当前位置:文档之家› 四类平均数及其拓展延伸后的几何模型

四类平均数及其拓展延伸后的几何模型

四类平均数及其拓展延伸后的几何模型
四类平均数及其拓展延伸后的几何模型

几何五大模型之二(鸟头定理)

三角形之鸟头模型 共角定理(鸟头模型) 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在△ABC 中,D,E 分别是AB,AC 上的点如图(或D 、E 分别在BA 、CA 延长线上),则 AC AB AE AD AC AE AB AD S S ABC ADE ??=?=?? (夹角两边:大 大小 小??) 即,共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 例题讲解: 1、如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。求三角形ABD 的面积是三角形ADC 面积的多少倍? 2、如右图,已知在△ABC 中,BE=3AE ,CD=2AD .若△ADE 的面积为1平方厘米.求三角形ABC 的面积. 3、如图在△ABC 中,D 在BA 的延长线上,E 在AC 上,且AB : AD = 5 : 2,AE :EC = 3: 2, 平方厘米12=?ADE S ,求△ABC 的面积.

4、 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘 米,求ABC △的面积. E D C B A 【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那 么三角形ABC 的面积是多少? E D C B A A B C D E 【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面 积是甲部分面积的几倍? 乙 甲 E D C B A A B C D E 甲 乙 5、 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =, :3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积. E D C B A E D C B A

小学奥数 几何五大模型(等高模型)

模型一 三角形等高模型 已经知道三角形面积的计算公式: 三角形面积=底?高2÷ 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13 ,则三角形面积与原来的一样.这 就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如图 12::S S a b = b a S 2S 1 D C B A ③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 三角形等高模型与鸟头模型

反之,如果ACD BCD S S △△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比; 两个平行四边形底相等,面积比等于它们的高之比.

【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3 个面积相等的三角形; ⑵ 4个面积相等的三角形;⑶6个面积相等的三角形。 【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点, 答案不唯一: C E D B A F C D B A G D B A ⑵ 如下图,答案不唯一,以下仅供参考: ⑸ ⑷⑶⑵⑴ ⑶如下图,答案不唯一,以下仅供参考: 【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上。 ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍? 【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等。 于是:三角形ABD 的面积12=?高26÷=?高 三角形ABC 的面积124=+?()高28÷=?高 三角形ADC 的面积4=?高22÷=?高 所以,三角形ABC 的面积是三角形ABD 面积的43 倍; 三角形ABD 的面积是三角形ADC 面积的3倍。 【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米, 那么图中阴影部分的面积是 平方厘米。 C D B A

几何五大模型汇总

小学平面几何五大模型 一、 共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E分别是, AB AC上的点如图⑴(或D在BA的延长线上,E在AC上),则:():() S S AB AC AD AE =?? △△ 证明:由三角形面积公式S=1/2*a*b*sinC可推导出 若△ABC和△ADE中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ? ? = AE AD AC AB ? ? 二、等积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图 12 :: S S a b = ③夹在一组平行线之间的等积变形,如右图 ACD BCD S S= △△ ; 反之,如果 ACD BCD S S = △△ ,则可知直线AB平行于CD. ④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. b a S2 S1 D C B A

三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +. 四、相似模型 (一)金字塔模型 (二) 沙漏模型 G F E A B C D A B C D E F G ①AD AE DE AF AB AC BC AG ===; ②22:ADE ABC S S AF AG =△△:. 相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下: ⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方; A B C D O b a S 3 S 2 S 1S 4 S 4 S 3 S 2 S 1O D C B A

六年级奥数专题-4几何五大模型——鸟头模型

几何五大模型——鸟头模型 本讲要点 一两点都在边上:鸟头定理: (现出“鸟头模型” 。然后按一下出现一个鸟头,勾勒出鸟头的轮廓,出现如图的鸟头几何模型。最后真实的鸟头隐去,只留下几何模型。最后按一下,出公式。) S AD×AE △ADE = S AB×AC △ABC A E D B C 二一点在边上,一点在边的延长线上: S CD×CE △CDE = S BC×AC △ABC A E D B C

