表演者赤脚接触炽热木炭的时间极短,因此在这个极短的时间内传递的温度有限,不足以达到令人烫伤的温度,所以不会烫伤。 基本条件:表演者接触炽热木炭的时间必须极短,以至于在这段时间内所传递的热量不至于达到灼伤人的温度

高等传热学课件对流换热-第5章-1

第五章自然对流换热 当流体内部的温度分布或浓度分布不均匀时,会造成密度分布的不均匀,在体积力场的作用下,形成浮升力,而引起流体的流动与换热,这种现象称为自然对流。 在自然界与工程技术中,自然对流现象很多,譬如:地面与大气间温度差引起的复杂大气环流,工业排烟在大气中的混合与蔓延,工业废水在水域中的混合与扩散,各种电子器件的散热冷却,建筑物内的采暖,炉中的火焰与烟气的蔓延等。 在铸造、温控等涉及固/液相变的技术过程中,自然对流也是重要的物理过程。 与强制对流换热一样,自然对流也有层流与湍流,内部流动与外部流动的区别。

5-1 自然对流边界层分析 一、自然对流边界层的特点 以放置于静止流体中的竖壁为例。流体温度为T ∞,壁面温度为w T ,当w T T ∞>时,壁面附近的流体被加热,温度升高,密度变小,在重力场作用下产生浮力,使流体向上运动,如图。 (a) Pr 1=, ()T δδ= (b)Pr >>1, ()T δδ>

一般来说,不均匀的温度场仅出现在离壁面较近的流体层内,表现出边界层的特性。与强制对流不同,离壁面较远的流体静止不动。 对不同类的流体,其边界层内的速度分布、温度分布及控制机理有所不同。 (a) 当Pr 1=时,T δδ=,温度分布单调,速度分布在离壁面一定距离 处取得较大值,从壁面到速度极大值处,浮升力克服粘性力产生惯性力(速度)。随着离开壁面的距离的增加,浮升力减小,但粘性力以更快的速度减小,直至为零,即在此处取得极大值。从该点向边界层外缘,由于浮升力进一步减小,不足以维持如此大的惯性,所以速度又逐渐降低。 (b)Pr >>1时,T δδ>。在T y δ<区域,浮升力克服粘性力产生惯性;在T y δ>区域浮升力为零,流体靠消耗惯性力来克服粘性力。此时,温度分布与速度分布的宽度不同。 (c) Pr <<1时,T δδ<,热扩散能力大于粘性扩散能力。在y δ<区域,

上海理工大学高等传热学试题及答案

1.试求出圆柱坐标系的尺度系数,并由此导出圆柱坐标系中的导热微分方程。 2 .一无限大平板,初始温度为T 0;τ>0时,在x = 0表面处绝热;在x = L 表面以对流方式向温度为t f 的流体换热。试用分离变量法求出τ>0时平板的温度分布(常物性)。(需求出特征函数、超越方程的具体形式,范数(模)可用积分形式表示)。(15分) , 3.简述近似解析解——积分法中热层厚度δ的概念。 答:近似解析解:既有分析解的特征:得到的结果具有解析函数形式,又有近似解的特征:结果只能近似满足导热解问题。在有限的时间内,边界温度 的变化对于区域温度场的影响只是在某一有限的范围内,把这个有限的范围定义为热层厚度δ。 4.与单相固体导热相比,相变导热有什么特点 答:相变导热包含了相变和导热两种物理过程。相变导热的特点是 1.固、液两相之间存在着 移动的交界面。 2.两相交界面有潜热的释放(或吸收) | 对流部分(所需量和符号自己设定) 1 推导极坐标系下二维稳态导热微分方程。 2 已知绕流平板流动附面层微分方程为 y u y u V x u u 22??=??+??ν 取相似变量为: x u y νη∞ = x u f νψ∞= 写出问题的数学模型并求问题的相似解。 3 已知绕流平板流动换热的附面层能量积分方程为: ?=∞?? =-δ00)(y y t a dy t t u dx d 当Pr<<1时,写出问题的数学模型并求问题的近似积分解及平均Nu (取三次多项式)。 4 ] O x

