当前位置:文档之家› 疲劳试验标准与疲劳试验机

疲劳试验标准与疲劳试验机

疲劳试验标准与疲劳试验机
疲劳试验标准与疲劳试验机

金属疲劳试验方法

铝合金疲劳实验 李慕姚 1351626 一﹑实验目的 1. 观察疲劳失效现象和断口特征。 2. 了解测定材料疲劳极限的方法。 二、实验设备 1. 疲劳试验机。 2. 游标卡尺。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值 r=m ax m in σσ (2-16) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为σ 1m ax ,经历N 1次循环后,发生疲劳失效,则N 1称为最大应力为σ1 m ax 时的疲劳寿命(简称寿 命)。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力σmax 与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图2-31所示。从图线看出,当应力降到某一极限值σr 时,S-N 曲线趋近于水平线。即应力不超过σr 时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限σr 。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

图2-31 疲劳试验曲线图 工程问题中,有时根据零件寿命的要求,在规定的某一循环次数下,测出σmax ,并称之为疲劳强度。它有别于上面定义的疲劳极限。 用旋转弯曲疲劳实验来测定对称循环的疲劳极限σ-1.设备简单最常使用。各类旋转弯曲疲劳试验机大同小异,图2-32为这类试验机的原理示意图。试样1的两端装入左右两个心轴2后,旋紧左右两根螺杆3。使试样与两个心轴组成一个承受弯曲的“整体梁”上,它支承于两端的滚珠轴承4上。载荷P 通过加力架作用于“梁”上,其受力简图及弯矩图如图2-33所示。梁的中段(试样) 为纯弯曲,且弯矩为M=21 P ɑ。“梁”由高速电机6带动,在套筒7中高速旋转,于是试样横截面上任一点的弯曲正应力,皆为对称循环交变应力,若试样的最小直径为d min ,最小截面边缘上一点的最大和最小应力为 max σ=I Md 2min , min σ=-I Md 2min (2-17) 式中I=64π d 4 m in 。试样每旋转一周,应力就完成一个循环。试样断裂后,套筒压迫停止开关使试验机自动停机。这时的循环次数可由计数器8中读出。 四﹑实验步骤 (1)测量试样最小直径d min ; (2)计算或查出K 值;

高频疲劳试验机的主要作用概述

高频疲劳试验机作用 1疲劳试验的对安全的主要作用概述 疲劳强度不仅在航天、航空、车辆、造船和原子能等尖端工业部门有着十分重要的意义,也是影响一般机械产品使用可靠性和使用寿命的一个重要问题。 根据国外的统计,机械零件的破坏50%~90%为疲劳破坏。例如,轴、曲轴、连杆、齿轮、弹簧、螺栓、压力容器、海洋平台、汽轮机叶片和焊接结构等;很多机械零部件和结构件的主要破坏方式都是疲劳。过去的研究表明,军用飞机喷气发动机构件的主要失效原因是高周疲劳。疲劳失效占喷气式发动机全部构件损伤的49%,而高周疲劳又几乎占所有疲劳失效的一半。 疲劳定义:材料在循环应力或循环应变作用下,由于某点或某点逐渐产生了局部的永久结构变化,从而在一定的循环次数以后形成裂纹或发生断裂的过程。 近几十年来,随着机械向高温、高速和大型方向发展,机械的应力越来越高,使用条件越来越恶劣,疲劳破坏事故更是层出不穷。 我国虽然尚未对疲劳破坏问题做过全面检查,但同类产品的使用寿命往往比发达国家为低,问题更为严重。因此,开展疲劳强度研究工作对我国的机械工业也是刻不容缓的。

疲劳问题首先是19世纪初,由于蒸汽机车问题提出的,但在后来的其他领域,如航空航天、交通车辆、轮船、桥梁、建筑等,也都出现了众多的疲劳破坏。 第二次世界大战中,有若干战斗机是自己坠落而非被敌方击落的。当时约有20架“惠灵顿”号重型轰炸机发生疲劳破坏。 20世纪50年代以来,航空事业得到全面发展,但全球性的飞机事故接连不断,大部分是属于结构疲劳破坏造成的。1951年英国“鸽式”飞机因机翼的翼梁疲劳破坏而在澳大利亚失事;1952年美国F-89蝎式歼击机因机翼接头疲劳破坏而连续发生事故;1953年英国“维金”号又因主梁疲劳破坏而在非洲失事;1054年英国喷气式客机“彗星-I”号因铆钉边缘出现疲劳裂纹而连续两次在航线上坠毁。 20世纪80年代,某石油钻井平台沉船事件,从技术角度分析也是疲劳破坏导致的。由于在钻井平台的一个支撑立柱上,在接近海平面的位置开了一个作业用工业圆孔,导致海水腐蚀,从而强度减弱,经过若干次随机载荷作用后导致裂纹破坏,最终丧失抵抗力。 20世纪90年代初以来,日本、韩国不断发生桥梁、高架公路的支撑立柱出现裂纹、断裂、扭曲的事件,都是由于支撑立柱承受高周荷载的长期作用导致的疲劳破坏。 1998年6月德国一列高速列车在行驶中突然出轨,造成100多人遇难身亡。造成事故的原因是一节车厢的车轮内部疲劳断裂。

德国MAG高频疲劳试验机技术说明.