例 1 如图, AD=DB,AE=EF=FC,已知阴影部分面积为 5 平方厘米,△ABC 的面积是平方厘米. 例 2 例 2 ( 1)如图在△ ABC中, D、E 分别是 AB,AC上的点,且 AD:AB=2:5, AE:AC=4:7,△ ABC 的面积是 16 平方厘米,求△ ABC的面积。 (2)如图在△ ABC中, D 在 BA 的延长线上, E 在 AC上,且 AB:AD=5:2, AE:EC=3:2,△ ADE 的面积是12 平方厘米,求△ABC的面积。

例3 已知△ DEF的面积为12 平方厘米, BE=CE,AD=2BD,CF=3AF,求△ ABC的面积。 例4 三角形 ABC面积为 1, AB 边延长一倍到 D, BC 延长 2 倍到 E, CA延长 3 倍到 F,问三角形DEF的面积为多少? F A E C B D

例5 长方形 ABCD面积为 120, EF 为 AD上的三等分点, G、 H、 I 为 DC上的四等分点,阴影面积是多大? 例 6 如图,过平行四边形 ABCD内的一点 P 作边AD、BC的平行线 EF 、GH,若 PBD 的面积为 8 平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米? AG D P E F B H C

几何图形 五大模型

直线形面积计算的五大模型 一、等积变换模型 (1) 等底等高的两个三角形面积相等; (2) 两个三角形的底相等,面积比等于他们高的比;(或者两个三角形的高相等,面积比 等于他们底的比) AB 为公共边,所以 21::ABC ABD s s h h ??= 1h 为公共的高,所以 1 2 ::BD DC s s = (3) 两个三角形面积的比等于这两个三角形底与各自对应高的乘积的比。 底和高均不同,所以 ()21 ::)(ABD CDE BD DC h s s h ??=?? 比如:两个三角形的底的比是5:3,与各自底对应的高的比是7:6, 那么他们的面积的比是(5×7):(3×6) 二、鸟头定理(共角定理) 两个三角形中有一个角相等或者互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两条夹边的乘积之比。 BAC DAC ∠∠和互补,::DAC BAC DA AC BA AC s s ??=??所以 E :E :D A B A C D A A B A A C s s ?? ∠=??A 为公共角,所以 推理过程:连接BE ,运用等积变换模型证明。

三、蝴蝶定理模型 1.任意四边形中的比例关系(蝴蝶定理) 1 2 4 3 ::s s s s =或者1 3 4 2 s s s s ?=? 1 4 2 3 1 2 4 3 +AO:OC s s s s s s s s == =::():(+) 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以是不规则四边形的面积关系与四边形内三角形相联系;另一方面也可以得到与面积对应的对角线被分割的两段之间的比例关系。 2.梯形中比例关系(梯形蝴蝶定理) 22 13 :a b s s =: 22 1324 ::a b s s s s =:::ab :ab 整个梯形对应的面积份数为: 2 (a+b) 四、相似模型 相似三角形性质: (金字塔模型) (沙漏模型) 下面的比例关系适用如上两种模型: 1、 AD AE DE AF AB AC BC AG === 2、 22 ::ADE ABC s s AF AG ??= 所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变,他们都是相似的),与相似三角形相关的常用的性质以及定理如下: (1) 相似三角形的一切对应线段的长度成比例,并且这个比例等于他们的相似比; (2) 相似三角形的面积比等于他们的相似比的平方。

小学数学几何五大模型教师版

几何五大模型 一、五大模型简介 (1)等积变换模型 1、等底等高的两个三角形面积相等; 2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b; 3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b; 4、在一组平行线之间的等积变形,如图③所示,S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。 例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。

(2)鸟头(共角)定理模型 1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形; 2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。 如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点 则有:S△ABC:S△ADE=(AB×AC):(AD×AE) 我们现在以互补为例来简单证明一下共角定理! 如图连接BE,根据等积变化模型知,S△ADE:S△ABE=AD:AB、S△ABE:S△CBE=AE:CE,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC,因此S△ADE:S△ABC=(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。 例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。

