当前位置:文档之家› OFDM技术仿真(MATLAB代码)..

OFDM技术仿真(MATLAB代码)..

OFDM技术仿真(MATLAB代码)..
OFDM技术仿真(MATLAB代码)..

第一章绪论

1.1简述

OFDM是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作一种复用技术。多载波传输把数据流分解成若干子比特流,这样每个子数据流将具有低得多的比特速率,用这样的低比特率形成的低速率多状态符号再去调制相应的子载波,就构成多个低速率符号并行发送的传输系统。正交频分复用是对多载波调制(MCM,Multi-Carrier Modulation)的一种改进。它的特点是各子载波相互正交,所以扩频调制后的频谱可以相互重叠,不但减小了子载波间的干扰,还大大提高了频谱利用率。

符号间干扰是多径衰落信道宽带传输的主要问题,多载波调制技术包括正交频分复用(OFDM)是解决这一难题中最具前景的方法和技术。利用OFDM技术和IFFT方式的数字实现更适宜于多径影响较为显著的环境,如高速WLAN 和数字视频广播DVB等。OFDM作为一种高效传输技术备受关注,并已成为第4代移动通信的核心技术。如果进行OFDM系统的研究,建立一个完整的OFDM 系统是必要的。本文在简要介绍了OFDM 基本原理后,基于MATLAB构建了一个完整的OFDM动态仿真系统。

1.2 OFDM基本原理概述

1.2.1 OFDM的产生和发展

OFDM的思想早在20世纪60年代就已经提出,由于使用模拟滤波器实现起来的系统复杂度较高,所以一直没有发展起来。在20世纪70年代,提出用离散傅里叶变换(DFT)实现多载波调制,为OFDM的实用化奠定了理论基础;从此以后,OFDM在移动通信中的应用得到了迅猛的发展。

OFDM系统收发机的典型框图如图1.1所示,发送端将被传输的数字信号转换成子载波幅度和相位的映射,并进行离散傅里叶变换(IDFT)将数据的频谱表达式变换到时域上。IFFT变换与IDFT变换的作用相同,只是有更高的计算效

基于MATLAB 实现OFDM 的仿真

率,所以适用于所有的应用系统。其中,上半部分对应于发射机链路,下半部分对应于接收机链路。由于FFT 操作类似于IFFT ,因此发射机和接收机可以使用同一硬件设备。当然,这种复杂性的节约则意味着接收发机不能同时进行发送和接收操作。

图1.1 OFDM 系统收发机的典型框图

接收端进行发送相反的操作,将射频(RF ,Radio Frequency )信号与基带信号进行混频处理,并用FFT 变换分解频域信号。子载波幅度和相位被采集出来并转换回数字信号。IFFT 和FFT 互为反变换,选择适当的变换将信号接收或发送。但信号独立于系统时,FFT 变换和IFFT 变换可以被交替使用。

1.2.2 串并变换

数据传输的典型形式是串行数据流,符号被连续传输,每一个数据符号的频谱可占据整个可以利用的带宽。但在并行数据传输系统中,许多符号同时传输,减少了那些在串行系统中出现的问题。在OFDM 系统中,每个传输符号速率的

串/并

去除循环前缀 定时和频率同步

RF RX

ADC

解码 解交织 信道正交

数字解调

并串变换

RF TX 加入循环前缀

并/串

DAC

编码 交织

插入倒频 数字调制 串并变换

IFFT FFT

大小大约在几十bit/s到几十kbit/s之间,所以必须进行串并变换,将输入串行比特流转换成为可以传输的OFDM符号。由于调试模式可以自适应调节,所以每个子载波的调制模式是可以变化的,因为而每个子载波可传输的比特数也是可以变化的,所以串并变换需要分配给每个子载波数据段的长度是不一样的。在接收端执行相反的过程,从各个子载波出来的数据长度不一样。在接收端执行相反的过程,从各个子载波处来的数据被转换回原来的串行数据。

当一个OFDM符号在多径无线信道中传输时,频率选择性衰落会导致某几组子载波收到相当大的的衰减,从而引起比特错误。这些在信道频率响应的零点会造成在邻近的子载波上发射的信息受到破坏,导致在每个符号中出现一连串的比特错误。与一大串错误连续出现的情况相比较,大多数前向纠错编码(FEC,Forward Error Correction)在错误分布均与的情况下会工作得更有效。所以,为了提高系统的性能,大多数系统采用数据加扰作为串并变换工作的一部分。这可以通过把每个连续的数据比特随机地分配到各个子载波上来实现。在接收机端,进行一个对应的逆过程解出信号。这样,不仅可以还原出数据比特原来的顺序,同时还可以分散由于信号衰落引起的连串的比特错误使其在时间上近似均匀分布。这种将比特错误位置的随机化可以提高前向纠错编码(FEC)的性能,并且系统的总的性能也得到改善。

1.2.3 子载波调制

正交频分复用(OFDM)技术就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输。尽管总的信道是非平坦的,具有频率选择性,但是每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽,因此大大消除了信号波形间的干扰。而且子信道的载波相互正交,一个OFDM符号包括多个经过PSK调制或QAM调制的子载波的合成信号,每个子载波的频谱相互重叠,从而又提高了频谱利用率。用N 表示子载波个数,T 表示OFDM 符号的持续时间,d i( i = 0 ,1 , …, N - 1)为分配给每个子信道的数据符号,f i为第i 个子载波的载波频率,从t = t s开始的OFDM符号的等效基带信号可表示为(模拟信号表示式) :

基于MATLAB 实现OFDM 的仿真

s(t)的实部和虚部分别对应于OFDM 符号的同相分量和正交分量,在实际系统中可分别与相应子载波的余弦分量和正弦分量相乘,构成最终的子信道。其相应的数字表示式如下:令 t s = 0 ,采样速率为 N/ T ,则发送速率的第 k ( k =:0 ,1 , …, N - 1)个采样表示为:

∑-==

=1

)/2exp()/()(N t

i N ik j d N kT s k s π (1-2)

显然式上式恰好为IDFT 的表达式,可知OFDM 的调制和解调可以通过 IDFT 和DFT 或(IFFT 和FFT )来实现。如图1.2所示,在一个OFDM 符号内包含四个载波的实例。其中,所有的子载波都具有相同的幅度和相位,但在实际应用中,根据数据符号的调制方式,每个子载波都有相同的幅度和相位是不可能的。从图1.2可以看出每个子载波在一个OFDM 符号周期内都包含整数倍个周期,而且各个相邻的子载波之间相差1个周期。这一特性可以用来解释子载波之间的正交性,即:

???

?≠==T

o

n n

m n m dt j t j T 0

1)exp()exp(/1n ωω(1-3)

如对式1-3中的第j 个子载波进行调制,然后在时间长度T 内进行积分,即:

()()?∑?