10..德国SINCOTEC -100KN高频疲劳试验机技术说明 德国SINCOTEC高频疲劳试验机及参观人员 10.1 德国Sincotec高频疲劳试验机机器用途描述及工作环境 高频疲劳试验机被广泛用来测试各种金属材料及金属材料制品的抵抗疲劳断裂性能、S – N、da/dN-K等曲线,测试Kth和预制断裂韧性试样(如KIC、JIC 等)的疲劳裂纹等;选配不同的夹具或环境实验装置,被广泛用来测试各种材料和零部件(如板材、齿轮、曲轴、螺栓、链条、连杆、紧凑拉伸等等)的疲劳寿命,可完成对称疲劳试验、不对称疲劳试验、单向脉动疲劳试验、块谱疲劳试验、调制控制疲劳试验、高低温疲劳试验、三点弯、四点弯、扭转等种类繁多的疲劳试验。 高频疲劳试验机在各种类型的疲劳试验机中,具有结构简单、没有维护的液压源及阀门、泵或冷却系统、使用操作方便、效率高、耗能低等特点,所以它被广泛的应用在科研、航空航天、高等院校和工业生产等部门。 10.2 德国Sincotec高频疲劳试验机执行以下标准: GB/T 3075 金属轴向疲劳试验方法 ASTM E 467 轴向疲劳试验系统中等幅动态力的标定方法 ASTM E 739 疲劳数据应力-寿命和应变-寿命的线性或线性化统计分析 ASTM E 1942 用于循环疲劳和断裂力学试验的计算数据采集系统导则

GB/T 13816 焊接接头脉动拉伸疲劳试验方法 GB/T 15111 点焊接头剪切拉伸疲劳试验方法 GB/T 6395-2000 金属材料疲劳裂纹扩展速率试验方法 ASTM E606标准,ASTM E647标准,ASTM E399标准, ISO 12737-2005金属材料平面应变断裂韧度试验方法, ISO 12135-2002金属材料-准静态断裂韧性测试的方法 , ISO 4965轴向载荷疲劳试验机动态力校准应变计技术, BS 7448-1:1991断裂结构韧性试验金属材料Kic临界CTOD值和J值得测试方法, BS 7448-2:1997断裂机械韧性试验金属材料Kic临界CTOD值和J值得测试方法, BS 7448-4:1997断裂机械韧性试验金属材料稳定裂纹延伸的抗断裂曲线和初始值得测定方法。 10.3 德国Sincotec 公司技术描述 德国SINCOTEC公司:公司位于德国中部工业区的Clausthal市。公司成立于上世纪六十年代,专注于共振疲劳试验系统的研发和试验工程技术咨询。SINCOTEC公司目前是全球最大的共振疲劳试验机制造厂商,拥有POWER SWING 品牌。德国SINCOTEC在共振试验系统领域是世界的领导者,不但在现有常规的电磁共振技术上优化改进控制和驱动技术,并且独创了领先的电动大位移(12毫米动态行程)共振技术- Power Swing MOT。在控制技术上Sincotec更

疲劳万能材料试验机

一、疲劳试验机用途: FLPL疲劳万能材料试验机配置馥勒疲劳测试工装主要用于测试材料及其构件在正弦波、三角波、方波、斜波等动态载荷下的拉压交变疲劳特性。可以完成多种疲劳试验。微机控制系统FULETEST疲劳测试软件基于WINDOWS操作系统作为平台,强大的数据处理功能,试验条件和试验结果自动存盘,显示、打印符合相关国家标准的随机成组试验数据、试验曲线、试验报告。 二、疲劳试验标准参考: GB/T 3075 金属轴向疲劳试验方法; JJG 556-2011 轴向加力疲劳试验机; 三、试验机主机参数: 型号:FLPL104、FLPL204、FLPL304、FLPL504、FLPL105、FLPL305; 轴向试验力:10KN、20KN、25KN、50KN、100KN、250KN; 试验力级别:±0.5%/±1%; 试验力测量范围:1%--100%FS; 电液伺服作动器的最大位移:±50mm/75mm; 疲劳试验频率范围可选:0.1-100 Hz; 框架形式:双立柱;立柱距离:≥600mm;上下夹头间距:50~600 mm; 控制系统:德国多利DOLI控制系统/馥勒FL控制系统测控软件; 控制方式:力、位移两个闭环控制回路,可实现全数字PIDF控制,控制方式可平滑切换。全数字式DSP控制系统,闭环控制频率:1kHz; 全数字内部信号发生器:正弦波、三角波、方波、斜波、组合波等; FLTEST控制系统设计有一套完善的智能化安全管理系统,能实时对试验系统进行巡回自检,实时判断、报告系统的工作状态和工作进程,具有自动监测、自动报警和自动停机功能; 试验控制软件,在Windows多种环境下运行,界面友好,操作简单,能完成试验条件、试样参数等设置、试验数据处理,试验数据能以多种文件格式保存,试验结束后可再现试验历程、回放试验数据,馥勒试验机试验数据可导入在Word、Excel、Access、MATLABFL等多种软件下,进行统计、编辑、分类、拟合试验曲线等操作,试验完成后,可打印出试验报告; 可扩展配置FLWKGD高低温环境试验箱装置、FLWK1200度高温试验炉装置、FLWK1500度快速加热装置等; 四、疲劳万能材料试验机使用环境要求: 室温在10~35℃范围内,其温度波动应不大于2℃/h; 电源电压的变化应不超过额定电压的±10%。电源频率50Hz; 周围应留有不小于0.7m的空间,工作环境整洁、无灰尘; 在无明显电磁场干扰的环境中; 在无冲击、无震动的环境中; 使用环境相对湿度低于80%; 周围环境无腐蚀介质。

动静万能疲劳试验机

产品介绍: FL动静万能疲劳试验机用于测试各类金属材料、复合材料、结构件、部件的动态性能、疲劳寿命等力学性能试验。满足ASTM、ISO、DIN、FUL、JIS等国际疲劳测试标准。 技术参数: 1.动静万能疲劳试验机Dynamic and static fatigue testing machine; 2.试验机方法:Q/FPL-2018《自动控制疲劳试验系统标准方法》; 3.试验方法:GB/T、ASTM、ISO、DIN、JIS等疲劳试验标准方法等; 4.主要技术规格参数:根据实际疲劳试验需求,选择相应的技术规格型号参数等; 5.试验机规格型号:FLPL204、FLPL504系列,FLPL105系列 6.试验力可选:0~20KN0~50KN 0-100KN 7.疲劳机精准度等级:1级/0.5级; 8.力测量范围:0.2%-100%FS; 9.试验力示值相对误差:≦示值的±1%/示值的±0.5%; 10.疲劳试验频率范围:0.01-100HZ可选; 11.上下夹头偏心率:≤10%; 12.疲劳振幅范围:±75MM; 13.采样频率:10KHZ; 14.试验波形:正弦波、方波、三角波、斜波、随机波形以及外部输入波形等; 15.测试试验夹具选择:馥勒提供专业的拉伸疲劳试验夹具、压缩试验夹具、弯曲试验夹具、剪切试验夹具、断裂韧性试验夹具等可供客户选择。 16.环境试验部分:可选配馥勒高温高低温环境试验装置用于特殊测试需求。 17.疲劳机试验附件选择:馥勒提供丰富的试验附件如高低温变形测量装置、高温引伸计等供客户选择。 18.动静万能疲劳试验机特点:馥勒疲劳试验软件:在Windows 多种环境下运行,界面友好,操作简单,能完成试验条件、试样参数等设置、试验数据处理,试验数据能以多种文件格式保存,试验结束后可再现试验历程、回放试验数据,试验数据可导入在Word、Excel、Access等多种软件下,进行统计、编辑、分类、拟合试验曲线等操作,试验完成后,可打印出试验报告。 19.重点提示:更多选型参考技术规格资料请联系馥勒TEST。 备注:馥勒FULETEST公司保留疲劳机机型升级的权利,更新后恕不另行通知,如有问题请在线咨询或致电详细情况。未经授权,请勿复制。