(3)蝴蝶模型 1、梯形中比例关系(“梯形蝴蝶定理”) 例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。 2、任意四边形中的比例关系(“蝴蝶定理”):

几何概型案例

《几何概型》教学案例 教学目标 一、知识与技能目标 (1)通过学生对几个几何概型的实验和观察,了解几何概型的两个特点。 (2)能识别实际问题中概率模型是否为几何概型。 (3)会利用几何概型公式对简单的几何概型问题进行计算。 二、过程与方法 让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。 教学重点 几何概型的特点,几何概型的识别,几何概型的概率公式。 教学难点 建立合理的几何模型求解概率。 教学过程 一、创设情境引入新课 师:上节课我们共同学习了概率当中的古典概型,请同学们回想一下其中所包含的主要内容,并依据此举一个生活当中的古典概型的例子。 生甲:掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。 师:请同学们判断这个例子是古典概型吗?你判断的依据是什么? 生乙:是古典概型,因为此试验包含的基本事件的个数是有限个,并且每个基本事件发生的 可能性相等。 师:非常好,下面允许老师也举一个例子,请同学们作以判断。 如图:把一块木板平均分成四部分,小球随机的掉到木板上,求小球掉在阴影区 域内的概率。 生丙:此试验不是古典概型,因为此试验包含的基本事件的个数有无数多个。 师:非常好,此试验不是古典概型,由此我们可以看到,在我们的生活中确实 存在着诸如这样的不是古典概型的实际问题,因此我们有必要对这样的问题作进一步更加深入的学习和研究。今天这节课我们在学习了古典概型的基础上再来学习几何概型。那到底什

么是几何概型,它和古典概型有联系吗?在数学里又是怎样定义的呢?为此,我们接着来看刚才这个试验。 试验一 师:请同学们根据我们的生活经验回答此试验发生的概率是多少? 生丁:四分之一 师:很好,那你是怎样得到这个答案的呢? 生丁:就是用阴影的面积比上总面积。 师:非常好,下面我们再来看图中的右边这种情形,现在阴影的面积仍是总面积的四分之一,只不过阴影的形状及其位置发生了变化,那么此时小球落在阴影区域内的概率又是多少? 生丁:仍是四分之一,还是用阴影的面积比上总面积。 师:非常好,请坐。我们梳理一下我们刚才的发现。首先此试验所包含的基本事件的个数为无数多个,并且每个基本事件发生的可能性相等,而所求的概率就是用阴影的面积比上总面积,所以此概率仅与阴影的面及有关系,而与阴影的形状和位置并无关系。 试验二 在500ml的水中有一只草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率. 师:首先请同学们观察这个试验跟刚才那个试验有没有共同本质的东西。 生戊:此试验所包含基本事件的个数仍是无限多个,每个基本事件发生的可能行都相等。师:所求的概率是多少?

几何五大模型汇总

小学平面几何五大模型 一、共角定理 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别就是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =??△△ 证明:由三角形面积公式S=1/2*a*b*sinC 可推导出 若△ABC 与△ADE 中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°, 则 ADE ABC S S ??=AE AD AC AB ?? 二、等 积模型 ①等底等高的两个三角形面积相等; ②两个三角形高相等,面积比等于它们的底之比; 两 个三 角形底相等,面积比 等于它们的高之比; 如下图12::S S a b = ③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD . ④等底等高的两个平行四边形面积相等(长方形与正方形可以瞧作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比. 三、蝶形定理 1、任意四边形中的比例关系(“蝶形定理”): ① 1243::S S S S =或者1324S S S S ?=? ② ()()1243::AO OC S S S S =++ 速记:上×下=左×右 蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面 可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系. 2、梯形中比例关系(“梯形蝶形定理”): b a S 2 S 1 D C B A