∑=???

? ??--=-+--=-=-=j

s N i i s s s

N i i s j d dt t t T j i d T dt

t t T i T t t d t t T j T

b )(j2exp /1)(/2j exp )(/2j exp /1?1

010

πππ

根据对式1-4可以看到,对第J 个子载波进行解调可以恢复出期望的符号。而对其他载波来说,由于积分间隔内,频率差别(I-J)/T 可以产生整数倍个周期,所以积分结果为零。这种正交性还可以从频率角度来解释。根据式1-2 ,每个OFDM 符号在其周期T 内包含多个非零子载波。因此其频谱可以看作是周期为T 的矩形脉冲的频谱与一组位于各个子载波频率上的δ函数的卷积。矩形脉冲频谱幅度值为sinc(?T)函数,这种函数的零点出现在频率为1/T 整数倍的位置上。

[]

s

s s s N t

s s i t T t t t s T t t t t t T i j T t t rect d t s +><=+≤≤---=

∑-=或1

t 0

)()(/2exp )2/()(π(1-4)

(1-1)

图1.2 OFDM载波

图1.3 OFDM子载波频谱

这种现象可以参见图1.3,图中给出了相互覆盖的各个子信道内经过矩形波形成型得到的符号的sinc函数频谱。在每个子载波频率最大值处,所有其他子信道的频谱值恰好为零。因为在对OFDM符号进行解调过程中,需要计算这些点上所对应的每个子载波频率的最大值,所以可以从多个相互重叠的子信道中提

基于MATLAB 实现OFDM 的仿真

取每一个子信道的符号,而不会受到其他子信道的干扰。从图 1.3可以看出,OFDM 符号频谱实际上可以满足奈奎斯特准则,即多个子信道频谱之间不存在相互干扰。因此这种一个子信道频谱出现最大值而其他信道频谱为零点的特点可以避免载波间的干扰(ICI )的出现。

1.2.4 DFT 的实现

傅里叶变换将时域与频域联系在一起,傅里叶变换的形式有几种,选择哪种形式的傅里叶也变化由工作的具体环境决定。大多数信号处理使用DFT 。DFT 是常规变换的一种变化形式,信号在时域和频域上均抽样。由DFT 的定义,时间上波形连续重复,因此导致频域上频谱的连续重复。快速傅里叶变换(FFT )仅是计算应用的一种快速数学方法,由于其高效性,使OFDM 技术发展迅速。

对于N 比较大的系统来说,式1-1中的OFDM 复等效基带信号可以采用离散傅里叶逆变换(IDFT )方法来实现。为了叙述的简洁,可以令式1-1中的s t =0,并且忽略矩形函数,对于信号s(t)以T/N 的速率进行抽样,即令t=kT/N (k=0,1,...,N-1),则得到:

∑-=-≤≤=

=10

)

10()/2exp()/(N i

i k N k N ik j d N kT s s π (1-5)

可以看到k S 等效为对d i 进行IDFT 运算。同样在接收端,为了恢复出原来的数据符号d i ,可以对s k 进行逆变换,即DFT 得到:

)

10()/2exp(1

-≤≤-=

∑-=N i N ik j s d N i

k i π(1-6)

根据以上分析可以看到,OFDM 系统的调制和解调可以分别由IDFT 和DFT 来代替。通过N 点的IDFT 运算,把频域数据符号d i 变换为时域数据符号k S ,经过射频载波调制之后,发送到无线信道中。其中每个IDFT 输出的数据符号k s 都是由所有子载波信号经过叠加而生成的,即对连续的多个经过调制的子载波的叠加信号进行得到的。在OFDM 系统的实际运用中,可以采用更加方便快捷的IFFT/FFT 。N 点DFT 运算需要实施N 2复数乘法运算,而IFFT 可以显著地降低运算的复杂程度。对于常用的基-2IFFT 算法来说,其复数乘法次数进仅为(N/2)log2(N/2)。

1.2.5 保护间隔、循环前缀

应用OFDM的一个重要原因在于它可以有效地对抗多径时延扩展。把输入数据流串并变换到N个并行子信道中,使得每一个调制子载波的数据周期可以扩大为原来数据符号周期的N倍。为了最大限度的消除符号间干扰,可以在每个OFDM符号之间插入保护间隔(GI),而且该保护间隔长度T g一般要大于无线信道中的最大时延扩展,这样一个符号的多径分量就不会对下一个符号造成干扰。在这段保护间隔可以不插入任何信号,即是一段空白的传输时段。然而在这种情况下,由于多径传播的影响,会产生载波间干扰(ICI),即子载波之间的正交性被破坏,不同的子载波之间会产生干扰,这种效应如图1.4所示,每个OFDM 符号中都包括所有的非零子载波信号,而且可以同时出现该OFDM符号的时延信号,图1.4给出了第i个子载波和第2个子载波之间的周期个数之差不再是整数,所以当接收机试图对第1个子载波进行解调时,第1个子载波会对第1个子载波造成干扰。同时,当接收机对第2个子载波进行解调时,也会存在来自第1个子载波的干扰。

在系统带宽和数据传输速率都给定的情况下,OFDM信号的符号速率将远远低于单载波的传输模式。例如在单载波BPSK调制模式下,符号速率就相当于传输的比特率,而在OFDM中,系统带宽由N个子载波占用,符号速率则为单载波传输的1/N。正是因为这种地符号速率使OFDM系统可以自然地抵抗多径传输导致的符号间干扰(ISI),另外,通过在每个符号的起始位置增加保护间隔可以进一步抵制ISI,还可以减少在接收端的定时偏移错误。这种保护间隔是一种循环复制,增加了符号的波形长度,在符号的数据部分,即将每个OFDM符号的后时T g间中的样点复制到OFDM符号的前面,形成前缀,在交接点没有任何间断。因此讲一个符号的尾端复制并补充到起始点增加了符号的时间长度,图1.5显示了保护间隔的插入。

基于MATLAB 实现OFDM 的仿真

图1.4 OFDM 符号延迟

图1.5 OFDM 符号形成过程

符号的总长度为FFT g T T Ts +=其中Ts 为OFDM 符号的总长度,

g T 为抽样的保护间隔长度,FFT T 为FFT 变换产生的无保护间隔的OFDM 符号长度,则在接

保护间隔

FFT 积分时间

第二个子载波对第一个子载波带来的ICI 干扰

符号N-1 s T

符号N

符号N-1

时间

FFT

g T

复制

IFFT 保护 间隔

FFT 输出

保护 间隔

FFT

收端抽样开始的时刻g T 应满足下式:

g

x T T <

其中max

ι

是新到的最大多径时延扩展,当抽样满足该式时,由于前一个符号

的干扰存在只会存在于[]max ,0ι,当子载波个数比较大时,OFDM 的符号周期Ts 相对于信道的脉冲响应长度max ι很大,则ISI 的影响很小,甚至会没有ISI 的影响。同时,由于相邻OFDM 符号之间的保护间隔g T 满足max