疲劳试验-大纲

金属疲劳试验 一、实验目的 1.了解疲劳试验的基本原理; 2.掌握疲劳极限、S-N曲线的测试方法; 3.观察疲劳失效现象和断口特征 二、实验原理 1.疲劳抗力指标的意义 目前评定金属材料疲劳性能的基本方法就是通过试验测定其S-N曲线(疲劳曲线),即建立最大应力σmax或应力振幅σa与相应的断裂循环周次N之间的曲线关系。不同金属材料的S-N曲线形状是不同的,大致可以分为两类,如图1所示。其中一类曲线从某应力水平以下开始出现明显的水平部分,如图1(a)所示。这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。因此将水平部分所对应的应力称之为金属的疲劳极限,用符号σR表示(R为最小应力与最大应力之比,称为应力比)。若试验在对称循环应力(即R=-1)下进行,则其疲劳极限以σ-1表示。中低强度结构钢、铸铁等材料的S-N曲线属于这一类。实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限。另一类疲劳曲线没有水平部分,其特点是随应力降低,循环周次N不断增大,但不存在无限寿命,如图1(b)所示。在这种情况下,常根据实际需要定出一定循环周次(108或5×107…)下所对应的应力作为金属材料的“条件疲劳极限”,用符号σR(N)表示。 (a)(b) 图1 金属的S-N曲线示意图 (a)有明显水平部分的S-N曲线(b)无明显水平部分的S-N曲线

2. S-N 曲线的测定 (1) 条件疲劳极限的测定 测试条件疲劳极限采用升降法,试件取13根以上。每级应力增量取预计疲劳极限的5%以内。第一根试件的试验应力水平略高于预计疲劳极限。根据上根试件的试验结果,是失效还是通过(即达到循环基数不破坏)来决定下根试件应力增量是减还是增,失效则减,通过则增。直到全部试件做完。第一次出现相反结果(失效和通过,或通过和失效)以前的试验数据,如在以后试验数据波动范围之外,则予以舍弃;否则,作为有效数据,连同其他数据加以利用,按以下公式计算疲劳极限: ∑==n i i i N R v m 1)(1σσ 式中m —有效试验总次数;n —应力水平级数;σi —第i 级应力水平;v i —第i 级应力水平下的试验次数。 例如某实验过程如图2所示,共14根试件。预计疲劳极限为390MPa ,取其2.5%约10 MPa 为应力增量,第一根试件的应力水平402 MPa ,全部试验数据波动如图2,可见,第四根试件为第一次出现的相反结果,在其之前,只有第一根在以后试验波动范围之外,为无效,则按上式求得条件疲劳极限如下: σR(N)=13 1(3×392+5×382+4×372+1×362)=380MPa 图2 增减法测定疲劳极限试验过程 (2) S-N 曲线的测定 测定S-N 曲线(即应力水平-循环次数N 曲线)采用成组法。至少取五级应力水平,各级取一组试件,其数量分配,因随应力水平降低而数据离散增大,故要随应力水平降低而增多,通常每组5根。升降法求得的,作为S-N 曲线最低应力水平点。然后以其为纵坐标,以循环数N 或N 的对数为横坐标,用最佳拟合法绘制成S-N 曲线,如图3所示。

疲劳试验机的基本参数.doc

1 PWS-E1000电液伺服动静万能试验机 PWS-E1000 电液伺服动静万能试验机 技 术 方 案 书 济南鸿君试验机制造有限公司 2012 年 12 月 技术支持 : 济南鸿君试验机制造有限公司动态专机开发部 1

2 PWS-E1000电液伺服动静万能试验机 PWS-E1000 电液伺服动静万能试验机 技术方案 1、简介:1000kN 电液伺服动静万能试验机是济南试金开发的PWS系列试验机之一,该试验机采用试金成熟的动静态电液伺服试验技术,利用单元化、标准化、模块化 设计手段设计制造,从而大大提高了系统的稳定性和可靠性,系统的关键单元和元 件均采用当今国际先进技术制造,整个试验系统的整体性能与国际著名动态试验机 公司相当。 1000kN 电液伺服疲劳试验机主要用于金属材料及结构件的动态疲劳试 验,和静态拉、压、弯、剪力学性能试验。是高校、科研院所、企业等进行材料试 验的理想设备。 2方案描述:该方案描述的试验机主要进行各种零部件的静态力学试验和动态疲劳 试验。该试验机主要由主机(上置试金伺服直线作动器NCA1000)、德国DOLI 公司全数字伺服控制器EDC580及相关软件、以及其他必要的附件等组成。系统进行工作的基本原理如下图。 信号发生器伺服控制器伺服驱动伺服阀恒压伺服泵站 测量放大器伺服直线作动器 传感器被试件试验用夹具 2.1 主机:主机为四立柱框架式结构,伺服直线作动器上置。 2.1.1横梁采用液压升降、液压夹紧、弹性松开式结构,保证横梁升降方便,夹持 稳固可靠。 2.1.2 横梁升降油缸外形美观质量可靠,可无级调整试验空间。 2.1.3 横梁夹紧、运动液压模块采用进口液压元件制造,其中换向阀采用手动方式,保证高频试验时具有较高的可靠性。 2.1.4 进回油路配置由精度不大于3u 国产温州黎明(引进德国贺德克技术)精 密滤油器以及具有消脉、蓄能功能的进回油路蓄能器(中英合资奉化奥莱尔)组成 的液压滤油蓄能稳压模块。 2.1.5 伺服直线作动器上置,下联负荷传感器。 技术支持 : 济南鸿君试验机制造有限公司动态专机开发部 2

