当前位置:文档之家› 测量不确定度案例分析

测量不确定度案例分析

测量不确定度案例分析
测量不确定度案例分析

标准不确定度A类评定的实例

【案例】对一等活塞压力计的活塞有效面积检定中,在各种压力下,测得10次活塞有效面积与标准活塞面积之比l(由l的测量结果乘标准活塞面积就得到被检活塞的有效面积)如下:

0.250670 0.250673 0.250670 0.250671 0.250675 0.250671 0.250675 0.250670 0.250673 0.250670

问l的测量结果及其A类标准不确定度。

【案例分析】由于n =10, l 的测量结果为l ,计算如下

∑===n

i i .l n l 1250672

01

由贝塞尔公式求单次测量值的实验标准差

()61

2

100521-=?=--=∑.n l l )l (s n

i i

由于测量结果以10次测量值的平均值给出,

由测量重复性导致的测量结果

l 的A 类标准不确定度为

6

10630-=?=.)l (u n )l (s A 【案例】对某一几何量进行连续4

次测量,得到测量值:0.250mm 0.236mm 0.213mm

0.220mm ,求单次测量值的实验标准差。

【案例分析】由于测量次数较少,用极差法求实验标准差。

)()(i i x u C R

x s ==

式中,R——重复测量中最大值与最小值之差;

极差系数c及自由度ν可查表3-2

表3-2极差系数c及自由度ν

查表得c n =2.06

mm ../mm )..()x (u C

R )x (s i i 018006221302500=-=== 2)测量过程的A 类标准不确定度评定

对一个测量过程或计量标准,如果采用核查标准进行长期核查,使测量过程处于统计控制状态,则该测量过程的实验标准偏差为合并样本标准偏差S P 。

若每次核查时测量次数n 相同,每次核查时的样本标准偏差为Si ,共核查k 次,则合并样本标准偏差S P 为

k s s k i i

p ∑==12

此时S P 的自由度ν=(n -1)k 。

则在此测量过程中,测量结果的A 类标准不确定度为 n S A P u '

=

式中的n '为本次获得测量结果时的测量次数。

【案例】对某计量标准(测量过程)进行过2次核查,均在受控状态。各次核查时,均测10次,n =10,

计算得s 1=0.018mm , s 2=0.015mm

在该测量过程中实测某一被测件(核查标准),测量6次,求测量结果y 的A 类标准不确定度。

【案例分析】因核查2次,故k =2,则测量过程的合并样本标准偏差为mm .mm ..k s s s p 01702

015001802

22221=+=+= 在该测量过程中实测某一被测件(核查标准),测量6次,则测量结果y 的A 类标准不确定度为

mm .mm .n S A P u 00706

0170=='= 其自由度为ν=(n -1)k =(10-1)×2=18

3)规范化常规测量时A 类标准不确定度评定

规范化常规测量是指已经明确规定了测量程序和测量条件下的测量,如日常按检定规程进行的大量同类被测件的检定,当可以认为对每个同类被测量的实验标准偏差相同时,通过累积的测量数据,计算出自由度充分大的合并

样本标准偏差,以用于评定每次测量结果的A 类标准不确定度。

在规范化的常规测量(检定)中,测量m 个同类被测量,得到m 组数据,每次测量n 次,第j 组的平均值为j x ,则合并样本标准偏差S P 为 ())n (m x x

s m j n i j ij p 1211

--=∑∑== 对每个量的测量结果j x 的A 类标准不确定度

n S j A P )x (u

自由度为ν=m(n -1) 【案例】取3台同类型同规格电阻表,各在重复性条件下连续测量10次,共得3组测量列,每组测量列分别计算得到单次实验标准差:

s 1=0.20Ω, s 2=0.24Ω, s 3=0.26Ω

求合并样本标准偏差S P 及自由度。

【案例分析】采用合并样本标准差的方法得:

()Ω=Ω++=∑=-∑=∑=??? ??-=2302602402003

11211211222....m j s m )n (m m j n i j x ij x p s 自由度ν=m(n-1)=3×(10-1)=27

4)用预评估重复性进行A 类评定

类似于规范化常规测量,在日常开展同一类被测件的常规检定、校准或检测工作中,如果测量系统稳定,测量重复性不变,则可用该测量系统,以与测量被测件相同的测量程序、操作者、操作条件和地点,预先对典型的被测

件的典型被测量值,进行n 次测量(一般n 不小于10),由贝塞尔公式计算出单个测得值的实验标准偏差s (x ),即重复性。在对某个被测件实际测量时可以只测量n '次(1≤n '<n ),并以n '次独立测量的算术平均值作为被测量的估计值,则该被测量估计值的A 类标准不确定度为 n x s x s x u '==/)()()(