ι

≥g T 的要求,则可以完

全克服ISI 的影响。同时由于OFDM 延时副本内所有包含的子载波的周期个数也为整数,时延信号就不会在解调过程中产生ICI 。

基于MATLAB 实现OFDM 的仿真

第二章 OFDM 仿真结构

2.1 OFDM 传输系统

一个完整的OFDM 系统原理框图如图2.1所示,在发射端,输入的高速比特流通过调制映射产生调制符号,经过串并变换变成 N 条并行的低速子数据流,每 N 个并行数据构成一个OFDM 符号。插入导频信号后经快速傅立叶反变换( I FFT) 对每个OFDMM 符号的N 个数据进行调制,变成的时域信号为:

{}1

,1,0)()()(/2-===∑

N n e m X m X IFFT n x N

mn j π(2-1)

其中m 为频域上的离散点,n 为时域上的离散点,N 为载波数目,为了在接收端有效抑ISI ,通常在每一时域OFDM 符号前要附加上长度为NG1个采样的保护间隔(在OFDM 中保护间隔一般选循环前缀CP)。加保护间隔后的信号可表示为公式(2-2)最后信号经并/串变换及D /A 转换,由发送天线发送出去。

??

?-=-+--=+=1,2,1,0)

(1

,,1,)()(N n n x N N n n N x n x CI CI CI (2-2)

接收端将接收的信号进行处理,完成定时同步和载波同步。经A /D 转换,

串/并转换后的信号可表示为公式(2-3) :

)

()()()()(n w n z n h n x n y CI CI ++*= (2-3)

然后,去CP 后进行FFT 解调,同时进行信道估计( 依据插入的导频信号),接着将信道估计值和FFT 解调值一同送入检测器进行相干检测,检测出每个子载波上的信息符号,最后通过反映射及信道译码恢复出原始比特流。移除C P ,经FFT 变换后的信号可表示为式(2-4):

{}1

,,1,0)(/1)

()(10

/2-===∑

-=-N m e n y N n y FFT m Y N n N

mn j π

1

,,1,0)

()()()()(-=++=N m m W m Z m H m X m Y (2-4)

图 2.1 0FDM 系统原理框图

其中)(m H 为信道)(n h 的傅立叶转换,)(m Z 为符号问干扰和载波问干扰)(n z 的傅立叶转换,)(m W 是加性高斯白噪声)(n w 的傅立叶转换。

2.2 OFDM 仿真构建

OFDM 系统编译码的数据处理量很大,利用矩阵对信息序列进行编码,译码等大量的运算都涉及到了矩阵运算,因此采用MATLAB 来进行仿真。根据OFDM 系统原理,下面以数字广播电视(DVB )为例进行仿真。

数字视频广播(DVB)通过两种模式利用OFDM ,这两种模式的子载波个数分别为1705和6817,根据这两种不同的子载波数量选择所需要的FFT/IFFT 的规模,因此这两种模式也分别被称为2K 模式和8K 模式。

2K 系统的子载波数量仅为8K 的1/4,被称为8K 的简化版本。本论文仿真的是2K 模式的DVB ,由于保护间隔也缩小到8K 的1/4,因此在单频网络内,2K 系统处理时延扩展以及发射机之间的传输能力要下降。8K 系统的FFT 长度为896us ,而保护间隔可以介于28us 到224us 之间。而2K 系统的取值只为前者的1/4,图2.4和图2.5分别为DVB 系统的发射机和接收机框图。

并串变换

串并变换

)

(t x 反OFDM

OFDM

IFFT OR IDFT

并行串行变换 串行并行变换

去除保护间隔

插入保护间隔

数模变换

多径传播

),(t h ι FFT OR DFT

)

(t y )(t n

模数变换

{}

n S {}

n R

基于MATLAB 实现OFDM 的仿真

图2.4 DVB 系统的发射机框图

在发射端,数据被分为若干组,每组内包含188B ,它们通过加扰码和外码R-S 编码,能够在204B 帧内纠正8个错误字节。然后,对经过编码的比特由交织器在12B 深度内进行交织。并在按编码效率为1/2,约束长度为7,生成多项式(171,133)的卷积码进行编码。通过打孔,编码效率可以提高到2/3,3/4,5/6以及7/8。最后,经卷积编码的比特再经过内交织器的交织,被映射为4QAM 。

扰码器 RS 外编码 插入保护间隔

D/A 转换

RF 发射机 外交织 卷机内编码 插入导频

内交织

QAM 映射

FFT

频率解交织

卷积译码器

时间解交织

RS 译码器

映射

粗频率偏差估计

AGC

模拟前缀信号、与A/D 转换、与降频转换

帧同步

信道估计

图2.5 DVB 系统的接收框图

在接收端,要执行相干QAM解调,就必须得到参考幅度、相位,这就要求发送导频子载波。对8K模式来说,每个OFDM符号内包含768个导频,剩余6048个子载波用于数据传输,对于2K模式来说,每个OFDM符号内包含192导频,剩余1512个子载波提供数据使用。导频位置图样在每4个OFDM符号中重复一次,但是符号和符号之间是不同的。

基于MATLAB 实现OFDM 的仿真

第三章OFD M 仿真实现及结果

3.1 OFDM 发送模块

一个从s t 时刻开始的OFDM 符号可以表示为:

T

t t t t t j d t s s s Ns t s Ns i

+≤≤??

??????????????-+=∑--=+1

Ns/2

c 2/

2/)()T 0.5i -f (2exp Re )(πs s

t T t t t s +><=或

t 0

)( (3-1)

其中,i d 为复合调制符号,Ns 为载波数,T 为符号持续时间,c f 为载波频率,标准的 DVB (数字视频广播)表示如下:

?

??

?

???=∑∑∑∞===0670,,,,m ax

m in )(2exp

Re )(m l k

k k k l m k l m c t c t

f j t s ψπ

(3-2)

?????