5写出常热流圆管内热充分发展流动和换热问题的数学模型并求出速度和温度分布及Nu x.辐射 1.请推导出具有n个表面的净热流法壁面间辐射换热求解公式,并简要说明应用任一种数值方法的求解过程。 2.试推导介质辐射传递方程的微分形式和积分形式,要求表述出各个步骤和结果中各个相关量的含义。 3.根据光谱辐射强度表示下面各量:1)光谱定向辐射力;2)定向辐射力;3)光谱辐射力;4)辐射力;5)辐射热流量。要求写清各量的符号、单位。 4.说明下列术语(可用数学表达式)(每题4分) a)光学厚度 b)漫有色表面 c)? d)兰贝特余弦定律 e)光谱散射相函数 f)定向“灰”入射辐射

传热学小论文

传热学的最新研究动态 李聪 (中南大学能源科学与工程学院,长沙 410083) 摘要:传热是最普遍的一种自然现象。几乎所有的工程领域都会遇到一些在特定条件下的传热问题,包括有传质同时发生的复杂传热问题。现代科学技术突飞猛进,传热学的工程应用研究也已跨越传统的能源动力,工艺过程节能的范畴,在材料的制备和加工、航天技术的发展、信息器件的温控、生物技术、医学、环境净化与生态维护、以及农业工程化、军备现代化等不同领域都有所牵涉。特别是高技术的迅猛发展,正面临着温度场、速度场、浓度场、电磁场、光场、声场、化学势场等各种场相互耦合下的热量传递过程和温度控制,从而使传热学迅速发展为当今技术科学中了解各种热物理现象和创新相应技术的重要基础学科。 关键词:温度场;速度场;热量传递过程。 Heat transfer of the latest research developments Li Cong (Energy Science and Engineering, Central South University,Changsha,410083)ABSTRACT: Heat is the most common type of natural phenomenon. Almost all of the engineering problems are encountered some heat under certain conditions, including the complex heat transfer and mass transfer occur simultaneously. Modern science and technology advances, applied research projects have also been heat transfer across the scope of traditional energy saving power, process, preparation and processing of materials in temperature control, the development of space technology, information devices, biotechnology, medicine, environmental different areas of purification and ecological protection, and agricultural engineering, military modernization has involved. Especially the rapid development of high-tech, is facing various fields under the mutual coupling of heat transfer and temperature control process temperature, velocity and concentration field, electromagnetic field, light field, the sound field,

同济大学传热学题库共6套含答案

传热学(一) ?名词解释(本大题共 5 小题,每小题 4 分,共 20 分) 21. 导热基本定律 22. 非稳态导热 23. 凝结换热 24. 黑度 25. 有效辐射 ?简答题 ( 本大题共 2 小题 , 每小题 8 分 , 共 16 分 ) 26. 简述非稳态导热的基本特点。 27. 什么是临界热绝缘直径?平壁外和圆管外敷设保温材料是否一定能起到保温的作用,为什么? ?计算题(本大题共 2 小题,每小题 12 分,共 24 分) 28. 一内径为 300mm 、厚为 10mm 的钢管表面包上一层厚为 20mm 的保温材料,钢材料及保温材料的导热系数分别为 48 和 0.1 ,钢管内壁及保温层外壁温度分别为220 ℃及 40 ℃,管长为 10m 。试求该管壁的散热量。 29. 一内径为 75mm 、壁厚 2.5mm 的热水管,管壁材料的导热系数为 60 ,管内热水温度为 90 ℃,管外空气温度为 20 ℃。管内外的换热系数分别为和 。试求该热水管单位长度的散热量。 ?名词解释 ( 本大题共 5 小题 , 每小题 4 分 , 共 20 分 ) 21. 导热基本定律 : 当导热体中进行纯导热时 , 通过导热面的热流密度 , 其值与该处温度梯度的绝对值成正比 , 而方向与温度梯度相反。