用这种方法评定的标准不确定度的自由度仍为 ν = n -1。可以提高对估计的A 类标准不确定度的可信程度。

应注意,当怀疑测量重复性有变化时,应及时重新测量和计算实验标准偏差s(x)。

【案例】已知对某一电压值进行测量的单次实验标准差预评估值为s=0.025V,进行规范化常规测量,测量重复性未变化,对电压值进行3次测量,若测量3次的算术平均值作为被测量的估计值,求被测量估计值的A类标准不确定度。

【案例分析】因规范化常规测量,测量系统稳定,测量

重复性不变,则:U A =n s

'=30250V

.≈0.015V

A 类评定的几点说明:

a 、当测量结果取其中任一次,则u (x )=s ;

b 、当测量结果取算术平均值,则n s

x u =)(;

c 、当测量结果取n 次中的m 次平均值,则

m s

m x u =)(;

d 、自由度:1-=n ν。

e 、评定方法的选定:一般当测量次数n >6时用贝塞尔

公式计算实验标准差n≤6时用极差法

【案例】某检定员在评定某台计量仪器的重复性s r时,通过对某稳定量Q重复观察了n次,按贝塞尔公式,计算出任意观察值q k的实验标准差s(qk)=0.5,然后,考虑该仪器读数分辨力δ=1.0,由分辨力导致的标准不确定度为u(q)=0.29δq=0.29×1.0=0.29

将s(qk)与u(q)合成,作为仪器示值的重复性不确定度u r(q k)

60580290502

222..).().()q (u )q (s )q (u k k r ≈=+=+= 【案例分析】 重复性条件下,示值的分散性既决定于仪器结构和原理上的随机效应的影响,也决定于分辨力。依据JJF1059—1999第6.11节指出:“同一种效应导致的不确定度已作为一个分量进入u c (y)时,它不应再包含在另外的分量中”。

该检定员的这一评定方法,出现了对分辨力导致的不确定度分量的重复计算,因为在按贝塞尔方法进行的重复

观察中的每一个示值,都无例外地已受到分辨力影响导致测量值q的分散,从而在s(q k)中已包含了δq效应导致的结果,面不必再将u(q)与s(q k)合成为u r(q)。该检定员采用将这二者合成作为u r(q k)是不对的。

有些情况下。有些仪器的分辨力很差,以致分辨不出示值的变化。在实验中会出现重复性很小,即:s(q k)≤u(q)。特别是用非常稳定的信号源测量数字显示式测量仪器,在多次对同一量的测量中,示值不变或个别的变化甚小,反

而不如u(q)大。在这一情况下,应考虑分辨力导致的测量不确定度分量,即在s(q k)与u(q)两个中,取其中一个较大者,而不能同时纳入。

3) 标准不确定度B类评定的实例

【案例1】校准证书上给出标称值为1000g的不锈钢标准砝码质量m s的校准值为1000.000325g,且校准不确定度为24μg(按三倍标准偏差计),求砝码的标准不确定度。

【评定】由于a=U=24μg, k=3, 则砝码的标准不确定度为

u(m s)=24μg/3=8μg

【案例2】校准证书上说明标称值为10Ω的标准电阻在23℃时的校准值为10.000074Ω,扩展不确定度为90μΩ,置信水平为99%,自由度趋于无穷,求电阻的相对标准不确定度。