人教版高中数学必修三 第三章 概率概率学案3超几何分布

概率学案3 §2.5.3概率综合 ——超几何分布 学习目标 1.根据题意能够识别概率模型。 学习过程 【任务一】分析典型例题,总结解题思路 例:某班共有学生40人,将一次数学考试成绩(单位:分) 绘制成频率分布直方图,如图所示. (Ⅰ)请根据图中所给数据,求出a的值; (Ⅱ)从成绩在[50,70)内的学生中随机选3名学生,求这3 名学生的成绩都在[60,70)内的概率; (Ⅲ)为了了解学生本次考试的失分情况,从成绩在[50,70) 内的学生中随机选取3人的成绩进行分析,用X表示所 选学生成绩在[60,70)内的人数,求X的分布列和数学期望. 小结: 1.模型特点:总数为N的几类元素,其中含某一类元素M个,从中随机选取n个元素,观察这类元素个数情况; 2.解题思路: A.根据题意识别超几何分布模型; B.利用超几何分布概率特点计算问题中描述的某个事件的概率。 【任务二】跟踪练习 甲口袋中有大小相同的白球3个,红球5个;乙口袋中有大小相同的白球4个,黑球8个,从两个口袋中各摸出2个球,求: (1)甲口袋中摸出的2个球都是红球的概率; (2)两个口袋中摸出的4个球中恰有2个白球的概率.

产品数量 【任务三】课后作业 (2010崇文一模文16)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20, [)20,25,[)25,30,[30,35],频率分布直方图如图所示. 已知生产的产品数量在[)20,25之间的工人有6位. (Ⅰ)求m ; (Ⅱ)工厂规定从生产低于20 件产品的工人中随机的选取2工人进行培训,则这2位工人 在同一组的概率是多少?

几何五大模型一

几何五大模型 一、等积变换模型 1、等底等高的两个三角形面积相等。 2、两个三角形高相等,面积比等于它们的底之比。 3、两个三角形底相等,面积比等于它的的高之比。 二、共角定理模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。 三、蝴蝶定理模型 (说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。) 四、相似三角形模型 相似三角形:是形状相同,但大小不同的三角形叫相似三角形。 相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。相似三角形的面积比等于它们相似比的平方。 五、燕尾定理模 等积变形: 等积变形是小学几何里面一个非常重要的思想,小学所以的几何题,或多或少的都会用到等积变形的思想,几何五大模型也都是依托等积变形思想变化而成的。

一半模型 平行四边形、梯形、任意四边形中的一些一半模型。 一、 模型归纳总结 1、等面积变换模型 (1)直线AB 平行于CD ,可知BCD ACD S S ??=; 反之,如果BCD ACD S S ??=,则可知直线AB 平行于CD .如图A (2)两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; ::ABD ACD S S BD CD =△△如图 B D C B A D C B A 图A 图B (3)一半面积关系 S 4 S 3 S 2S 1 A B C D D C A 1 2 S S =阴影 长方形 1324 S S S S +=+

【例1】、如图,每一个正方形四边中点的连线构成另一内接小正方形,则阴影部分面积为原正方形面积的几分之几? 第8题 【例2】、如右图,过平行四边形ABCD 内的一点P 作边的平行线EF 、GH ,若PBD 的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米? B C G H

小学奥数-几何五大模型

模型三 蝴蝶模型(任意四边形模型) 任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ?=? ②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△ AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米 【分析】 根据蝴蝶定理求得312 1.5AOD S =?÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平 方千米,所以人工湖的面积是7.5 6.920.58-=平方千米 【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知, 求:⑴三角形BGC 的面积;⑵:AG GC = 【解析】 ⑴根据蝴蝶定理,123BGC S ?=?V ,那么6BGC S =V ; ⑵根据蝴蝶定理,()():12:361:3AG GC =++=. () 【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。如果三角形ABD 的面积等于三角形BCD 的 面积的1 3 ,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。 【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已 知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。看到题目中给出条件:1:3ABD BCD S S =V V ,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH 垂直BD 于H ,CG 垂直BD 于G ,面积比转化为高之比。再应用结论:三角形高相同,则面积之比等于底边之比,得出结果。请老师注意比较两种解法,使学生体会到蝴蝶定理的优势,从而主观上愿意掌握并使用蝴蝶定理解决问题。 解法一:∵::1:3ABD BDC AO OC S S ??==, ∴236OC =?=, ∴:6:32:1OC OD ==. 解法二:作AH BD ⊥于H ,CG BD ⊥于G . ∵1 3 ABD BCD S S ??=, 任意四边形、梯形与相似模型