22. 发生在非稳态温度场内的导热过程称为非稳态导热。 或:物体中的温度分布随时间而变化的导热称为非稳态导热。 23. 蒸汽同低于其饱和温度的冷壁面接触时 , 蒸汽就会在壁面上发生凝结过程成为流液体。 24. 物体的辐射力与同温度下黑体辐射力之比。 25. 单位时间内离开单位表面积的总辐射能。 ?简答题(本大题共 2 小题,每小题 8 分,共 16 分) 26. ( 1 )随着导热过程的进行 , 导热体内温度不断变化 , 好象温度会从物体的一部分逐渐向另一部分转播一样 , 习惯上称为导温现象。这在稳态导热中是不存在的。 ( 2 )非稳态导热过程中导热体自身参与吸热(或放热),即导热体有储热现象,所以即使对通过平壁的非稳态导热来说,在与热流方向相垂直的不同截面上的热流量也是处处不等的,而在一维稳态导热中通过各层的热流量是相等的。 ( 3 )非稳态导热过程中的温度梯度及两侧壁温差远大于稳态导热。 27. ( 1 )对应于总热阻为极小值时的隔热层外径称为临界热绝缘直径。 ( 2 )平壁外敷设保温材料一定能起到保温的作用,因为增加了一项导热热阻,从而增大了总热阻,达到削弱传热的目的。 ( 3 )圆筒壁外敷设保温材料不一定能起到保温的作用,虽然增加了一项热阻,但外壁的换热热阻随之减小,所以总热阻有可能减小,也有可能增大。 ?计算题(本大题共 2 小题,每小题 12 分,共 24 分) 28. 解:已知 d 1 =300mm d 2 =300+2 × 10=320mm d 3 =320+2 × 20=360mm m t w1 =220 ℃ t w2 =40 ℃ =9591.226W 29. 解:已知 d 1 =75mm=0.075m d 2 =75+2 × 2.5=80mm=0.08m t f1 =90 ℃ t f2 =20 ℃

传热学结课论文

传热学在高新技术领域中的应用 摘要: 天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到 生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 前言 通过对传热学这门课程的学习,了解了传热的基本知识和理论。发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。传热学是研究由温度差异引起的热量传递过程的科学。传热现象在我们的日常生活中司空见惯。早在人类文明之初人们就学会了烧火取暖。随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,

被广泛地应用于工农业生产与人们的日常生活之中。当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国际问题。传热学在促进经薪发展和加强环境保护方面起着举足轻重的作用。20世纪以前传热学是作为物理热学的一部分而逐步发展起来的。20世纪以后,传热学作为一门独立的技术学科获得迅速发展,越来越多地与热力学、流体力学、燃烧学、电磁学和机械工程学等一些学科相互渗透,形成多相传热、非牛顿流体传热、燃烧传热、等离子体传热和数值计算传热等许多重要分支。 现在,机械工程仍不断地向传热学提出大量新的课题。如浇铸和冷冻技术中的相变导热,切削加工中的接触热阻和喷射冷却,等离子工艺中带电粒子的传热特性。核工程中有限空间的自然对流,动力和化工机械中超临界区换热,小温差换热,两相流换热,复杂几何形状物体的换热湍流换热等。随着激光等新的实验技术的引入和计算机的应用,为传热学的发展提供了广阔前景。 传热学是研究热量传递规律的一门学科,生产部门存在的多种多样的热量传递问题都可以用传热学来解决,这些部门包括能源、化工、冶金、建筑、机械制造、电子、制冷、航天航空、农业、环境保护等。随着传热学的理论体系日趋完善,内容不断充实,已经发展为现代科学技术中充满活力的一门重要技术基础学科。传热学是研究不同温度的物体或同一物体的不同部分之间热量传递规律的学科。传热不仅是常见的自然现象,而且广泛存在于工程技术领域。例如,提高锅炉的蒸汽产量,防止燃气轮机燃烧室过热、减小内燃机气缸和曲轴的热