【评定】由校准证书的信息可知

a=U99=90μΩ,p=0.99

假设为正态分布,查表得到k=2.58,则电阻校准值的

标准不确定度为

u B (R

S

)= 90μΩ/2.58=35μΩ

相对标准不确定度为:u

B (R

S

)/R

S

=3.5×10-6。

【案例3】手册给出了纯铜在20℃时线热膨胀系数α20(C U)为 16.52×10-6℃-1,并说明此值的误差不超过

±0.40×10-6℃-1,求α

20(C

U

)的标准不确定度。

【评定】根据手册,α=0.40×10-6℃-1,依据经验假设为等概率地落在区间内,即均匀分布,查表得k=3,铜

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

100g砝码校准结果的测量不确定度评定

100g 砝码校准结果的测量不确定度评定 1 概述 1.1 测量依据:JJG99-2006《砝码检定规程》. 1.2 环境条件:温度(18~26)℃,温度波动不大于0.5℃/h ,相对湿度不大于75%。 1.3 测量标准:F 1级标准砝码。测量范围:100g ,由于JJG99-2006《砝码检定规程》中给出其扩展不确定度不大于0.167mg ,包含因子k =2。 1.4 被测对象: F 2级砝码组,量程100g 。 1.5 测量过程:采用单次替代称量法,将F 2级被测砝码在天平上一对一与F 1级标准砝码显示值直接对比法,得出被测砝码的误差值。 2 模型 △m=m -m s 式中:△m —机械天平示值误差 m —电光天平示值 m s —标准砝码值 3 灵敏系数 灵敏系数 C 1=э△m/эm=1 C 2=э△m s /эm s =-1 4输入量的标准不确定度评定 4.1 输入量m s 的标准不确定度u (m s )的评定: 输入量m s 的标准不确定度u (m s )采用B 类方法进行评定。 根据JJG99-2006《砝码检定规程》中所给出F 1等级标准砝码100g 的扩展不确定度不大于0.167mg ,包含因子k =2。 标准不确定度u (m s )=0.167mg/2=0.084mg 估计 △u (m s )/u (m s )为0.10,则自由度v ms =50。 4.2 输入量m 的标准不确定度u (m)的评定 u (m )由3个标准分量构成: a) 天平测量重复性导致的不确定度分量u (m 1); b) 天平刻度值估读误差不确定度分量u (m 2); c) 测量天平分度值添加标准小砝码引起的不确定度分量u (m 3); 4.2.1天平测量重复性标准不确定度分量u (m 1)的评定: 用同一砝码,通过天平TG328A 连续测量得到测量列,采用A 类方法进行评定。在重复性条件下连续测量10次,得到测量值为:100.00009g ,100.00008g ,100.00008g ,100.00007g ,100.00008g ,100.00006g ,100.00008g ,100.00009g ,100.00009g ,100.00007g , m = n 1 ∑=n i i m 1 =100.00008(g) 单次实验标准差:S=1) (12-∑-=n m m n i i =0.01mg 自由度:v m1==10-1=9 4.2.2天平刻度值估读误差不确定度分量u (m 2)的评定: TG328A 天平的最小分度值为0.1mg ,示值估读到最小分度值的1/5,所引起的误差区间半宽为0.02/2=0.01mg ,为均匀分布,包含因子k=√3,其标准不确定度为u (m 2)=0.01/√3 =0.008mg, 自由度:v m2=50 4.2.3测量天平分度值添加标准小砝码引起的不确定度分量u (m 3) 的评定:

测量不确定度评定实例

测量不确定度评定实例 一. 体积测量不确定度计算 1. 测量方法 直接测量圆柱体的直径D 和高度h ,由函数关系是计算出圆柱体的体积 h D V 4 2 π= 由分度值为0.01mm 的测微仪重复6次测量直径D 和高度h ,测得数据见下表。 表: 测量数据 计算: mm 0.1110h mm 80.010==, D 32 mm 8.8064 == h D V π 2. 不确定度评定 分析测量方法可知,体积V 的测量不确定度影响因素主要有直径和高度的重复测量引起的不确定都21u u ,和测微仪示值误差引起的不确定度3u 。分析其特点,可知不确定度21u u ,应采用A 类评定方法,而不确定度3u 采用B 类评定方法。

①.直径D 的重复性测量引起的不确定度分量 直径D 的6次测量平均值的标准差: ()mm 0048.0=D s 直径D 误差传递系数: h D D V 2 π=?? 直径D 的重复性测量引起的不确定度分量: ()3177.0mm D s D V u =??= ②.高度h 的重复性测量引起的不确定度分量 高度h 的6次测量平均值的标准差: ()mm 0026.0=h s 直径D 误差传递系数: 4 2 D h V π=?? 高度h 的重复性测量引起的不确定度分量: ()3221.0mm h s h V u =??= ③测微仪示值误差引起的不确定度分量 由说明书获得测微仪的示值误差范围mm 1.00±,去均匀分布,示值的标准不确定度 mm 0058.0301.0==q u 由示值误差引起的直径测量的不确定度 q D u D V u ??= 3

ISO17025:2017实验室-测量不确定度评定程序

页次第 69 页共 6页文件名称测量不确定度评定程序发布日期2019年1月1日 1 目的 对测量结果不确定度进行合理的评估,科学表达检测结果。 2 范围 本程序适用于客户有要求时、新的或者修订的测试方法验证确认时、当报告值与合格临界值接近时需评定不确定度并在报告中注明。 3 职责 3.1 检测人员根据扩展不确定度评定的适用范围,按规定在记录和报告中给出测量结果的不确定度。 3.2 检测组组长负责审核测量不确定度评定过程和结果报告。 3.3 技术负责人负责批准测量不确定度评定报告。 4 工作程序 4.1 测量不确定度的来源 4.1.1 对被测量的定义不完善或不完整。 4.1.2 实现被测量定义的方法不理想。 4.1.3 取样的代表性不够,即被测量的样本不能代表所定义的被测量。 4.1.4 对被测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善。 4.1.5对模拟仪器的读数存在认为偏差(偏移)。 4.1.6测量仪器的分辨力或鉴定力不够。 4.1.7赋予测量标准和测量物质的值不准。 4.1.8用于数据计算的常量和其他参量不准。 4.1.9测量方法和测量程序的近似性和假定性。 4.1.10 抽样的影响。