??+=???-?-'

-其它0

)68(exp )()68(2,,s

T m T l t T k j k l m T m l t s s u

πψ

其中:

k 为载波数;

l 为OFDM 符号数; m 为传输帧数; K 为已传输载波数; s T 为符号持续时间; u T 为时延载波间隔时间; ? 为保护间隔;

c f 为射频信号中心频率;

k '为载波相对中心频率,2/)(k min

max

K

K

k +-=';

k m c ,0, 为复合符号表示m 幁中第1个数据符号的第k 个载波; k m c ,1, 为复合符号表示m 幁中第2个数据符号的第k 个载波;

k m c ,63, 为复合符号表示m 幁中第64个数据符号的第k 个载波;

在此采用传输速率为2K 的数字广播发送标准,这种模式在数字广播电视(DTV )中被定义为移动接收标准。传送的OFDM 符号由很多帧结构组成,每一帧持续时间为F T 共包含68个OFDM 符号。四个帧组成一个大帧结构.每一个符号是由2K 模式下1705个子载波构成并且其传输持续时间为s T .在符号持续时间s T 中有效符号持续时间为u T ,保护间隔时间为?。2K 模式的具体参数参见表3.1:

表3.1 2K 模式OFDM 参数

参数 2K 模型 载波数目K 1705

最小载波数min

K

0 最大载波数man K 1704 持续时间 u T 224s μ 载波间隔 u 1/T

4464Hz 最小载波min

K

与最大载波man K (K-1)/u

T 间隔

7.61MHz

允许保护间隔时间 u T /? 1/4

1/8

1/16

1/32

有效符号持续时间 u T 2048×T 224s μ

保护见个持续时间 ?

512×T 56s μ 256×T 28s μ 128×T 14s μ 64×T 56s μ 基本周期 T

7/64s μ

OFDM 符号持续时间 s T =?+u T

2560×T 280s μ

2304×T 252s μ

2176×T 238s μ

2112×T 231s μ

从t=0到t=s T 对式3-2进行分析可以得到式3-3:

2

/)(/)(22Re )(max

min

max min ,0,0K

K

k k T t k j e c f j e t s u k K k ct k +-='?

??????-'=∑=ππ(3-3)

很明显上式与反傅里叶变换(IDF )有相似之处:

∑-==1

2/1N q q n N

nq j e

X N x π

(3-4)

基于MATLAB 实现OFDM 的仿真

有很多不同的FFT 算法可以实现离散傅里叶变换(DFT )及离散傅里叶反变换(IDFT )这样就很方便实际应用中形成N 个样本n x 使其对应的每个符号有用部分的持续时间为u T 。在时间保护间隔内将后面u T N /?个样点复制到前面,然后经过集成上行转换使信s(t)的中心频率为f c 。

3.2 OFDM 符号的产生

OFDM 频谱主要集中在f c 附近,一种比较方便的实现方法是利用 2-FFT 和2-IFFT 并且以T/2作为其基本周期。从表格2.1可以看出,OFDM 符号持续时间为

u T ,其为2048点的IFFT 变换;因此要进行4096点的IFFT 。图3.2给出了OFDM 符

号产生方框图,其中部分变量已标示出其用于 Matlab 代码中以方便分析。T 定义为信号的基本周期,既然模拟的是一个带通信号就必须考虑其时间周期(1/Rs)其至少为载波频率的两倍。更一般地,用其整数倍Rs=40/T 。这样一个关系式使载波频率接近于902MHz ,其描述如图3.2所示。首先,随机产生一个长为3412 的二进制序列。然后,采用QAM 映射,每两位二进制比特映射成{ ±1 ±j} 中的一个。之后,进行4096点IFFT 变换,先变为模拟值,再通过一个巴特沃斯低通滤波器,最后在发射端上变频到射频段以s ( t) 发送出去。

在信源符号A 中加入4906-1708=2391个零使其取样为原来的两倍并达到预期的中心频率。从图3.3和3.4可以看出这样做的效果使得载波以T/2作为其时间周期。同时也注意到载波为离散时间的基带信号,用发送滤波器产生一个连续时间信号g(t)作为复信号载波。其脉冲响应和脉冲形状如图3.5所示。

U

info

U O F T

载波 E

D

B C S(t) c f

1705 4- QAM

4096 IFFT

g(t)

T/2

1/T f p =

A 3.2 模拟产生OFDM 符号 carriers

3.2 模拟产生OFDM 符号

图3.3 信号载波在B 处时域响应

这个发射滤波器在时域和频域的输出显示在图3.7和图3.8中。图3.8的频率响应是周期的,这是因为离散时间信号在频域是周期的,其频谱带宽取决于Rs 。U(t)的周期是T/2,重建滤波器将会有(T/2=18.286)-7.61=10.675MHz 的过渡带宽可以利用。如果用N 点IFFT ,过度带宽只有(1/T=9.143)-7.61=1.533MHz ,

时间(s )

幅度

幅度

时间(s )

图3.4 在点B 处载波信号的频率响应

图3.5 g(t)脉冲信号

基于MATLAB 实现OFDM 的仿真

因此为了避免混淆需要一个非常尖锐的滚降来较少重建滤波器的复杂程度。

图3.6 D/A 滤波器响应

图3.7 信号U 在点C 处时域响应

图3.6给出了相对理想的D\A 滤波器器的频率响应。它是一个13阶的截止频率为1/T 的巴特沃斯滤波器。该滤波器的时域和频域响应分别为如图3.9和图3.10。首先值得注意的是在滤波过程中在延迟产生在2?10-7附近,除了这一时刻其将按照预期进行滤波。这时从子载波853到1705其位置都为位于中心频率(0Hz)的右边,而1号子载波到852号在中心频率(0Hz)以左4fc 范围内。下一步要执行多重双正交单边带幅度调制uoft(t)。在这一调制中,存在一个同相信号m I (τ)和一个正交信号m Q (τ)其满足式(3-5):

)2sin()()2cos()()(t f t m t f t m t s c Q c I ππ+= (3-5)

式2-3可以展开为式2-6:

3.8 信号U 在点D 处频域响应

衰减(d B )

∑∑====

?????

????????-?????? ??+??????

?

?+--??????????

???-?????? ??+??????

?

?+-=

max

min

,0,0max

min

,0,022sin )Im(22cos )Re()(min

max min

max K K k u c K K

k u c T t f Tu K

K k c T t f Tu K

K k c t s k k ππ (3-6)

其中将同相信号和正交信号分别作为k l m c ,,和4-QAM 的实部和虚部。对应的IFFT 处理过程为:

)2sin()2cos()(t f uoft t f uoft t s c Q c I ππ-= (3-7)

信号s(t)的时域和频域响应如图3.11和图3.12。

图3.9 信号在D 点处的时域响应

基于MATLAB实现OFDM的仿真

图3.10 信号在在点D处频率响应

图3.11信号s(t)在点E处时域响应图3.12 信号s(t)在点E处频率响应3.3 OFDM 接收部分

图3.20是一个基本的OFDM接收机结构。OFDM系统对时间和频率偏移非常敏感。即使在理想的模拟环境下也要考虑滤波过程产生的延时。重建滤波和解

基于matlab实现OFDM的编码.