几何概型常见题型归纳

几何概型常见题型归纳 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。求解几何概型的概率问题,一定要正确确定试验的全部结果构成的区域,正确选择合理的测度,进而利用概率公式求解。^_^天体运动,万有引力定律核心考点研读■安徽 张北春(特级教师) 《天体运动、万有引力定律》是高中物理的重要章节。主要考点有:开普勒定律、天体运动、万有引力定律、估算天体的质量和密度、揭示天体运行规律等。近几年高考试题中的天体运动问题多为匀速圆周运动模型,大多数试题可直接运用开普勒第三定律进行分析或计算,有些试题则需运用牛顿第二定律与万有引力定律、“黄金代换”等分析计算。下面通过典型例题解读这些核心考点,希望对同学们的学习有所帮助。 考点1:开普勒定律 【考点研读】开普勒行星运动定律具体表述如下。第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。第二定律:对任意一个行星来说,它与太阳

的连线在相等时间内扫过相等的面积。第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 温馨提示:古人把天体的运动看得十分神圣,他们认为天体的运动不同于地面物体的运动,天体做的是最完美、最和谐的匀速圆周运动。开普勒则认为行星做椭圆运动。他发现假设行星做匀速圆周运动,计算所得的数据与观测数据不符,只有认为行星做椭圆运动,才能解释这一差别。 温馨提示:我们预期太阳对行星的引力与太阳到行星的距离有关,希望通过行星绕太阳做匀速圆周运动需要的向心力求出这个引力,通过两次数学代换得到了太阳对行星的引力与太阳到行星的距离相关的数学表达式;通过类比得到了行星对太阳的引力与太阳到行星的距离相关的数学表达式;综合概括得到了太阳与行星间引力的数学表达式。 例2(2014年新课标全国卷I)太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动。对于地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”。据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日。已知地球及各地外行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是(

小升初-几何五大模型专项复习训练(附详细答案)

几何五大模型 1、如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且BE= 1 3 AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积. ( 【解】根据定理: ABC BED ??=3211??=6 1 ,所以四边形ACDE 的面积就是6-1=5份,这样三角形 35÷5×6=42。 2、四个完全一样的直角三角形和一个小正方形拼成一个大正方(如图)如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是______米. 【解】小正方形面积是1平方米,大正方形面积是5平方米,所以外边四个面积和是5-1=4, 所以每个三角形的面积是1,这个图形是“玄形”,所以长直角边和短直角边差就是中间正方形的边长,所以求出短边长就是1。 3、如图在长方形ABCD 中,△ABE 、△ADF 、四边形AECF 的面积相等。△AEF 的面积是长 方形ABCD 面积的______ (填几分之几)。 。 【解】连接AC ,首先△ABC 和△ADC 的面积相等,又△ABE 和△ADF 的面积相等,则△AEC 和△AFC 的面积也相等且等于ABCD 的1/6,不难得△AEC 与△ABE 的面积之比为1/2,由于这两个三角形同高,则EC 与BE 之比为1/2,同理FC 与DF 之比也为1/2。从而△ECF 相当于ABCD 面积的1/18,而四边形AECF 相当于ABCD 面积的1/3,从而答案为1/3-1/18=5/18。

F D C 4、如图1,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为_____ (01年同方杯)【解】设图示两个三角形的面积分别为a和b,因为△AED面积等于ABCD的一半,则△ABE 加上△DEC的面积也等于ABCD的一半。而△FDC的面积也等于ABCD的一半,即23+a+32+12+b=a+b+阴影面积,可见阴影面积=23+32+12=67。 D C B F 5、右图中 AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是平方厘米. 【解】:四边形AFDC的面积=三角形AFD+三角形ADC=( 2 1 ×FD×AF)+( 2 1 ×AC×CD)= 2 1 (FE+ED)×AF+ 2 1 (AB+BC)×CD= ( 2 1 ×FE×AF+ 2 1 ×ED×AF)+( 2 1 ×AB×CD+ 2 1 ×BC ×CD)。 所以阴影面积=四边形AFDC-三角形AFE—三角形BCD=( 2 1 ×FE×AF+ 2 1 ×ED×AF)+( 2 1 × AB×CD+ 2 1 ×BC×CD)- 2 1 ×FE×AF- 2 1 ×BC×CD= 2 1 ×ED×AF+ 2 1 ×AB×CD= 2 1 ×8×7+ 2 1 ×3×12=28+18=46。