页次 第 70 页 共 6页 文件名称 测量不确定度评定程序 发布日期 2019年1月1日 4.1.11在表面上看来完全相同的条件下,被测量重复观测值的变化。 4.2 测量不确定度的评定方法 4.2.1 检测组根据随机取出的样本做重复性测试所获得的结果信息,来推断关于总体性质时,应采用A 类不确定度评定方法,用符号A u 表示,其评定流程如下: A 类评定开始 对被测量X 进行n 次独立观测得到 一系列测得值 (i=1,2,…,n )i x 计算被测量的最佳估计值x 1 1n i i x x n ==∑计算实验标准偏差() k s x 计算A 类标准不确定度() A u x ()()() k A s x u x s x n == 4.2.2 检测组根据经验、资料或其他信息评估时,应采用B 类不确定度评定方法,用符号B u 表示,B 类不确定度评定的信息来源有以下六项: 4.2.2.1 以前的观测数据。 4.2.2.2 对有关技术资料和测量仪器特性的了解和经验。 4.2.2.3 相关部门提供的技术说明文件。 4.2.2.4 校准证书或其他文件提供的数据,准确度的等别或级别,包括目前暂

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

测量不确定度的方法

测量不确定度评定U,p,k,u代表什么? 当测量不确定度用标准偏差σ表示时,称为标准不确定度,统一规定用小写拉丁字母“u”表示,这是测量不确定度的第一种表示方式。但由于标准偏差所对应的置信水准(也称为置信概率)通常还不够高,在正态分布情况下仅为68.27%,因此还规定测量不确定度也可以用第二种方式来表示,即可以用标准偏差的倍数kσ来表示。这种不确定度称为扩展不确定度,统一规定用大写拉丁字母U表示。于是可得标准不确定度和扩展不确定度之间的关系: U=kσ=ku 式中k为包含因子。 扩展不确定度U表示具有较大置信水准区间的半宽度。包含因子有时也写成kp的形式,它与合成标准不确定度uc(y)相乘后,得到对应于置信水准为p的扩展不确定度Up=kpuc(y)。 在不确定度评定中,有关各种不确定度的符号均是统一规定的,为避免他人的误解,一般不要自行随便更改。 在实际使用中,往往希望知道测量结果的置信区间,因此还规定测量不确定度也可以用第三种表示方式,即说明了置信水准的区间的半宽度a来表示。实际上它也是一种扩展不确定度,当规定的置信水准为p时,扩展不确定度可以用符号Up表示。 测量不确定度评定步骤? 评定与表示测量不确定度的步骤可归纳为 1)分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量。 2)评定标注不确定度分量,并给出其数值ui和自由度vi。 3)分析所有不确定度分量的相关性,确定各相关系数ρij。 4)求测量结果的合成标准不确定度,则将合成标准不确定度uc及自由度v . 5)若需要给出展伸不确定度,则将合成标准不确定度uc乘以包含因子k,得展伸不确定度 U=kuc。 6)给出不确定度的最后报告,以规定的方式报告被测量的估计值y及合成标准不确定度uc 或展伸不确定度U,并说明获得它们的细节。 根据以上测量不确定度计算步骤,下面通过实例说明不确定度评定方法的应用。 我们单位的不确定度都是我写,其实计算不确定度,并写出报告,整体来说也就分几个步骤, 一、概述 二、数学模型 三、输入量的标准不确定度评定 这里面就包括数学模型里所有影响结果的参量,找出所有影响因素,计算各个影响量的标准不确定度,其中又分为A类评定和B类评定 这个按B类评定进行计算,影响万用表的因素也很多,比如万用表的仪器设备检定证书中如果有不确定度,可以直接用,如果没有,就看给出的允许误是多少,用这个数字除以根号3,得出误差的标准不确定度。还有要考虑温湿度的影响,以及人为读数误差(不知道你们那个万用表是不是人工读数),基本上万用表就考虑这些因素差不多了,你就是一个万用表的读书不确定度,一般按正态分布,K取根号3,一般会把标准不确定度先转换成相对标准不确定度,这样都变成无量纲的,方便后边合成。 四、计算合成不确定度 五、计算扩展不确定度 六、最后的不确定度表示 一般试验室能力验证,查的就是不确定度报告,按这个格式就可以