高频疲劳试验机的工作原理

高频疲劳试验机的工作原理 一、高频疲劳试验机的风冷装置 本实用新型涉及一种风冷装置,具体来说是一种用于高频疲劳试验机的风冷装置,为现有的高频疲劳试验机提供一种非常实用的附加功能。工程结构失效约80%以上是由疲劳引起的。为使设计出来的工程结构及其零部件满足现场对疲劳强度和寿命的要求,必须首先通过开展疲劳试验,掌握相关材料的抗疲劳性能,如疲劳S-N曲线、疲劳极限等。高频疲劳试验机便是这样一种用来进行材料抗疲劳性能测试的机器。相对于电液伺服疲劳试验机,它具有加载频率高、试验周期短的特点,广泛应用于我国冶金、航天、交通等研究领域。然而,如果受测材料具有较高的阻尼,或者试验载荷接近材料的屈服强度,则会因试验中较高的加载频率,导致试验件局部(通常是最小截面处)过热,甚至发生蠕变,迫使试验无法在预期载荷下进行,获得的试验数据也就不能反映材料真实抗疲劳性能。通过在高频疲劳试验机上附加风冷装置,可以有效地解决这个问题;利用夹持单元,可以将该装置方便地附加于现有试验机上,并实现任意受风部位的定位;利用气流控制单元,可根据试验件发热情况,和试验对试验件单侧受风冷却或整体受风冷却的需求,改变试验件受风部位气流分布模式。该装置成本低廉,只增加很少的附加费用就可获得这一非常实用的功能。另外,可在风管入口处配一流量调节阀,用来调节送风量大小。 二、产品特征: 1、本实用新型的目的在于在此提供一种用于高频疲劳试验机的风冷装置,为现有的高频疲劳试验机提供一种非常实用的附加功能。频疲劳试验过程中对试验件的冷却,为现有的高频疲劳试验机提供了一种非常简便实用的功能。通过夹持单元将装置安装在疲劳试验机主立柱上,利用立柱升降及单元部件自身的移动与旋转,便可实现对试验件任意受风部位的定位;通过在气流控制单元中的出风罩,便可根据试验件实际发热情况,和试验对试验件单侧受风冷却或整体受风冷却的需求,调整出风气流分布状态。利用这种风冷装置,无须对高频疲劳试验机进行任何改动,安装使用方便,且装置所需原材料价格低廉,加工制造简单,维护部件少,可靠性高。 2、本实用新型的优点在于:用本实用新型提供的风冷装置,能够实现高频疲劳试验过程中需进行冷却试验件的风冷处理,这对高频疲劳试验而言是一个非常实用的功能;该装置能够很便捷地安装到现有的高频疲劳试验机上,并且具有加工简单、成本低廉等突出优点。 三、操作方法: 下面结合附图对本实用新型做出详细说明: 1、如图l所示;本实用新型提供一种用于高频疲劳试验机的风冷装置,本装置设有夹持单元101和气流控制单元102,利用夹持单元101将风冷装置固定在试验机主立柱104上;利用气流控制单元102调节风冷气流分布状态。 2、图2是本实用新型所述夹持单元示意图,所述夹持单元101由立柱夹持环lOla 和连接臂lOlb组成。所述立柱夹持环lOla通过螺栓紧固的方式将装置固定于高频疲劳试验机的主立柱104上,利用主立柱104升降或夹持环lOla固定位置的调整,能够实现装置在z轴方向移动;通过转动立柱夹持环lOla,能够实现装置绕

疲劳试验简介

疲劳试验(fatigue test)利用金属试样或模拟机件在各种环境下,经受交变载荷循环作用而测定其疲劳性能判据,并研究其断裂过程的试验,即为金属疲劳试验。 1829年德国人阿尔贝特(J.Albert)为解决矿山卷扬机服役过程中钢索经常发生突然断裂,首先以10次/分的频率进行疲劳试验。1852~1869年德国人沃勒(A.W hler)为研究机车车辆,开始以15次/分的频率对车辆部件进行拉伸疲劳试验,以后又用试样以72次/分的频率在旋转弯曲疲劳试验机进行旋转弯曲疲劳试验,他的功绩是指出一些金属存在疲劳极限,并将疲劳试验结果绘成应力与循环周次关系的S-N曲线(图1),又称为W hler曲线。1849年英国人古德曼(J.Goodman)首先考虑了平均应力不为零时非对称载荷下的疲劳问题,并提出耐久图,为金属制件的寿命估算和安全可靠服役奠定理论基础。1946年德国人魏布尔(W.Weibull)对大量疲劳试验数据进行统计分析研究,提出对数疲劳寿命一般符合正态分布(高斯分布),阐明疲劳测试技术中应采用数理统计。 60年代初,从断裂力学观点分析金属疲劳问题,进一步扩大了疲劳研究内容。近年来,由于电液伺服闭环控制疲劳试验机的出现以及近代无损检验技术、现代化仪器仪表等新技术的采用,促进了金属疲劳测试技术的发展。今后应着重各种不同条件(特别是接近服役条件)下金属及其制件的疲劳测试技术的研究。 试验种类和判据 金属疲劳试验种类很多,通常可分为高周疲劳、低周疲劳、热疲劳、冲击疲劳、腐蚀疲劳、接触疲劳、声致疲劳、真空疲劳、高温疲劳、常温疲劳、低温疲劳、旋转弯曲疲劳、平面弯曲疲劳、轴向加载疲劳、扭转疲劳、复合应力疲劳等。应根据金属制件的服役(工作)条件来选择适宜的疲劳试验方法,测试条件要尽量接近服役条件。进行金属疲劳试验的目的在于测定金属的疲劳强度(抗力),由于试验条件不同,表征金属疲劳强度的判据(指标)也不一样。 高周疲劳:高周疲劳时,金属疲劳强度判据是疲劳极限(或条件疲劳极限)即金属经受“无限”多次(或规定周次)应力循环而不断裂的最大应力,以σr表示,其中γ为应力比,即循环中