高等传热学作业修订版

高等传热学作业修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章 1-4、试写出各向异性介质在球坐标系)(?θ、、r 中的非稳态导热方程,已知坐标为导热系数主轴。 解:球坐标微元控制体如图所示: 热流密度矢量和傅里叶定律通用表达式为: → →→??+??+??-=?-=k T r k j T r k i r T k T k q r ? θθ?θsin 11' ' (1-1) 根据能量守恒:st out g in E E E E ? ???=-+ ?θθρ?θθ??θθ?θd drd r t T c d drd r q d q d q dr r q p r sin sin 2 2??=+??-??-??-? (1-2) 导热速率可根据傅里叶定律计算: ?θθ θθd r dr T r k q sin ???- = (1-3) 将上述式子代入(1-4-3)可得到 ) 51(sin sin )sin ()sin (sin )(222-??=+??????+??????+?????????θθρ?θθ? θ? θ??θθθθ?θθ?θd drd r t T c d drd r q d rd dr T r k rd d dr T r k d d dr r T r k r p r 对于各 向异性材料,化简整理后可得到: t T c q T r k T r k r T r r r k p r ??=+??+????+?????ρ?θθθθθ?θ2222222sin )(sin sin )( (1-6)

(完整word版)高等传热学复习题(带答案).doc

高等传热学复习题 1.简述求解导热问题的各种方法和傅立叶定律的适用条件。 答:导热问题的分类及求解方法: 按照不同的导热现象和类型,有不同的求解方法。求解导热问题,主要应用于工程之中,一般以方便,实用为原则,能简化尽量简化。 直接求解导热微分方程是很复杂的,按考虑系统的空间维数分,有 0 维, 1 维, 2 维和 3维导热问题。一般维数越低,求解越简单。常见把高维问题转化为低维问题求解。有稳态导热和非稳态导热,非稳态导热比稳态导热多一个时间维,求解难度增加。有时在稳态解的基础上分析非稳态稳态,称之为准静态解,可有效地降低求解难度。根据研究对象的几何形状,又可建立不同坐标系,分平壁,球,柱,管等问题,以适应不同的对象。 不论如何,求解导热微分方程主要依靠三大方法: 甲.理论法 乙.试验法 丙.综合理论和试验法 理论法:借助数学、逻辑等手段,根据物理规律,找出答案。它又分: 分析法;以数学分析为基础,通过符号和数值运算,得到结果。方法有:分离变量法,积分变换法( Lapl ace 变换, Four i er 变换 ) ,热源函数法, Gr een 函数法,变分法,积分方程法等等,数理方程中有介绍。 近似分析法:积分方程法,相似分析法,变分法等。 分析法的优点是理论严谨,结论可靠,省钱省力,结论通用性好,便于分析和应用。缺点是可求解的对象不多,大部分要求几何形状规则,边界条件简单,线性问题。有的解结构复杂,应用有难度,对人员专业水平要求高。 数值法:是当前发展的主流,发展了大量的商业软件。方法有:有限差分法,有限元法,边界元法,直接模拟法,离散化法,蒙特卡罗法,格子气法等,大大扩展了导热微分方程的实用范围,不受形状等限制,省钱省力,在依靠计算机条件下,计算速度和计算质量、范围不断提高,有无穷的发展潜力,能求解部分非线性问题。缺点是结果可靠性差,对使用人员要求高,有的结果不直观,所求结果通用性差。 比拟法:有热电模拟,光模拟等 试验法:在许多情况下,理论并不能解决问题,或不能完全解决问题,或不能完美解决问题,必须通过试验。试验的可靠性高,结果直观,问题的针对性强,可以发掘理论没有涉及的新规律。可以起到检验理论分析和数值计算结果的作用。理论越是高度发展,试验法的作用就越强。理论永远代替不了试验。但试验耗时费力,绝大多数要求较高的财力和投入,在理论可以解决问题的地方,应尽量用理论方法。试验法也有各种类型:如探索性试验,验证性试验,比拟性试验等等。 综合法:用理论指导试验,以试验促进理论,是科学研究常用的方法。如浙大提出计算机辅助试验法 ( CAT) 就是其中之一。 傅立叶定律的适用条件:它可适用于稳态、非稳态,变导热系数,各向同性,多维空间,连续光滑 介质,气、液、固三相的导热问题。 2.定性地分析固体导热系数和温度变化的关系 3.什么是直肋的最佳形状与已知形状后的最佳尺寸? 答:什么叫做“好”?给定传热量下要求具有最小体积或最小质量或给定体

相关主题
文本预览
相关文档 最新文档