几何五大模型之二:鸟头定理(共角定理)模型

<2> 几何五大模型之二:鸟头定理(共角定理)模型 鸟头定理(共角 定理)模型’ 两个三舀葩中有一个角相同或互补,这两个三角形叫做共角三角形。 共角三角形的面和出等于对应角(相同角或互补角)两夹边的乘积之比。 如下图在A A BC 中* D, E 分别是基禺AC 上的点(或D 在的延长线 上,E 在盘C 上人 则 S^BC :S^ADE =(AB X AQ:(AD X AEJ 证明: 最后我们会发现两种情况的证明方迭完全一样° 卑头定理(共角定理)辺難 逹接BE*在ZiAEB 申「 吕_ AD SiABE AB 在A ABC 中I _ 竺 S A AEC AC 将(1> x (?)有* s 込呼_理EXAD 5 A ABC ACi

例题1: 如上图,在△ABC 中,D,卫分别是AE AC 卜的点,賞中:ECEAE, AD=2DB, S MEC =1,求△ ADE 的面积? 题_ 解法 利用鸟头定理有:严匹 S^ABC 所 fA SiADE~ 7 AE AD 12 1 __ x ___ = _ V _ ——_ AC X AB 4 X 3 6 本題也可以不用鸟头定理,而用等积变换。 连接BE 在AAEF 中, S AAED ' S AAEB =AD : AB=2:3 S AAED ^CJ^S ZIAEF 在△ABC 中, S AAEB : S AABC =AE: AC=1:4 E △血 EB =(1/4)£_ABU 由(“(2)式可得 S ^D= ;x|xS_kB c=; 题_ 解法二 ; AEXAD ACxAB

诵过观察题一的解袪二我们可以找到一个证明如模型图一中鸟头定理的方 例题2: 如上图「在A ABC 中,E 是AC 上的点,D 县BA 証萇线卜的一占? EC=2AE, AB=2AD, S_AEC =1 ,求 A ADE 的面憩 连接BE 在中, SUDE _ 空 S 4iABE AS 1SAA&C 中, SgEE ; _ AE S £I AB 匚 AC 将(1) X (2)有' S 企ADE ; ” AEX 血D S ^AEC ACXAB 证毕。 Cl) (2>

几何概型的定义及计算

几何概型的定义及计算 几何概型的概念: 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)称比例,则称这样的概率模型为几何概率模型,简称为几何概型。 几何概型的概率: 一般地,在几何区域D中随机地取一点,记事件"该点落在其内部一个区域d内"为事件A,则事件A发生的概率。 说明:(1)D的测度不为0; (2)其中"测度"的意义依D确定,当D分别是线段,平面图形,立体图形时,相应的"测度"分别是长度,面积和体积; (3)区域为"开区域"; (4)区域D内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关. 几何概型的基本特点: (1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等. 古典概型的定义及计算 基本事件的定义: 一次试验连同其中可能出现的每一个结果称为一个基本事件。 等可能基本事件: 若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件。 古典概型: 如果一个随机试验满足:(1)试验中所有可能出现的基本事件只有有限个; (2)每个基本事件的发生都是等可能的; 那么,我们称这个随机试验的概率模型为古典概型.