工业热电阻自动测量系统结果不确定度评定实例

工业热电阻自动测量系统结果不确定度评定实例 用于检定工业热电阻的自动测量系统,根据国家计量检定规程(JJG 229—1998)对不确定度分析时可以在0℃点,100℃点,现在A 级铂热电阻的测量为例. B1 冰点(0℃) B1.1 数学模型,方差与传播系数 根据规定,被检的R(0℃)植计算公式为 R(0℃)=R i 0 =??? ??t dt dR t i = R i 0=??? ??t dt dR * * *0=??? ??-t I dt dR R R ℃)( = R i - 0.00391R * (0℃)×) ℃(0 0.00391R 0* *℃) (R R I - = R i - 0.391×1 .00* *℃) (R R I - = R i - 0.39 [] ℃)( 0* *R R I - 式中: R(0℃)—被检热电阻在0℃的电 阻值,Ω; R i —被检热电阻在0℃附近的测得值,Ω; R *(0℃)—标准器在0℃的电阻值,通常从实测的水三点值计算,Ω; R * i —标准器在0℃附近测的值,Ω。 上式两边除以被检热电阻在0℃的变化率并做全微分变为 dt 0R =d ()391.0R i +d ??? ? ???-2500399.0** 0i R R =dt Ri +dt *0 R +dt *i R 将微小变量用不确定度来代替,合成后可得方差 u 20 R t =u 2i R t +u 2t *0R +u 2t *i R (B-2) 此时灵敏系数C 1=1,C 2=1,C 3=–1。

B1.2 标准不确定分量的分析计算 B1.2.1 u 2i R t 项分量 该项分量是检热电阻在0℃点温度t i 上测量值的不确定度。包括有: a) 冰点器温场均匀性,不应大于0. 01℃,则半区间为0.005℃。均匀分布,故 u 1.1= 3 005.0=0.003℃ 其估计的相对不确定度为20﹪,即自由度1.1ν=12,属B 类分量。 b) 由电测仪表测量被检热电阻所带入的分量。 本系统配用电测仪表多为6位数字表(K2000,HP34401等),在对100Ω左右测量时仍用100Ω挡,此时数字表准确度为 100×106×读数+40×106×量程 对工业铂热电阻Pt100来说,电测仪表带入的误差限(半宽)为 被δ=±(100×100×106-+100×40×106- =±0.014Ω 化为温度:391 .0014 .0±=±0.036℃ 该误差分布从均匀分布,即 u 2.1= 3 036.0=0.021℃ 估计的相对不确定度为10﹪,即1.1ν=50,属B 累类分量。 c) 对被检做多次检定时的重复性 本规范规定在校准自动测量系统时以一稳定的A 级被检铂热电阻作试样检3次,用极差考核其重复性,经实验最大差为4m Ω以内。通道间偏差以阻值计时应不大于2m Ω,故连同通道间差 异同向叠计在内时,重复性为6m Ω,约0.015℃,则 u 3.1= 69 .1015 .0=0.009℃ 3.1ν=1.8,属A 类分量。 d) 被检热电阻自然效应的影响。 以半区间估计为2m Ω计约5mK 。这种影响普遍存在,可视为两点分布,故 u 4.1=1 5=5mK 估计的相对不确定度为30﹪,即4.1ν=5,属B 类分量。

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

测量不确定度评定程序

1 目的 对检验方法和结果的测量不确定度进行评定和报告,进一步提高评价检验结果的可信程度,以满足客户与认可准则的要求。 2 适用范围 适用于检验中心开展的标准或非标准方法的检验结果的测量不确定度评定。 3 职责 3.1技术负责人负责测量不确定度的评定。 3.2技术负责人负责不确定度的评定的培训,以确保其在实验室检测活动中的运用水平; 3.3 检测员负责协助提供不确定度评定所需的检测数据; 4 控制程序 4.1 测量不确定评定检验项目的选择 4.1.1可能的情况下,实验室应对所有被测量进行不确定来源分析和评定,以确保测量结果的可信程度。 4.1.2技术负责人确定进行测量不确定评定的检验项目,确定进行评定的原则如下: a)当检验项目仅为定性分析时,不进行测量不确定度的评定。 b)对于公认的检验方法,检验项目已给出相应的测量不确定度及其来源时,可以不进行测量不确定度的评定。 c)除上述两种情况,各检验领域中关键、典型和重要的检验项目,均应进行测量不确定度的评定。 d)在评定测量不确定度时,对给定条件下的所有重要不确定度分量,均应采用适当的分析方法加以考虑。 e)当顾客对检验项目的测量不确定度提出要求时,应进行测量不确定度的评定。 f)在微生物检测领域,某些情况下,一些检测无法从计量学和统计学角度对测量不确定度进行有效而严格的评估,这时至少应通过分析方法,考虑它们对于检测结果的重要性,列出各主要的不确定分量,并作出合理的评估。有时在重复性和再现性数据的基础上估算不确定度也是合适的。 4.2测量不确定度的评定方法 本程序拟规定两种方法对测量不确定度进行评定。一种是GUM 法,另一种是top-down 评定方法。 Ⅰ 测量不确定度评定与表示 GUM 法 4.2.1 列出测量不确定度的来源 用GUM 法评定测量不确定度的一般流程见下图1。 图1 用GUM 法评定测量不确定度的一般流程