电液伺服疲劳试验机技术参数

电液伺服疲劳试验机技术参数 一、招标设备 20KN电液伺服疲劳试验机1台。 ★该产品须为国内知名品牌厂家生产的市场成熟稳定产品。设备生产厂家必须具有该设备的制造计量器具许可证资质及通过相应质量体系认证;必须具有同型号设备在近3年内案例至少五家以上(提供合同复印件。 二、产品适用标准 JJG 556-2011《轴向加荷疲劳试验机》、GB/T3075、HB5287、ASTM E647、ASTM E399、GB/T4161、GJB715、NASM1312标准等。 三、应用范围 该设备主要用于对各种金属或非金属材料及零部件进行疲劳试验、断裂力学性能试验、拉压弯剪等静态性能试验等。可配备高温炉、高低温环境箱等还可进行多种环境条件下的动静态力学性能试验。 四、主要技术指标 1)最大试验力:±20kN。 2)最大动态幅值:20kN。 3)有效测量范围:2%~100%F.S。 4)静态试验力示值相对误差:≤±0.5%;动态试验力示值相对误差:≤±1%。 5)作动器行程(位移):±50mm。 6)位移测量精度:≤±0.3% F.S;位移分辨率:≤0.001mm。 7)变形测量精度:≤示值的±0.5%,有效范围为满量程的2%~100%F.S。 8)试验波形:正弦波、三角波、方波、斜波、梯形波、锯齿波、半正弦波、脉动三角波、脉动锯齿波、脉冲波、自定义波、组合波等;频率范围为0.001Hz ~ 50Hz;分辨率≤0.001Hz。 ★9)最大载荷20kN,振幅±2mm时,可达到的最大频率不小于4Hz。

10)最大记数范围:109-1;计数误差:≤±1次。 11)控制模式:具有位移、负荷、变形三种控制模式,且模式可平滑转换。 ★12)受力同轴度:≤6%。 ★13)夹具形式:采用液压夹具,配置棒材及板材夹块各1套,三点弯家具1套。 ★14)夹头间距:700mm。并带T型槽工作台(有效工作长度≥800mm、宽度≥600mm)。 ★15)液压泵站:应采用进口液压泵组,额定流量不低于20L/min、额定压力不低于20MPa。 五、性能要求 1)具有完备的保护功能:油源过压保护,油温互锁保护,滤芯堵塞保护,位移、负荷、变形上下限设定超限保护,伺服阀失控保护,电机过流保护等,试验过程中可做到无人值守。 2)计算机系统应操作直观便捷,能轻松完成试验参数设置、试验控制、数据分析与处理;负荷、变形、位移具有多种显示模态,如瞬时值、峰谷值、平均值和幅值、循环次数等;统计、打印试验结果及试验曲线等;可用常规数据处理软件对存储记录的数据进行二次处理等。 六、主要配置及要求

电液伺服疲劳试验机技术参数

电液伺服疲劳试验机技术参数 1) *静态载荷:高于或等于±100kN指标(范围更大) 2) *动态载荷:高于或等于±80kN指标(范围更大) 3) *载荷测量范围:满量程的4%-100% 4) 载荷精度:优于示值的±1%指标 5) 应变精度:优于示值的±1%指标 6) *行程范围:高于±50mm(范围更大) 7) 位移精度:优于示值的±1%指标 8) 函数发生器可发生波形:正弦波、方波、斜波等;并可进行外信号输入 9) *试验频率范围:0.01-50Hz,需提供详细的频率与振幅的关系 10) 需配备液压夹具及适配器套件 11) 夹头夹持范围:采用液压夹具,厚度范围3mm-20mm,垂直空间:高于或等于100mm-500mm指标(范围更大) 12) *采用静压伺服作动器:最大振幅±50mm(范围更大); 13) 油源规格:总流量需大于40L/min,工作压力不小于21Mpa。 14) 控制方式:位移、负荷二种控制方式,并可平滑切换。 15) 控制波形:正弦波、方波、三角波、斜波等。 16) 可电脑实时控制动态疲劳试验机进行响应操作,本身配备打印机。具备对试验数据进行实时采集与存储;实时绘制多种曲线;分段控制功能.和循环控制功能等功能。 17) 高性能电脑硬件配置、高速数据存储与处理能力、人性化人机交互界面 18) 具有自保护功能,遇以下情况需报警且自动停机:电机缺相保护、电机过流保护、油温互锁保护、急停保护、滤芯堵塞等情况; 19) *为保证配件和售后服务的延续性,要求投标厂家伺服作动器以及负荷传感器有自主知识产权和生产能力,并提供相应证明文件如计量器具许可证; 20) *一年质保。 备注:*为必须满足的技术条件。

金属疲劳试验

金属疲劳试验主讲教师:

一、实验目的 1. 了解疲劳试验的基本原理。 2. 掌握疲劳极限、S-N曲线的测试方 法。

二、实验原理 1.疲劳抗力指标的意义 目前评定金属材料疲劳性能的基本方法就是通过试验测定其S-N曲线(疲劳曲线),即建立 最大应力σ max 或应力振幅σ α 与其相应的断裂 循环周次N之间的关系曲线。不同金属材料的S-N曲线形状是不同的,大致可以分为两类,如图1所示。其中一类曲线从某应力水平以下开始出现明显的水平部分,如图1(a)所示。这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。