古典概型的概率: 如果一次试验的等可能事件有n个,那么,每个等可能基本事件发生的概率都是;如果某个事件A包含了其中m个等可能基本事件,那么事件A发生的概率为。 古典概型解题步骤: (1)阅读题目,搜集信息; (2)判断是否是等可能事件,并用字母表示事件; (3)求出基本事件总数n和事件A所包含的结果数m; (4)用公式求出概率并下结论。 求古典概型的概率的关键: 求古典概型的概率的关键是如何确定基本事件总数及事件A包含的基本事件的个数。 概率的基本性质(互斥事件、对立事件) 互斥事件: 事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。 如果A 1,A 2 ,…,A n 中任何两个都不可能同时发生,那么就说事件A 1 ,A 2 ,…A n 彼此互斥。 对立事件: 两个事件中必有一个发生的互斥事件叫做对立事件,事件A的对立事件记做。注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。 事件A+B的意义及其计算公式: (1)事件A+B:如果事件A,B中有一个发生发生。 (2)如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A 1,A 2 ,…A n 彼此互斥 时,那么P(A 1+A 2 +…+A n )=P(A 1 )+P(A 2 )+…+P(A n )。

ASSHTO模型中碰撞几何概率的修正及在长江上的应用

龙源期刊网 https://www.doczj.com/doc/ca3209012.html, ASSHTO模型中碰撞几何概率的修正及在长江上的应用 作者:周立万大斌王辉杨洋 来源:《中国水运》2015年第08期 摘要: AASHTO(美国道路工程师协会)规范模型为目前应用最广泛的船桥碰撞概率计算模型之一,该模型将船桥碰撞几何概率作为正态分布考虑,正态分布的标准差等于设计代表船只的船长,期望为0。通过统计长江上船舶过桥时的船位分布情况得知,受航行规则影响,船舶通过单孔双向通航的桥梁时船位沿桥轴线方向成“双峰”分布,该双峰分布可近似的看成由两个正太分布混合而成,据此对AASHTO模型中碰撞几何概率参数进行了修正,修正后的模型与长江干线实际情况更加适应。 关键词: ASSHTO修正模型长江干线船舶碰撞桥梁概率 近年来国内发生了较多的船舶碰撞桥梁事故造成了巨大的人命财产损失,2006年杭州湾 大桥被一走锚失控船舶撞击,大桥多处局部破损,造成经济损失1000余万元;2007年广东九江大桥被砂石船舶碰撞致倒塌造成8人死亡,损失约1.4亿元人民币;2008年浙江宁波金塘大桥被一艘货轮撞击,桥面箱梁塌落,4人死亡;而在长江干线上,从1957年首个有记载的桥 梁被船碰撞的事故以来,已发生的船舶撞桥事故超过300起,其中武汉长江大桥被撞次数最多,已被撞击100余次,虽未造成桥梁倒塌事故,但每一次撞击都会牵动亿万人民的心。因此,开展船舶碰撞桥梁概率研究,为船舶通航安全、桥梁设计、建设与管理提供技术支撑依据非常有必要。 目前,在桥梁防撞设计中,应用较多的船桥碰撞概率计算模型有AASHTO规范模型、拉森(IABSE)模型、欧洲规范模型、昆兹(Kunz)模型和黄平明直航路模型等,不同的模型各有不同侧重和特点。相比较而言,AASHTO模型虽然是依照美国和欧洲的船舶碰撞资料统计 而设计出来的,但因其思路清晰、方法完善、实用性强,是目前应用最为广泛的船桥碰撞概率模型,该规范将船撞桥事件视为风险事件,根据可接受风险的水平指导桥梁的防撞设计,已经形成了系统的思想。 AASHTO模型在长江上应用存在的问题 在该模型中船舶碰撞几何概率以航道中心线为对称轴,船舶的横向分布用正态分布描述,期望为0,即船舶出现的峰值在桥墩之间航道的中间位置。该模型适用于长江上单孔单向通航的桥梁,但长江干线上90%以上的桥梁实行的是单孔双向通航,且长江干线界石盘以下河段均实行了船舶定线制或船舶分道航行规则,船舶在通过单孔双向通航的桥孔时各自靠一边行驶,其中定线制水域还设有分隔带,因此从理论上分析船舶在航道上的几何分布应成“双峰”或“多