clc; clear all; close all; fprintf('OFDM系统仿真\n'); carrier_count=input('输入系统仿真的子载波数: \n');%子载波数128,64,32,16 symbols_per_carrier=30;%每子载波含符号数 bits_per_symbol=4;%每符号含比特数,16QAM调制 IFFT_bin_length=1024;%FFT点数 PrefixRatio=1/4;%保护间隔与OFDM数据的比例1/6~1/4 GI=PrefixRatio*IFFT_bin_length ;%每一个OFDM符号添加的循环前缀长度为1/4*IFFT_bin_length ,即256 beta=1/32;%窗函数滚降系数 GIP=beta*(IFFT_bin_length+GI);%循环后缀的长度40 SNR=10; %信噪比dB %================信号产生=================================== baseband_out_length=carrier_count*symbols_per_carrier*bits_per_symbol;%所输入的比特数目 carriers=(1:carrier_count)+(floor(IFFT_bin_length/4)-floor(carrier_count/2));%共轭对称子载波映射复数数据对应的IFFT点坐标 conjugate_carriers = IFFT_bin_length - carriers + 2;%共轭对称子载波映射共轭复数对应的IFFT点坐标 rand( 'twister',0); %每次产生不相同得伪随机序列 baseband_out=round(rand(1,baseband_out_length));%产生待调制的二进制比特流figure(1); stem(baseband_out(1:50)); title('二进制比特流') axis([0, 50, 0, 1]); %==============16QAM调制==================================== complex_carrier_matrix=qam16(baseband_out);%列向量 complex_carrier_matrix=reshape(complex_carrier_matrix',carrier_count,symbols_per

OFDM技术仿真(MATLAB代码)

第一章绪论 1.1简述 OFDM是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作一种复用技术。多载波传输把数据流分解成若干子比特流,这样每个子数据流将具有低得多的比特速率,用这样的低比特率形成的低速率多状态符号再去调制相应的子载波,就构成多个低速率符号并行发送的传输系统。正交频分复用是对多载波调制(MCM,Multi-Carrier Modulation)的一种改进。它的特点是各子载波相互正交,所以扩频调制后的频谱可以相互重叠,不但减小了子载波间的干扰,还大大提高了频谱利用率。 符号间干扰是多径衰落信道宽带传输的主要问题,多载波调制技术包括正交频分复用(OFDM)是解决这一难题中最具前景的方法和技术。利用OFDM技术和IFFT方式的数字实现更适宜于多径影响较为显著的环境,如高速WLAN 和数字视频广播DVB等。OFDM作为一种高效传输技术备受关注,并已成为第4代移动通信的核心技术。如果进行OFDM系统的研究,建立一个完整的OFDM 系统是必要的。本文在简要介绍了OFDM 基本原理后,基于MATLAB构建了一个完整的OFDM动态仿真系统。 1.2 OFDM基本原理概述 1.2.1 OFDM的产生和发展 OFDM的思想早在20世纪60年代就已经提出,由于使用模拟滤波器实现起来的系统复杂度较高,所以一直没有发展起来。在20世纪70年代,提出用离散傅里叶变换(DFT)实现多载波调制,为OFDM的实用化奠定了理论基础;从此以后,OFDM在移动通信中的应用得到了迅猛的发展。 OFDM系统收发机的典型框图如图1.1所示,发送端将被传输的数字信号转换成子载波幅度和相位的映射,并进行离散傅里叶变换(IDFT)将数据的频谱表达式变换到时域上。IFFT变换与IDFT变换的作用相同,只是有更高的计算效

OFDM系统设计及其Matlab实现

课程设计 。 课程设计名称:嵌入式系统课程设计 专业班级: 07级电信1-1 学生姓名:__王红__________ 学号:_____107_____ 指导教师:李国平,陈涛,金广峰,韩琳 课程设计时间:— |

1 需求分析 运用模拟角度调制系统的分析进行频分复用通信系统设计。从OFDM系统的实现模型可以看出,输入已经过调制的复信号经过串/并变换后,进行IDFT或IFFT和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM调制后的信号s(t)。该信号经过信道后,接收到的信号r(t)经过模/数变换,去掉保护间隔,以恢复子载波之间的正交性,再经过串/并变换和DFT或FFT后,恢复出OFDM的调制信号,再经过并/串变换后还原出输入符号 2 概要设计 1.简述OFDM通信系统的基本原理 2.简述OFDM的调制和解调方法 3.概述OFDM系统的优点和缺点 4.基于MATLAB的OFDM系统的实现代码和波形 : 3 运行环境 硬件:Windows XP 软件:MATLAB 4 详细设计 OFDM基本原理 一个完整的OFDM系统原理如图1所示。OFDM的基本思想是将串行数据,并行地调制在多个正交的子载波上,这样可以降低每个子载波的码元速率,增大码元的符号周期,提高系统的抗衰落和干扰能力,同时由于每个子载波的正交性,大大提高了频谱的利用率,所以非常适合移动场合中的高速传输。

在发送端,输入的高比特流通过调制映射产生调制信号,经过串并转换变成N条并行的低速子数据流,每N个并行数据构成一个OFDM符号。插入导频信号后经快速傅里叶反变换(IFFT)对每个OFDM符号的N个数据进行调制,变成时域信号为: [ 式 式1中:m为频域上的离散点;n为时域上的离散点;N为载波数目。为了在接收端有效抑制码间干扰(InterSymbol Interference,ISI),通常要在每一时域OFDM符号前加上保护间隔(Guard Interval,GI)。加保护间隔后的信号可表示为式,最后信号经并/串变换及D/A转换,由发送天线发送出去。 式 接收端将接收的信号进行处理,完成定时同步和载波同步。经A/D转换,串并转换后的信号可表示为:

无线通信原理 基于matlab的ofdm系统设计与仿真..

基于matlab的ofdm系统设计与仿真

摘要 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构 多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?? ???=? +m n m n m n T T tdt m t n T t t ωω 其中ωπ2=T (1-1)