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

测量不确定度分析方法

测量不确定度分析方法 不确定度是表征测量值的分散性并与测量结果相联系的一 个参数,由分析与评定得到。一切测量结果都不可笔尖地存在不确定度,测量结果(数据、报告等)也越来越多采用不确定度来表达其质量和可靠程度。不确定度越小,测量水平越高,测量结果的使用价值越高,反之亦然。为统一对测量结果不确定度的评定与表达方法,国际标准化组织(ISO)等七个国际组织于1993年联合发布了《测量不确定度表示指南》。我国《测量不确定度评定与表示》等同采用此《指南》。 一、测量不确定度的意义 1.基本概念:测量不确定度是表征合理赋予被测量之值的分散性、与测量结果相联系的参数。在测量结果的完整表述中,应包括测量不确定度。 不确定度可以是标准差或其倍数,或是说明了置信水准的区间的半宽。以标准差表示的不确定度称为标准不确定度,以u表示。以标准差的倍数表示的不确定度称为扩展不确定度,以U表示。扩展不确定度表明了具有较大置信概率的区间的半宽度。 2.测量结果的重复性 测量结果的重复性是指在相同测量条件下,对同一被测量进

行连续多次测量所得到结果之间的一致性。这里的相同 测量条件包括:相同的测量程序、相同的观测者、使用相同的测量仪器、相同地点、在短时间内进行重复测量。这些条件也称为“重复性条件”。 测量重复性可以用重复观测结果的实验标准差定量地给出。3.测量结果的复现性 测量结果的复现性是指在改变了的测量条件下,同一被测量的测量结果之间的一致性。这里变化了的测量条件包括:测量原理、测量方法、观测者、测量仪器、参考测量标准、地点、时间、使用条件。这些条件可以改变其中一项、多项或者全部,它们会影响复现性的数值。因此,在复现性的有效表述中,应说明变化的条件。复现性可以用复现性条件下,重复观测结果的实验标准差定量地给出。这里,测量结果通常理解为已修正结果。复现性又称为“再现性” 二、测量误差与测量不确定度的主要区别 测量误差为测量结果减去被测量的真值,是客观存在的一个确定的值,但由于真值往往不知道,故误差无法准确得到。测量不确定度是说明测量分散性的参数,由分析和评定得到,因而与分析者的认识程度有关。误差与不确定度是两个不同的概念,不应混淆或误用。测量结果可能非常接近真值,但由于认识不足,评定得到的不确定度可能较大。也可能测量误差实际上较大,但由于分析估计不足,给出的不确

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

砝码不确定度cmc

砝码折算质量的测量结果不确定度评定 1、概述 1.1测量依据:JJG99―2006《砝码检定规程》. 1.2环境条件:温度(20±1)℃,相对湿度不大于70%. 1.3测量标准:E 2等极标准砝码,标称质量50g ;电子天平:(0~220)g ,分度值:0.1mg 1.4被测对象:F 1等级砝码,标称质量50g 。 1.5测量过程:采用比较法.使用本装置直接一对一传递相同标称值的F 1等级砝码,可得到标 准砝码和被测砝码质检的差值,将其差值加上E 2等级标准砝码的折算质量值作为被测F 1等级砝码的折算质量值,采用ABBA 的测量方式。 2、数学模型 ba w b cr ct m m m m m δδδ+++= 式中: cr m -----标准砝码A 的折算质量; ct m -----被检砝码B 的折算质量; b m δ -----空气浮力对测量结果的影响; w m δ-----测量过程对测量结果的影响; ba m δ_______天平对测量结果的影响; 3、合成方差和灵敏系数 2242332222212)()(ba w b c c c u c u c u c m u c m u +++= 式中:11=??=cr ct m m c ,12=??=b ct m m c ,13=??=w ct m m c ,14=??=ba ct m m c 4、输入量的标准不确定度评定 4.1 标准砝码引入的标准不确定度分量()cr m u 标准砝码引入的标准不确定度分量()cr m u 应当由检定证书中扩展不确定度U 和包含因子k 并结合标准砝码质量的不稳定性引入的不确定度得到。 4.1.1标准砝码不确定度引入的标准不确定度分量()cr m u 1。 根据JG99-2006《砝码检定规程》,E2等级标准砝码的最大允许误差为0.10mg ,其折算质量的扩展不确定度不大于最大允许误差MPE 绝对值的1/3,包含因子k =2,则 ()cr m u 1=3 2?MPE =0.0.0083mg 4.1.2标准砝码质量的不稳定性引入的标准不确定度分量()cr m u 2 根据JG99-2006《砝码检定规程》,标准砝码相邻两个周期的检定结果之差不得超过该砝码