几何五大模型

一、等积变换模型 ⑴等底等高的两个三角形面积相等; 其它常见的面积相等的情况 ⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。 如上图12::S S a b = ⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于C D 。 ⑷正方形的面积等于对角线长度平方的一半; ⑸三角形面积等于与它等底等高的平行四边形面积的一半; 二、鸟头定理(共角定理)模型 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。 如图,在ABC △中,,D E 分别是,A B A C 上的点(如图1)或D 在BA 的延长线上,E 在A C 上(如图2),则:():()ABC ADE S S AB AC AD AE =??△△ 五大模型 1S 2 S

图1 图2 三、蝴蝶定理模型 任意四边形中的比例关系(“蝴蝶定理”): ①1243::S S S S =或者1324S S S S ?=?②()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。 梯形中比例关系(“梯形蝴蝶定理”) ①2213::S S a b = ②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2 a b +。

高中数学几何概型经典考点及例题讲解

几何概型 考纲解读 1.根据随机数的意义,用模拟方法估计生活中的概率问题;2.根据几何概型的意义,运用几何度量求概率;3.根据几何概型,估计几何度量. [基础梳理] 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的特点 (1)无限性:试验中所有可能出现的结果(基本事件)有无限多个. (2)等可能性:试验结果在每一个区域内均匀分布. 3.几何概型的概率公式 P (A )= 构成事件A 的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) . [三基自测] 1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( ) 答案:A 2.已知A ={(x ,y )|-1≤x ≤1,0≤y ≤2},B ={}(x ,y )|1-x 2≤y .若在区域A 中随机地扔一粒豆子,则该豆子落在区域B 中的概率为( ) A .1-π 8 B.π4 C.π 4-1 D.π8 答案:A 3.在区间[-2,3]上随机选取一个数X ,则 X ≤1的概率为( ) A.4 5 B.35 C.25 D.15 答案:B

4.(必修3·3.3例1改编)在[0,60]上任取一个数,则x ≥50的概率为________. 答案:16 5.(2017·高考全国卷Ⅰ改编)求在半径为r 的圆内随机撒一粒黄豆,它落在圆内接等腰直角三角形内的概率. 答案:1π 考点一 与长度型有关的几何概型|方法突破 命题点1 与线段长度有关的几何概型 [例1] (2018·长春模拟)已知线段AC =16 cm ,先截取AB =4 cm 作为长方体的高,再将线段BC 任意分成两段作为长方体的长和宽,则长方体的体积超过128 cm 3的概率为________. [解析] 设长方体的长为x ,宽为(12-x ), 由4x (12-x )>128,得x 2-12x +32<0, ∴4

专题8 几何五大模型

几何的五大模型 1、 等积变换模型 1) 夹在一组平行线之间的等积变换,如图 反之, 如果BCD ACD S S ??=,则两条直线AB //直线CD 练习1、 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积. 练习2、如图所示,在ABC △ 中,12CP CB = ,1 3CQ CA = ,BQ 与AP 相交于点X , 若ABC △的面积为6,则ABX △的面积等于_______________. E B A X Q P A B C

2、 共角模型(乌头定理) 3、 蝴蝶定理模型 任意四边形中比例关系 ()() 432142313421::2::1S S S S OC AO S S S S S S S S ++=?=?=)或者) 梯形中的比例关系 ()2 222242312 2313::::::2::1b a d c b a S S S S b a S S +==)梯形对应的份数为 )) 练习3、如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12 , 那么平行四边形BODC 的面积为________. O F E D C B A

4、 相似模型 ;2;12 2AG AF S S AG AF BC DE AC AE AE AD ABC ADE ====??)) 相似三角形:形状相同,大小不同的三角形 1)相似三角形一切对应线段的长度的比相比,并且这个比等于他们的相似比;2)相似三角形的面积比等于他们相似比的平方 5、燕尾定理模型 练习4 如图,平行四边形ABCD 的对角线交于 点,CEF △ 、OEF △ 、ODF △ 、BOE △ 的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △ 的面积. (金字塔模型) O G F E D C B A

相关主题
文本预览
相关文档 最新文档