这表明当所加交变应力降低到这个水平数值时,试样可承受无限次应力循环而不断裂。因此将水平部分所对应的应力称之为金属的疲劳极限,用符号σ R 表示(R为最小应力与最大应力之比,称为应力比)。若试验在对称循环应力(即R=-1)下进行,则其疲劳 极限以σ -1表示。中低强度结构钢、铸铁等材料的S- N曲线属于这一类。对这一类材料在测试其疲劳极限时,不可能做到无限次应力循环,而试验表明,这类材料在交变应力作用下,如果应力循环达到107周次不断裂,则表明它可承受无限次应力循环也不会断裂,所以对这类材料常用107周次作为测定疲劳极限的基数。另一类疲劳曲线没有水平部分,其特点是随应力降低,循环周次N不断增大,但不存在无限寿命。如图1(b)所示。在这种情况下,常根据实际需要定出一定循环周次(108或5×107…)下所对应的应力作为金属材料的“条件疲劳极限”,用符号σ R(N) 表示。

2.S-N 曲线的测定 (1) 条件疲劳极限的测定 测试条件疲劳极限采用升降法,试件取13根以上。每级应力增量取预计疲劳极限的5%以内。第一根试件的试验应力水平略高于预计疲劳极限。根据上根试件的试验结果,是失效还是通过(即达到循环基数不破坏)来决定下根试件应力增量是减还是增,失效则减,通过则增。直到全部试件做完。第一次出现相反结果(失效和通过,或通过和失效)以前的试验数据,如在以后试验数据波动范围之外,则予以舍弃;否则,作为有效数据,连同其他数据加以利用,按下列公式计算疲劳极限: ()11n R N i i i v m σσ==∑ 1

疲劳试验机

疲劳试验机 机制10-1班 第二小组成员: 郭红卫 刘欢 樊亮

型号:SD系列 生产厂家:长春机械科学研究院有限公司 主要规格及技术参数 型号SD50SD100SD200SD500SD750SD1000 最大负 荷静态±50±100±200±500±750±1000动态501002005007501000 测量精 度负荷示值的±1.0%,;衰减为1、5倍位移±1.0%F.S每档;衰减为1、5倍变形示值的±1.0%,;衰减为1、5倍 控制参 数函数发生器频率 范围 0.01~10HZ可变更;函数发生器可发正弦、三角、方波、斜波及组合波等 命令波形,且可外信号输入。波形频率范围0.01-100HZ 闭环速率5000HZ(更新速率) 油缸行程±50(mm) 主机立柱距离500mm565mm700mm820mm820mm1000mm 主机重量700kg900kg1500kg3500kg5000kg7000kg 主机高度2000mm2200mm2500mm3000mm3200mm3200mm 主机形式双柱四柱 夹头距离50~600(mm) 整机功率380v 22kw380v 30kw380v 37kw380v 75kw380v 75kw380v 75kw 扭转疲劳试验机 生产厂家:济南新东岳试验仪器有限公司 工作原理:通过电机、减速机、齿轮的传动, 带动扭转弹簧作往复运动, 实现对扭簧的疲劳性能的检测 价格:24800.00元/台 产品型号 技术参数 TPN-50 TPN-100 TPN-200 TPN-500 最大试验 扭矩(N 穖) 50 100 200 500 频率0.5~5 Hz 扭转角度根据用户要求设定 计数容量999999次 电源电压380 VAC 50 Hz

PLG_C型微机控制高频拉压疲劳试验机说明书

PLG-100C 微机控制高频拉压疲劳试验机使用说明书 长春试验机研究所 2 0 0 5年

目录 一.用途 (3) 二.性能及规格指标 (4) 三.试验机的结构及工作原理 (5) 3.1 主机系统工作原理简介 (5) 3.2 微机系统工作原理简介 (5) 3.3模拟控制系统原理简介 (5) 四.试验机的安装、调整与检查 (6) 4.1 主机的安装 (6) 4.2 主机的调整与检查 (7) 4.3 电控系统的调整与检查 (7) 五.试验机的使用 (7) 5.1 试样的装夹 (8) 5.2 电控系统的操作与使用 (8) 5.2.1 几个注意事项的说明 (8) 5.2.2 电控系统面板操作 (8) 5.2.3 磁铁电感量的选择 (9) 六.计算机软件的操作说明 (10) 6.1软件的安装 (10) 6.2 软件的操作 (10) 6.2.1 控件及其使用方法 (11) 6.2.2 软件的起动过程 (12) 6.2.3 功能按钮的使用 (12)

6.2.4 各种参数的给定操作 (18) 6.2.5 菜单项的使用 (19) 6.3 测量放大器的档位设置 (24) 6.4 电控箱的操作 (24) 七.维修保养 (25) 7.1 定期校准负荷力及标定 (25) 7.2 计算机的检查 (25) 7.3 功放单元的检查 (25) 7.4 速度控制单元 (25) 八.几个问题的说明 (25) 8.1交流稳压电源的使用 (25) 8.2 试样破断时频率降的设定 (26) 8.3 使用环境 (26) 九.日常使用操作规程 (27) 十.维护及使用注意事项 (28) 附表一:电气系统连接电缆表 (30) 附图一:电气原理图 (31) 附图二:强电接线原理图 (33) 附图三:主机结构示意图 (34) 附图四:试样装夹示意图 (35) 附图五:主机吊运示意图 (36) 附图六:主机安装示意图 (37) 附图七:夹具安装示意图 (38)