F2等级砝码不确定度分析

F 2等级克组、毫克组砝码折算质量的测量结果不确定度分析计算报告 1. 概述 1.1 测量依据:JJG99-2006《砝码检定规程》;JJG1036-2008《电子天平检定规程》;JJF1059-1999《测量不确定度评定与表示》。 1.2 环境条件:温度21.5℃,相对湿度54%。 1.3 测量标准:F 1等级标准砝码。测量范围1mg ~500g ,由JJG99-2006《砝码检定规程》给出其扩展不确定度极限值(0.006~0.8)mg (k =2)。 1.4 被测对象:F 2等级砝码。测量范围1mg ~500g ,由JJG99-2006《砝码检定规程》给出其扩展不确定度极限值(0.02~ 2.4)mg (k =2)。 1.5 该F 1等级标准砝码使用了修正値,并有超过五个检定周期的证书(6个周期的证书)。 1.6量传过程中,空气密度采用了平均值,砝码材料密度及其不确定度采用规程中给出的数值。 1.7使用天平:型号AE240;分度值为0.01mg/0.1mg ;最大载荷为40g/200g 。 2. 测量方法 采用单次替代称量法、ABA 循环方式,由一人测一次。测量时,先把标准砝码m A 放在天平秤盘中心,读取标准砝码的平衡位置I A1,然后把标准砝码取下,放上被测砝码m B 于秤盘中心,读取被测砝码的平衡位置I B ,再将标准砝码m A 放在天平秤盘中心,读取标准砝码的平衡位置I A2,最后加上测分度值的标准小砝码m S ,读取数值I A2+ms 。根据规程提供的公式算出被测砝码的折算质量。 3. 数学模型 m mc mc r t ?+= 式中:t m c ——被测砝码的折算质量; r mc ——标准砝码的折算质量; m ?——被测砝码和标准砝码的平均质量值。 4. 不确定度分量 4.1上等级标准砝码的不确定度分量 以测量g 组砝码20g 为例。 F 1等级20g 标准砝码的扩展不确定度极限值为0.08mg (k =2),该标准砝码是新购置的,在一定时间内,经对同一被测砝码进行多次测量,得到一组测量值:20.000025、20.000016、20.000019、20.000027、20.000018、20.000021g 。则砝码不稳定性引起的不确定度: mg n m m f s u i inst 006.05 1093.11 )(5 2 =??=-?-?==-∑ 所以,上等级标准砝码的标准不确定度为: m g u k U m u inst r 040.0006.0208.0)(2 2 22 =+?? ? ??=+??? ??= 4.2 衡量过程的标准不确定度分量

测量不确定度评定的方法以及实例

第一节有关术语的定义 3.量值value of a quantity 一般由一个数乘以测量单位所表示的特定量的大小。 例:5.34m或534cm,15kg,10s,-40℃。 注:对于不能由一个乘以测量单位所表示的量,可以参照约定参考标尺,或参照测量程序,或两者参照的方式表示。 4.〔量的〕真值rtue value〔of a quantity〕 与给定的特定量定义一致的值。 注: (1) 量的真值只有通过完善的测量才有可能获得。 (2) 真值按其本性是不确定的。 (3) 与给定的特定量定义一致的值不一定只有一个。 5.〔量的〕约定真值conventional true value〔of a quantity〕 对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。 例:a) 在给定地点,取由参考标准复现而赋予该量的值人作为给定真值。 b) 常数委员会(CODATA)1986年推荐的阿伏加得罗常数值6.0221367×1023mol-1。 注: (1) 约定真值有时称为指定值、最佳估计值、约定值或参考值。 (2) 常常用某量的多次测量结果来确定约定真值。 13.影响量influence quantity 不是被测量但对测量结果有影响的量。 例:a) 用来测量长度的千分尺的温度; b) 交流电位差幅值测量中的频率; c) 测量人体血液样品血红蛋浓度时的胆红素的浓度。 14.测量结果 result of a measurement 由测量所得到的赋予被测量的值。 注: (1) 在给出测量结果时,应说明它是示值、示修正测量结果或已修正测量结果,还应表明它是否为几个值的平均。 (2) 在测量结果的完整表述中应包括测量不确定度,必要时还应说明有关影响量的取值范围。 15.〔测量仪器的〕示值 indication〔of a measuring instrument〕 测量仪器所给出的量的值。 注: (1) 由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。 (2) 这个量可以是被测量、测量信号或用于计算被测量之值的其他量。 (3) 对于实物量具,示值就是它所标出的值。 18.测量准确度 accuracy of measurement 测量结果与被测量真值之间的一致程度。