用MATLAB实现OFDM仿真分析

3.1 计算机仿真 仿真实验是掌握系统性能的一种手段。它通过对仿真模型的实验结果来确定实际系统的性能。从而为新系统的建立或系统的改进提供可靠的参考。通过仿真,可以降低新系统失败的可能性,消除系统中潜在的瓶颈。优化系统的整体性能,衡量方案的可行性。从中选择最后合理的系统配置和参数配置。然后再应用于实际系统中。因此,仿真是科学研究和工程建设中不可缺少的方法。 3.1.1 仿真平台 ●硬件 CPU:Pentium III 600MHz 内存:128M SDRAM ●软件 操作系统:Microsoft Windows2000 版本5.0 仿真软件:The Math Works Inc. Matlab 版本6.5 包括MATLAB 6.5的M文件仿真系统。 Matlab是一种强大的工程计算软件。目前最新的6.x版本 (windows环境)是一种功能强、效率高、便于进行科学和工程计算的交互式软件包。其工具箱中包括:数值分析、矩阵运算、通信、数字信号处理、建模和系统控制等应用工具程序,并集应用程序和图形于一便于使用的集成环境中。在此环境下所解问题的Matlab语言表述形式和其数学表达形式相同,不需要按传统的方法编程。Matlab的特点是编程效率高,用户使用方便,扩充能力强,语句简单,内涵丰富,高效方便的矩阵和数组运算,方便的绘图功能。 3.1.2 基于MATLAB的OFDM系统仿真链路 根据OFDM 基本原理,本文给出利用MATLAB编写OFDM系统的仿真链路流程。串行数据经串并变换后进行QDPSK数字调制,调制后的复信号通过N点IFFT变换,完成多载波调制,使信号能够在N个子载波上并行传输,中间插入10训练序列符号用于信道估计,加入循环前缀后经并串转换、D /A后进入信道,接收端经过N点FFT变换后进行信道估计,将QDPSK解调后的数据并串变换后得到原始信息比特。 本文采用MATLAB语言编写M文件来实现上述系统。M文件包括脚本M文件和函数M文件,M文件的强大功能为MATLAB的可扩展性提供了基础和保障,使MATLAB能不断完善和壮大,成为一个开放的、功能强大的实用工具。M文件通过input命令可以轻松实现用户和程序的交互,通过循环向量化、数组维数预定义等提高M文件执行速度,优化内存管理,此外,还可以通过类似C++语言的面向对象编程方法等等。

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分析

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分 析 MATLABOFDM 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得 到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理 及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出 参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道 采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 : 正交频分复用;仿真;循环前缀;信道估计 I Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this

article OFDM basic principle is briefly introduced. This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation II

基于Matlab的OFDM系统仿真

论文题目: 基于MATLAB的OFDM系统仿真 学院: 专业年级: 学号: 姓名: 指导教师、职称: 2010 年 12 月 10 日

基于Matlab的OFDM系统仿真 摘要:正交频分复用(OFDM)是一种多载波宽带数字调制技术。相比一般的数字通信系统,它具有频带利用率高和抗多径干扰能力强等优点,因而适合于高速率的无线通信系统。正交频分复用OFDM是第四代移动通信的核心技术。论文首先简要介绍了OFDM 基本原理。在给出OFDM系统模型的基础上,用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,对OFDM系统误码率影响的比较曲线,得出了较理想的结论,通过详细分析了了技术的实现原理,用软件对传输的性能进行了仿真模拟并对结果进行了分析。 介绍了OFDM技术的研究意义和背景及发展趋势,还有其主要技术和对其的仿真?具体如下:首先介绍了OFDM的历史背景?发展现状及趋势?研究意义和研究目的及研究方法和OFDM的基本原理?基本模型?OFDM的基本传输技术及其应用,然后介绍了本课题所用的仿真工具软件MATLAB,并对其将仿真的OFDM各个模块包括信道编码?交织?调制方式?快速傅立叶变换及无线信道进行介绍,最后是对于OFDM的流程框图进行分析和在不影响研究其传输性的前提下进行简化,并且对其仿真出来的数据图形进行分析理解? 关键词:OFDM;MATLAB;仿真 一、OFDM的意义及背景 现代通信的发展是爆炸式的。从电报、电话到今天的移动电话、互联网,人们从中享受了前所未有的便利和高效率。从有线到无线是一个飞跃,从完成单一的话音业务到完成视频、音频、图像和数据相结合的综合业务功能更是一个大的飞跃。在今天,人们获得了各种各样的通信服务,例如,固定电话、室外的移动电话的语音通话服务,有线网络的上百兆bit的信息交互。但是通信服务的内容和质量还远不能令人满意,现有几十Kbps传输能力的无线通信系统在承载多媒体应用和大量的数据通信方面力不从心:现有的通信标准未能全球统一,使得存在着跨区的通信障碍;另一方面,从资源角度看,现在使用的通信系统的频谱利用率较低,急需高效的新一代通信系统的进入应用。 目前,3G的通信系统己经进入商用,但是其传输速率最大只有2Mbps,仍然有多个标准,在与互联网融合方面也考虑不多。这些决定了3G通信系统只是一个对现有移动通信系统速度和能力的提高,而不是一个全球统一的无线宽带多媒体通信系统。因此,在全世界范围内,人们对宽带通信正在进行着更广泛深入的研究。 正交频分复用(OFDM, Orthogonal Frequency Division Multiplexing) 是一种特殊的多载波方案,它可以被看作一种调制技术,也可以被当作是一种复用技术。选择OFDM的一个主要原因在于该系统能够很好地对抗频率选择性衰落或窄带干扰。正交频分复用(OFDM)最早起源于20世纪50年代中期,在60年代就已经形成恶劣使用并行数据传输和频分复用的概念。1970年1月首次公开发表了有关OFDM的专利。 在传统的并行数据传输系统中,整个信号频段被划分为N个相互不重叠的频率子信道。每个子信道传输独立的调制符号,然后再将N个子信道进行频率复用。这种避免信道频谱重叠看起来有利于消除信道间的干扰,但是这样又不能有效利用宝贵频谱资源。为了解决这种低效利用频谱资源的问题,在20世纪60年代提出一种思想,即使用子信道频谱相互覆盖的频域距离也是如此,从而可以避免使用高速均衡,并且可以对抗窄带脉冲噪声和多径衰落,而且还可以充分利用可用的频谱资源。 常规的非重叠多载波技术和重叠多载波技术之间的差别在于,利用重叠多载波调制技术可以几乎节省50%的带宽。为了实现这种相互重叠的多载波技术,必须要考虑如何减少各个子信道之间的干扰,也就是要求各个调制子载波之间保持正交性。 1971年,Weinstein和Ebert把离散傅立叶变换(DFT)应用到并行传输系统中,作为调制和解调过程的一部分。这样就不再利用带通滤波器,同时经过处理就可以实现FDM。而且,这样在完成FDM的过程中,不再要求使用子载波振荡器组以及相关解调器,可以完全依靠执行快速傅立叶变换(FFT)的硬件来实施。

本科毕业设计:基于MATLAB的OFDM系统仿真及分析

摘要 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 关键词: 正交频分复用;仿真;循环前缀;信道估计

Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this article OFDM basic principle is briefly introduced.This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation

移动通信系统OFDM系统仿真与实现基于MATLAB

OFDM系统仿真与实现 1、OFDM的应用意义 在近几年以内,无线通信技术正在以前所未有的速度向前发展。由于用户对各种实时多媒体业务需求的增加与互联网技术的迅猛发展,未来的无线通信及技术将会有更高的信息传输速率,为用户提供更大的便利,其网络结构也将发生根本的变化。随着人们对通信数据化、个人化与移动化的需求,OFDM技术在无线接入领域得到了广泛的应用。OFDM就是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输技术结合在一起,就是目前已知的频谱利用率最高的一种通信系统,具有传输速率快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播(DAB)、地面数字视频广播(DVB-T)、无线局域网等领域得到广泛应用。它将就是4G移动通信的核心技术之一。 OFDM广泛用于各种数字传输与通信中,如移动无线FM信道,高比特率数字用户线系统(HDSL),不对称数字用户线系统(ADSL),甚高比特率数字用户线系统HDSL,数字音频广播(DAB)系统,数字视频广播(DVB)与HDTV地面传播系统。1999年,IEEE802.11a通过了一个SGHz的无线局域网标准,其中OFDM调制技术被采用为物理层标准,使得传输速率可以达54MbPs。这样,可提供25MbPs的无线ATM接口与10MbPs的以太网无线帧结构接口,并支持语音、数据、图像业务。这样的速率完全能满足室内、室外的各种应用场合。 OFDM由于技术的成熟性,被选用为下行标准很快就达成了共识。而在上行技术的选择上,由于OFDM的高峰均比(PAPR)使得一些设备商认为会增加终端的功放成本与功率消耗,限制终端的使用时间,一些则认为可以通过滤波,削峰等方法限制峰均比。不过,经过讨论后,最后上行还就是采用了SC-FDMA方式。拥有我国自主知识产权的3G标准一一TD-SCDMA在LTE演进计划中也提出了TD-CDM-OFDM 的方案B3G/4G就是ITU提出的目标,并希望在2010年予以实现。B3G/4G的目标就是在高速移动环境下支持高达100Mb/S的下行数据传输速率,在室内与静止环境下支持高达IGb/S的下行数据传输速率。而OFDM技术也将扮演重要的角色。 2、OFDM的原理研究与分析 2、1OFDM的关键技术 (1) 时域与频域同步 OFDM系统对定时与频率偏移敏感,特别就是实际应用中与FDMA、TDMA与CDMA 等多址方式结合使用时,时域与频率同步显得尤为重要。 (2) 信道估计

基于MATLAB的OFDM的仿真

一、实习目的 1、熟悉通信相关方面的知识、学习并掌握OFDM技术的原理 2、熟悉MATLAB语言 3、设计并实现OFDM通信系统的建模与仿真 二、实习要求 仿真实现OFDM调制解调,在发射端,经串/并变换和IFFT变换,加上保护间隔(又称“循环前缀”),形成数字信号,通过信道到达接收端,结束端实现反变换,进行误码分析三、实习内容 1.实习题目 《正交频分复用OFDM系统建模与仿真》 2.原理介绍 OFDM的基本原理就是把高速的数据流通过串并变换,分配到传输速率相对较低的若干个子信道中进行传输。由于每个子信道中的符号周期会相对增加,因此可以减轻由无线信道的多径时延扩展所产生的时间弥散性对系统造成的影响。并且还可以在OFDM符号之间插入保护间隔,令保护间隔大于无线信道的最大时延扩展,这样就可以最大限度地消除由于多径而带来的符号间干扰(ISI)。而且,一般都采用循环前缀作为保护间隔,从而可以避免由多径带来的子载波间干扰((ICI) 。 3.原理框图 图1-1 OFDM 原理框图

4. 功能说明 4.1确定参数 需要确定的参数为:子信道,子载波数,FF T长度,每次使用的OFDM 符号数,调制度水平,符号速率,比特率,保护间隔长度,信噪比,插入导频数,基本的仿真可以不插入导频,可以为0。 4.2产生数据 使用个随机数产生器产生二进制数据,每次产生的数据个数为carr ier_co un t * sym bols_pe r_car rier * bits_per_s ym bo l。 4.3编码交织 交织编码可以有效地抗突发干扰。 4.4子载波调制 OF DM 采用BP SK 、QP SK 、16QAM 、64QAM 4种调制方式。按照星座图,将每个子信道上的数据,映射到星座图点的复数表示,转换为同相Ic h和正交分量Qch 。 其实这是一种查表的方法,以16QAM 星座为例,bits_p er_sym bo l=4,则每个OFDM 符号的每个子信道上有4个二进制数{d1,d2,d3,d4},共有16种取值,对应星座图上16个点,每个点的实部记为Qch 。为了所有的映射点有相同高的平均功率,输出要进行归一化,所以对应BPSK,PQSK,16QA M,64QA M,分别乘以归一化系数系数1,21, 101, 421.输出的复数序列即为映射后的调制结果。 4.5串并转换。 将一路高速数据转换成多路低速数据 4.6 IFF T。 对上一步得到的相同分量和正交分量按照(Ic h+Qch *i)进行IFFT 运算。并将得到的复数的实部作为新的I ch ,虚部作为新的Qch 。 在实际运用中, 信号的产生和解调都是采用数字信号处理的方法来实现的, 此时要对信号进行抽样, 形成离散时间信号。 由于O FDM 信号的带宽为B=N·Δf, 信号必须以Δt=1/B =1/(N ·Δf )的时间间隔进行采样。 采样后的信号用sn ,i 表示, i = 0, 1, …, N-1,则有 ∑-== 1 /2j ,,e 1N k N ik k n i n S N s π 从该式可以看出,它是一个严格的离散反傅立叶变换(ID FT )的表达式。IDFT 可以采用快速反傅立叶变换(IFFT )来实现 4.7加入保护间隔。 由IF FT运算后的每个符号的同相分量和正交分量分别转换为串行数据,并将符号尾部G 长度的数据加到头部,构成循环前缀。如果加入空的间隔,在多径传播的影响下,会造成载波间干扰ICI 。保护见个的长度G 应该大于多径时的扩张的最大值。

基于MATLAB的MIMO-OFDMA系统的设计与仿真

基于MATLAB的MIMO-OFDMA系统的设计与仿真 摘要 在信息时代的快速发展形势下,产生了越来越多的业务需求,用户对通信系统的性能提出了更高的要求。基于正交频分复用( Orthogonal Frequency Division Multiplexing,OFDM )技术和多输入多输出(Multiple Input Multiple Output,MIMO )技术的无线通信系统在增加系统容量、提高频谱利用率以及对抗频率选择性衰落等方面具备优越的性能,是未来通信领域中的关键技术。 本文首先阐述了MIMO技术和OFDM技术的国内外研究概况,然后通过分析MIMO技术和OFDM技术的基本原理和系统结构,设计出简单的MIMO-OFDM系统。基于MATLAB软件对所建立的MIMO系统的信道容量进行了仿真,并对SISO-OFDM系统和MIMO-OFDM系统的性能进行了比较,仿真结果表明,本文所提出的MIMO-OFDM系统方案能够在不增加误比特率的情况下增加信道容量,最后结合空时分组码(Space Time Block Coding,STBC)对MIMO-OFDM系统进行了完善并采用MATLAB对其性能进行了仿真,结果显示,相较于未完善的系统完善后的系统的误比特率指标明显降低,传输可靠性得到了极大的提高。 关键词:无线通信;MIMO;OFDM;误比特率