金属疲劳试验机

一、产品用途: FLPL金属疲劳试验机主要用于金属材料复合材料合金材料的耐久疲劳性能测定。配置FL高温炉系统可以试验高温疲劳的测试,配置FLWK高低温环境试验装置可以实现高低温疲劳性能的测定。 计算机控制系统疲劳试验软件基于WINDOWS操作系统作为平台,强大的数据处理功能,试验条件和试验结果自动存盘,显示、打印符合相关国家标准的随机成组试验数据、S-N试验曲线、试验报告,广泛适用于科研院所、冶金建筑、航空航天、大专院校、机械制造、交通运输等行业。 二、疲劳机技术参数: 1.试验机型号:FLPL504、FLPL105、FL305; 2.动态试验力:±25KN、±50KN、±250KN; 3.试验力精度:±2%; 4.试验力测量范围:1%--100%FS; 5.伺服作动器的最大位移:±50mm/75mm; 6.试验频率范围:0.1-50 Hz; 7.框架形式:双立柱距离:≥500mm;上下夹头拉伸空间:50~600 mm按要求订制; 8.控制系统:动态闭环疲劳伺服控制系统; 9.控制方式:力、位移、变形控制; 10. 试验波形:正弦波、方波、三角波、斜波、随机波形以及外部输入波形;可实现多段不同频率或幅值组合的正弦波形;用户可以自定义参数的随机波形等; 11.配置FL1200度高温炉、FLWK高低温试验箱、高温变形引伸计、高温疲劳试验夹具等实现复杂的动态力学性能测定; 12.金属疲劳试验机控制系统设计有一套完善的智能化安全管理系统,能实时对试验系统进行巡回自检,实时判断、报告系统的工作状态和工作进程,具有自动监测、自动报警和自动停机功能; 13.试验控制软件FULETEST,在Windows 多种环境下运行,界面友好,操作简单,能完成试验条件、试样参数等设置、试验数据处理,试验数据能以多种文件格式保存,试验结束后可再现试验历程、回放试验数据,试验数据可导入在Word、Excel、Access、MATLAB等多种软件下,进行统计、编辑、分类、拟合试验曲线等操作,试验完成后,可打印出试验报告。

瑞玛高频疲劳试验机产品详情介绍

瑞玛高频疲劳试验机产品详情介绍 公司 - 简介 RUMUL 公司是材料共振测试系统和动态疲劳试验机的开发设计和领导者。 我们公司15名员工,每个人都是认真负责地工作,确保有序高效率的工作步骤,从开始收到的订单到机器安装后所有必要服务。在产品生产过程,疲劳测试软件,电子数控产品的研发,有限元(FEM)计算机处理的需求上,委外合作伙伴也给与我们很大的支持。 今天的材料测试市场表明有着对高品质和快速的测试结果需求趋势。 RUMUL 的共振测试技术涵盖以上需要,并且是在低能耗方面非常有效。 RUMUL 公司的产品,有40多年实践经验的积累和沉淀, 从我们数以百计的客户和满足他们不同的测试需求和结果中。 共振试验机的工作原理 电磁协振试验机通过动态载荷叠加在静态载荷上, 给试样或零配件施加应力。该机配备的数字控制器适用于各种测试载荷传感器。 动态载荷是由励磁系统(谐振器)运行产生的,依照试样的固有频率。励磁系统是由砝码和弹簧组成,另外试样也是其中很重要的部分。可以通过改变砝码来逐步改变运行频率。 静态载荷是由机器的主丝杆驱动, 通过弹簧连接在系统上。 这里讨论的机器运行在完全共振环境下,即工作点是在共振曲线的峰值。该谐振器是被磁铁激发提供的能量,以便能维持测试所必须的载荷振幅。 由于共振效应使得能耗很低(一般20到1000瓦),即相当于电液伺服试验机3%至10%。标准试验机的工作频率范围为40到300Hz 。 RUMUL 荣誉产品-家族企业 VIBRO-FORTE 大型共振疲劳试验机,最大到700KN TESTRONIC 中型共振疲劳试验机,最大到250KN