评定测量不确定度程序

评定测量不确定度程序 1.目的 合理地赋予被测量值的分散性。 2.范围 适用于本公司开展检测项目的检测不确定度评定。 3.职责 3.1技术负责人是本程序实施的负责人。 3.2检测室是本程序的实施部门。 4.程序 4.1评定要求 4.1.1自制方法的检测项目、自校仪器设备的检测参数要进行不确定度评定;客户要求出具检测结果的测量不确定度时,在有能力的条件下要提供检测结果的不确定度。 4.1.2在公认的检测方法规定了测量不确定度主要来源值的极限,并规定了计算结果的表示形式,只要遵守该检测方法和报告的要求,不需要重新评定测量不确定度。 4.1.3由于检测方法的性质,在某些情况下,会妨碍对测量不确定度进行严密的计量学和统计学上的有效计算,要找出不确定度的所有分量并作出合理评定。 4.1.4测量不确定度评定所需的精度取决于:检测方法要求、客户要求及确定符合某规范所依据的限量范围。评价测量不确定度时,不考虑检测样品预计的远期特性。 4.1.5对已评定的方法进行某些更改,要重新进行评定。 4.2 测量不确定度评定

4.2.1 成立以技术负责人为组长,以相关岗位监督人员、检测方法使用人员、自制方法编制人员以及检测方法所用仪器设备责任人为成员的评估小组。必要时,聘请有关专家参加。 4.2.2 根据国家计量技术规范《测量不确定度评定与表示》,实施本检测公司的不确定度评定工作。 4.2.3 检测公司负责起草“XXX(方法)XXX(项目)不确定度评定与表述规程”,自制方法编制人员负责起草“XXX(自制方法)XXX(项目)不确定度评定与表述规程”,起草的不确定度评定程序经评定小组审定通过后,由技术负责人批准发布。 4.2.4检测人员根据客户要求,使用“XXX(方法,自制方法)XXX(项目)不确定度评定与表述规程”对测量结果进行不确定度评定和表述,并填写《测量不确定度评定报告》此报告经校核人员核对后,作原始记录保存。 4.2.5《检测报告》中测量不确定度的说明 A除非采用国际上公认的检测方法,可以按该方法的测量结果表示形式外,在检测完成后应给出完整的测量结果Y Y=y±U B应给出获得扩展不确定度U时的标准不确定值UC和包含因子k。 5.质量记录 《测量不确定度评定报告》

不确定度评定报告

不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型 数学模型 A=A S +δ 式中:A —频率计上显示的频率值 A S —参考频率标准值; δ—被测与参考频标频率的误差。 3、输入量的标准不确定度 3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。 标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为 ()s A u =a/k =1.2×10-2Hz ()=rel s A u 1.2×10-2/107=1.2×10-9 3.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2) u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。 由测量列计算得 算术平均值 ∑==n i i f n f 1 1=9999999.6442Hz, 标准偏差 () Hz n f f s n i i 00091.01 2 1 =--= ∑=

标准不确定度分量u(δ 3 )=0.00091/=0.00029Hz u(δ 3 )rel=2.9×10-11 4 合成标准不确定度评定 主要标准不确定度汇总表 输入量A S 、δ 1 、δ 2 相互独立,所以合成标准不确定度为 u c (A)= 9 2 2 2 1 210 5.1 ) ( ) ( ) (- ? = + +δ δu u A u S 5 扩展不确定度评定 取k=2,则 扩展不确定度为 U rel =k×u c=2×1.5×10-9=3×10-9 6测量不确定度报告 f=f0(1±3×10-9)Hz,k=2 不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型

相关主题
文本预览
相关文档 最新文档