Performance Evaluation of MIMO-OFDMA System using Matlab Abstract As the rapid development of information technology has resulted in more influences on people’s daily lives and businesses. Higher requirements should be provided by communication system to meet people’s needs. The communication system which based on the technology of Orthogonal Frequency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO) enables to not only increase the system capacity, but improve the spectrum utilization, and moreover to effectively against frequency selective fading, has become the key technologies in the field of communication in the future. This paper first gives an in-detailed survey on MIMO and OFDM technologies in academic society. After that, we designed a simple MIMO-OFDM system by means of the analysis of the basic concepts and the architecture of MIMO and OFDM technology. Followed by performance evaluation via Matlab to compare SISO-OFDM and MIMO-OFDM systems in term of channel capacity and Bit Error Rate (BER) to validate the proposed MIMO-OFDM system outperforms SISO-OFDM. Finally, we further integrated space-time block codes into the proposed MIMO-OFDM system, through simulation results, we can observe that BER can be significant reduced compared to its counterpart which without implements space-time block codes. Keywords:Wireless communication,MIMO, OFDM, Bit Error Rate (BER)

基于matlab的ofdm系统设计与仿真

基于matlab的ofdm系统设计与仿真 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构 多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?????=? +m n m n m n T T tdt m t n T t t ωω 其中ω π 2=T (1-1) 根据上述理论,令N 个子信道载波频率为)(1t f ,)(2t f ,……,)(t f N ,并使其

无线通信原理基于matlab的ofdm系统设计与仿真

无线通信原理:基于matlab的ofdm系统设计与仿真 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。 第一章ODMF系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构

多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?????=? +m n m n m n T T tdt m t n T t t ωω 其中ω π 2=T (1-1) 根据上述理论,令N 个子信道载波频率为)(1t f ,)(2t f ,……,)(t f N ,并使其满足下面的关系:),1(,/0N k T k f f N k ?=+=,其中N T 为单元码持续时间。单个子载波信号为: ? ??<≤=others T t t f t f N k k 00)2cos()(π (1-2) 由正交性可知:????≠==n m n m T dt t f t f N m n 0)(*)( (1-3) 由式(1-3)可知,子载波信号是两两正交的。这样只要信号严格同步,调制出的信号严格正交,理论上接收端就可以利用正交性进行解调。OFDM 信号表达式与FDM 的一样,区别在于信号的频谱。OFDM 信号的频谱与FDM 频谱情况对比如图1-2所示。由图1-2可以看出,由于采用的原理不一样,FDM 中接收端需要频率分割,因而需要较宽的保护间隔。OFDM 系统的接收端利用正交性解调,相邻子信道频谱在一定程度上是可以重叠的。 图1-2 FDM 与OFDM 的频谱

基于MATLAB的OFDM系统设计与仿真

基于MATLAB的OFDM系统设计与仿真 摘要:随着通信产业的逐步发展,4G时代已经来临。作为第四代移动通信技术的核心,OFDM得到了前所未有的关注。它具有频谱利用率高、抗干扰能力强等优点。本文首先简要介绍了OFDM的发展状况以及优缺点,然后详细分析了OFDM的工作原理及其相应的各个模块,并介绍了它的关键技术。最后,分别利用M函数和Simulink做了OFDM 系统的设计与仿真,并对误码率进行了分析,得到了BER性能曲线。 关键词:正交频分复用;MATLAB;仿真;BER Design and Simulation of OFDM System Based on MATLAB Abstract:With the gradual development of the communication industry, 4G era has come. As the key technology of the fourth generation mobile communications,OFDM has received unprecedented attention. It has a high spectrum utilization, strong ability of anti-interference and so on. This article describes the development of OFDM and it’s advantages and disadvantages briefly, analysis the working principles of OFDM and each module detailed,and describes it’s key tec hnology.At last, design and simulate OFDM system with the M function and Simulink separately, analysis the error rate and obtain BER performance curve . Keywords: OFDM; MATLAB; Simulation; BER

基于matlab的OFDM系统仿真毕业设计论文

毕业设计论文 基于Matlab的OFDM系统仿真及分析 Simulation and Performance Analysis of OFDM System Based on Matlab

毕业论文任务书

毕业设计开题报告

摘要 在无线通信系统中,存在着各种严重的衰落,例如频率选择性衰落、快衰落和慢衰落,以及由于各种物体对传输信号的反射引起的多径传播,而由此引起的符号间干扰是无线通信系统设计中必须考虑的问题,特别是在高速传输的环境中。而正交频分复用(OFDM)正是为了解决这些问题提出的,它是第四代移动通信的核心技术之一。 OFDM是一种特殊的多载波传输方案,它将数字调制、数字信号处理、多载波传输等技术有机结合在一起,是目前已知的频谱利用率最高的一种通信系统,具有传输速度快、抗多径干扰能力强的优点。目前,OFDM技术在数字音频广播、地面数字视频广播、无线局域网等领域得到广泛应用。 本文论述了OFDM的基本原理以及信号调制技术,给出了OFDM系统模型,并从频域的角度分析OFDM信号的性质及DFT实现,最后用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序,对OFDM调制系统中主要传输技术、基本参数的选择、同步及关键技术和仿真实现进行了相关的讨论。 关键词:OFDM多载波系统仿真MATLAB

Abstract There are some severe problems in wireless communication systems, such as frequency selective fading, fast fading and slow fading, and various objects of reflection led to the transmitted signal multipath propagation. The resulting inter-symbol interference (ISI) is a wireless communication system design issues that must be considered, especially in the high-speed transmission environment. Orthogonal frequency division multiplexing (OFDM) is proposed to solve these problems, it is the core technology of the fourth generation mobile communication. OFDM is a special multi-carrier transmission scheme, it combines some technologies such as figure modulation, digital signal processing, multi-carrier transmission. It is the maximum utilization of the spectrum communication system, with the advantages of faster transfer rates, anti-multipath interference. Currently known at present, OFDM technology is widely used in the digital audio broadcasting, terrestrial digital video broadcasting and wireless LAN. This paper introduce the orthogonal frequency division multiplexing basic principle and discusses signal modulation technology, then, given OFDM system model, and analysis the nature and DFT realization of OFDM signals from the point of view of frequency domain. Finally, based on the given system model, OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Discussing in the system of OFDM modulation transmission technology, basic parameter selection, system of synchronous, key technology and OFDM system simulation. Key words:OFDM Multi-carrier System Simulation MATLAB

相关主题
文本预览
相关文档 最新文档