汽车车轮弯曲疲劳试验机国内外研究现状综述_徐恒斌

2014年第34期 科技创新科技创新与应用 汽车车轮弯曲疲劳试验机国内外研究现状综述 徐恒斌顾佳超孟凡荣 (长春汽车工业高等专科学校机械工程学院,吉林长春130013) 1汽车车轮弯曲疲劳试验机国内研究现状 我国的汽车车轮弯曲疲劳试验机新设备开发起步较晚,直到20世纪70年代前后才刚刚开始。长春天水红山试验机厂家开发出的液压伺服试验机和其他企业的相关领域的研究,才使中国的动态试验机研究水平是迈出了一大步。近年来国内车轮弯曲疲劳试验机行业正在加快步伐,广泛采用计算机控制、电液伺服、高精度测力和测变形技术,研制出各种金属和非金属的疲劳试验仪器和工况动态力学试验设备,填补了国内的空白,部分设备还达到了国际先进水平;同时,也使我国的试验领域得到了进一步扩展。但是与国际先进水平相比,我国的车轮弯曲疲劳试验机水平还相差较远,又由于相关领域如电液伺服阀、伺服液压缸、电子技术、计算机技术等领域相对比较薄弱,在一定程度上影响了我国车轮弯曲疲劳试验机行业的发展,部分产品和零件仍需进口。因此,我国车轮弯曲疲劳试验机要赶超世界先进水平,实现全部产品和零件的国产化,仍是我国车轮弯曲疲劳试验机行业今后的奋斗目标和发展方向。 当今,主要有两种车轮弯曲疲劳试验方法: 一种方法是让车轮进行旋转,而载荷固定不动,即车轮随着加载臂的旋转而旋转,在加载臂一端施加一个固定的弯矩,对车轮产生旋转弯矩。把车轮与疲劳试验机的工作台固定在一起,用电机来驱动疲劳试验机的工作台及与其固定在一起的车轮进行旋转运动,在加载臂的一侧连接上车轮的轮毂,而在加载臂的另一侧则施加一个固定不变的力,用来实现对加载臂即车轮轮轴产生一个旋转弯矩的效果,以便真实反映汽车车轮在行驶过程中承受旋转弯矩的实际状况。在模拟试验条件下,要求汽车车轮在经历了若干次循环载荷之后,不能产生由于疲劳所致的破坏。 另一种方法是让车轮静止不动,而载荷进行旋转,即车轮跟加载轴固定,在加载臂一端施加一个相当于旋转弯矩效果的离心力。把车轮与疲劳试验机的工作台台面进行绑定,与第一种方法一样,在加载臂的一侧连接上车轮的轮毂。与第一种方法不一样的是,在加载臂的另一侧则装载一个不平衡的质量块,通过电机带动装载的不平衡质量块进行转动,用来产生一个离心力,进而实现对加载臂即车轮轮轴产生一个旋转弯矩作用在汽车的车轮上。 随着国内汽车工业水平的不断发展,国内涌现出了一大批汽车车轮弯曲疲劳试验机生产厂家,其中最具代表性的是天津久荣车轮有限公司研制的用于轿车车轮弯曲疲劳性能试验的CFT-2型和CFT-3型车轮弯曲疲劳试验机,其中CFT-2型车轮弯曲疲劳试验机采用的是让车轮进行旋转,而载荷固定不动的试验方式。CFT-3型车轮弯曲疲劳试验机采用的是让车轮固定不动,而载荷进行旋转的试验方式。 除了天津久荣车轮有限公司,国内还有其他一些资质雄厚的车轮弯曲疲劳试验机的生产厂家研究的车轮弯曲疲劳试验机,例如,东风汽车有限公司研究的采用让车轮进行旋转,而载荷固定不动的试验方式的RF30K型车轮弯曲疲劳试验机。 2汽车车轮弯曲疲劳试验机国外研究现状 要对车轮进行弯曲疲劳研究,汽车车轮弯曲疲劳试验机是不可或缺的弯曲疲劳研究工具。从最早的模拟轴旋转弯曲疲劳试验机开始至今,车轮弯曲疲劳试验机已有超过一个世纪的历史。 汽车车轮弯曲疲劳试验机是一种技术密集型的测试设备,现已涉及机械,液压,电气,材料,测量,自动控制,数字显示等众多技术领域,其相关技术被广泛应用在机械,造船,航空航天等许多工业部门。目前国内许多大型和弯曲疲劳试验机都可进行低周疲劳试验,这些设备一般采用静态测试微电子伺服术,通过改变电机的运行参数可自动完成进行必要的测试。测试结果和测试数据可实现自动采集,处理,显示和打印记录,大大降低了试验人员的劳动强度,提高测试效率。由于试验机具有闭环伺服机电控制系统,又因它的负载范围广,因此能够成完低频往复拉伸和压缩循环试验。另一种是动态疲劳试验机,它是由机械,液压和电子系统三者组合而成的新型伺服机构。电液伺服疲劳试验机变开环控制为闭环控制,与此同时也大大的提高了测试动态精度。电液伺服疲劳试验机除了可采用正弦波载荷外,还可以也施加方波,三角波,锯齿波,梯形波等载荷谱。因此,试验结果更逼近于实际的工作状态,可为最佳优化设计提供更可靠的依据。任何一个大型现代化的项目都必须经过动态力学测试,否则就不能保证其设计的安全性。 目前,随着科学技术的进步和现实需求,电液伺服疲劳试验机正朝着全微机化、智能化,节能化的方向发展,进一步提高了电液伺服疲劳试验机的测试效率,改善了准确度,并且降低了电液伺服液压伺服疲劳试验机以及疲劳试验机[2-3]的能量消耗。 从上个世纪80年代末到现在,汽车车轮弯曲疲劳试验机行业的规模,品种,先进程度取得长足发展,美国,德国,日本等国家的相关技术在这一领域处于领先水平。比较知名的厂家有:美国MTS公司,公司奥尔森(OLSEN),总部设在美国英斯特朗(INSTRON)公司;德国MFL公司申克(SCHENCK)公司,沃尔玛伯特(WOLPERT)公司和茨维柯(ZWICK)公司;日本的岛津公司,东京衡机公司,东洋精机公司和松泽公司等等。目前,随着大规模集成电路、电脑系统和数字控制技术的应用,车轮弯曲疲劳试验机的加载臂产品已经普遍采用计算机和微机进行设计,并应用现代化的通讯系统使弯曲疲劳试验机产品趋于自动化和智能化,其技术结构方面是模拟式逐渐被数字化和全数字化所取代,由提供数据向提供方法和结果的方向发展;产品结构方面,从技术密集型逐步转向高技术密集型,达到产品结构的最佳化。总之,现代车轮弯曲疲劳试验机产品已实现了计算机化、智能化、数字化、自动化、节能化、微型化和超大型化。试验机今后的主要发展趋势是对现有的这些高技术密集型产品的开发和发展,充分利用新材料,广泛应用机械手和机器人技术以及最现代化的通讯技术。 参考文献 [1]Kay S.M.Marple,S.L.Jr.Spectrum analysis-a modern perspective[J].Pro-ceedings of the IEEE.Nov.1981,69(11). [2]M.A.Mariscotti.A method for automatic identification of peaks in the presence of background and its application to spectrum analysis[J]. Nuclear Instruments and Methods,1967-Elsevier.Volume50,Issue2, 1May1967,Pages309-320. [3]Bendat,J.S.Piersol,A.G.Engineering applications of correlation and spectral analysis[M]. [4]刘岩.基于分形的往复机械振动信号分析技术[D].大庆:大庆石油学院,2006. 作者简介:徐恒斌(1986-),男,助教,硕士,主要从事机械设计制造方面的教学科研工作。 摘要:文章对汽车车轮弯曲疲劳试验机研究的国内外现状进行了综述,力求为汽车车轮弯曲疲劳试验机的研制提供技术参考。关键词:汽车车轮;弯曲疲劳试验机;现状 4结束语 通风系统的设计应根据项目的特性来确定设备的排风量,从而满足该工艺的排风量要求,业主有明确风量要求的设备,其排风量以业主要求为准,没有明确要求的,查相关手册,确定排风量;系统的压力损失根据系统管路的尺寸和长度分段计算,不能随意估算,这样会导致系统选型过大或过小,以致风机工作点转移,不能发挥风机的最大效率,带来系统的不节能,有的甚至无法正常运行。 根据系统的型式确定选用何种风阀以及调试方式和顺序。本项目的系统型式为异程式系统,系统未经调试时的自平衡会导致近端设备的排风量大于远端的排风量,所以要安装两级阀门,并进行静态水力平衡的调试和动态水力平衡调试;目前市场上有一些阀门能起到很好的平衡作用,但造价较高,结合造价预算和性价比,要求设计人员能正确选用风阀等风量调节和控制设备。 参考文献 [1]GB50019-2003.采暖通风与空气调节设计规范[S]. [2]GB50243-2002.通风与空调工程施工质量与验收规范[S]. [3]实用供热空调设计手册[S]. 作者简介:王术森(1983-),男,江苏南京人,南京诺丹工程技术有限公司,暖通设计师,本科学历,研究方向:暖通设计。 65 --

相关主题
文本预览
相关文档 最新文档