当前位置:文档之家› 激光中的量子力学原理

激光中的量子力学原理

激光中的量子力学原理
激光中的量子力学原理

激光中的量子力学原理

关键字:激光 量子力学 爱因斯坦关系

一、爱因斯坦关系—自发辐射和受激辐射

爱因斯坦关系的提出与物体的热辐射特性相关,谈及热辐射,中心论题就是普朗克黑体辐射公式。

1、普朗克黑体辐射公式

处于某一温度T (T>0K )的任何物体都会吸收和发射电磁波,称为热

平衡辐射,简称热辐射。而且服从如下规律:

),()

,(),(),(),(T M T T M T T M b b b i i λλαλλαλ== 式中,),(T M i λ、),(T i λα分别表示物体i 的辐出度(辐射本领)和吸

收率(吸收本领);),(T M b λ、),(T b λα代表一种特殊的物体(称为黑体)的辐射本领和吸收本领。显然,要求1),(=T b λα,即黑体能够完全吸收任何波长的电磁辐射,按照热平衡的要求,它的辐射本领也一定最大。

其实,黑体概念和力学中的指点概念一样,是理论上的一种抽象思维,

但意义重大。如同将远离我们的实际物体当做质点处理一样,将1),(≈T b λα的物体当做黑体对待。一个带有小孔的黑空腔就是黑体的逼近物,从外界射入小孔的任何波长的电磁辐射(如太阳光)都将在腔内多次不完全反射衰减为零,而不会再逸出腔外。如果将空腔加热到500K 以上,就会看到小孔变亮(完全发射体)。

如果黑体腔处于某一温度T 条件下,则它吸收的辐射能量应等于所发

出的辐射能量,即黑体与辐射场之间应处于能量平衡状态。显然,这种平衡必然导致空腔内存在完全确定的辐射场(广义的驻波场),这种辐射场称为黑体辐射或平衡辐射。用ρv =ρv (T )表示温度为T 的黑体腔内单位体

积中频率ν处单位频带间隔内的电磁驻波能量,称为黑体能量体密度。

2、自发辐射、受激辐射与辐射的受激吸收

(i) 自发辐射

为简化问题,只考虑两个能级E2和E1,并有E2-E1=hv ;单位体积

内处于两能级的原子数分别用n2和n1表示。

处于高能级E2的一个原子自发的向E1跃进,并发射一个能量为hv

的光子,这种过程被称为自发跃迁,由原子自发跃迁发出的光子称为自发辐射。

自发跃迁是一种只与原子本身性质有关而与辐射场ρv 无关的自发过

程,因此自发跃迁几率只决定于原子本身的性质。

(ii) 受激吸收

处于低能态E1的一个原子,在频率为v 的辐射场作用下,受激的想E2能级跃进并吸收一个能量为hv 的光子,这种过程称为受激吸收跃迁。 受激跃迁和自发跃迁是本质不同的物理过程:自发跃迁只与原子本身性质相关,而受激跃迁不仅与原子性质有关,还与辐射场ρv 成正比。

(iii) 受激辐射

受激吸收的反过程就是受激辐射跃迁。

以上三种不同过程可用以下示意图分别说明:

3、A 21、B 21、B 12间的关系

温度T 时的热平衡态下,黑体吸收的辐射能量应等于发出的辐射能量,才能保持能量(粒子数)密度不变,即

ννρρ121212212B n B n A n =+=>21122

121212121212B B n n A B n B n A n -=-=νρ

热平衡下,原子数服从玻尔兹曼分布)exp(122121KT

E E g g n n -= 1g 、2g 为能级简并度或统计权重。=>1)exp(/211221

21-=

KT h B B B A νρν ● E2 E1 E2 E1

O 自发辐射hv=E2-E1 ● E2 E1 ● E2

E1 原子吸收入射光子并跃迁至高能级 自发辐射

受激吸收 ● E2 E1 E2 E1

O 入射光hv=E2-E1 受激辐射hv=E2-E1

受激辐射

和上节中普朗克公式比较可得到???

????==182112212133

21B B g g B c h A νπ。若1g =2g ,则1221B B =,即当其他条件相同时,受激辐射和受激吸收具有相同几率。

二、爱因斯坦关系的意义

爱因斯坦关系的发现是出于对普朗克黑体辐射公式的理论解释,要了解它的意义当然也不能离开普朗克公式。当初,普朗克将h v n 称为分配在腔内每个辐射模式上的平均能量,现在将h v 与n 分开,那么n 就一定代表分配在腔内每个模式上的平均光子数,即光子简并度。n 是频率v 的函数,代表辐射场的性质随频率v 的变化情况,分析如下:

电子学频率,hv≈-ν

νh T k T k h B B 光谱段,hv> k B T, 1)exp(1)]/(exp[1<-≈-=T

k h T k h n B B νν 上述结果表明,从整个电磁波图频率变化范围看,n 随频率v 升高呈单调下降趋势变化,那么,一定有一个n =1的频率区存在。它明确回答了一个问题:自由电子加速运动产生的低频电磁波与原子中束缚电子跃迁产生的光频电磁波在性质上的差别反映在n >1和n <1上。也可以这样说电子学载波技术的成功是n >1的结果,而电子学载波技术在光频段的不成功是因为n <1。那么这又说明什么呢? 爱因斯坦系数关系的意义在于对n 的本质含义给出了科学解释。比较普朗克公式和爱因斯坦关系式有 21

212121A A B n ?ρν== 它表明,n >1就是2121A >?;n <1就是2121A

是受激辐射占优的电磁辐射(大量电子同步);而光频辐射波是自发辐射占优的电磁辐射,用电子载波技术实现光频载波存在原理上(或性质上)的困难(无法使大量原子同步跃迁发射),所以不成功。

其实,爱因斯坦关系不仅科学地解释了电子学载波技术在低频段的成功和在光频段失败的原因,更为重大的意义在于:指出来光频段实现n >1(2121A >?)光频段载波的技术方向,为激光器的发明奠定了理论基础。

量子力学习题

量子力学复习题量子力学常用积分公式 (1) (2) (3) (4) (5) (6) (7 ) ( ) (8) (a<0) ( 正偶数) (9) =

( 正奇数) ( ) (10) ( ) (11)) ( ) (12) (13) (14) (15) (16) ( )

( ) 一、简答题 1. 束缚态、非束缚态及相应能级的特点。 2. 简并、简并度。 3. 用球坐标表示,粒子波函数表为 ,写出粒子在立体角 中被测到的几率。 4. 用球坐标表示,粒子波函数表为 ,写出粒子在球壳 中被测到的几率。 5. 一粒子的波函数为 ,写出粒子位于 间的几率。 6. 写出一维谐振子的归一化波函数和能级表达式。 7. 写出三维无限深势阱 中粒子的能级和波函数。 8. 一质量为 的粒子在一维无限深方势阱 中运动,写出其状态波函数和能级表达式。 9. 何谓几率流密度?写出几率流密度

的表达式。 10. 写出在 表象中的泡利矩阵。 11. 电子自旋假设的两个要点。 12. 的共同本征函数是什么?相应的本征值又分别是什么? 13. 写出电子自旋 的二本征态和本征值。 14. 给出如下对易关系: 15. 、 分别为电子的自旋和轨道角动量, 为电子的总角动量。证明: ,[ ]=0,其中 。 16. 完全描述电子运动的旋量波函数为 , 准确叙述 及 分别表示什么样的物理意义。 17. 二电子体系中,总自旋 ,写出(

)的归一化本征态(即自旋单态与三重态)。 18. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应? 19. 给出一维谐振子升、降算符 的对易关系式;粒子数算符 与 的关系;哈密顿量 用 或 表示的式子; (亦即 )的归一化本征态。 20. 二粒子体系,仅限于角动量涉及的自由度,有哪两种表象?它们的力学量完全集分别是什么?两种表象中各力学量共同的本征态及对应的本征值又是什么? 21. 使用定态微扰论时,对哈密顿量 有什么样的要求? 22. 写出非简并态微扰论的波函数(一级近似)和能量(二级近似)计算公式。 23. 量子力学中,体系的任意态 可用一组力学量完全集的共同本征态 展开: , 写出展开式系数 的表达式。 24. 一维运动中,哈密顿量

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

量子力学论文

量子力学论文 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

量子理论及技术的发展 【摘要】本文简述了在量子力学的发展过程中所带动的激光、半导体、扫描隧道显微镜、量子信息等技术的形成及影响,并借此强调了基础理论对于技术发明的重要性。 【关键词】量子力学激光半导体扫描隧道显微镜量子信息 回顾科技史,以量子论、相对论为代表的近代物理学掀起了以能源、材料、信息为代表的现代技术革命,其中量子理论在形成中便带动了相关技术群的出现并促进了自身研究的深入和拓展。 一、从“光量子假说”到激光技术 1900年,德国物理学家普朗克为了解决有关热辐射现象的“黑体辐射”难题,提出了“普朗克假设”,其“能量子”概念的提出标志着量子力学的诞生。随后,爱因斯坦于1905年提出了“光量子假说”以解释“光电效应”,使人们对能量量子化的认识更深入了一步的认识。1916年,爱因斯坦指出辐射有两种形式:自发辐射和受激辐射,从而为激光器的发明奠定了理论基础。激光器在技术上的最终实现得益于二战后对与雷达相关的微波的深人研究。其中标志性的工作有:1933年拉登伯格观测到了负色散现象;1939年法布里坎特指出辐射放大的必要条件是实现粒子数反转;1946年布洛赫观察到了粒子数反转的信号;1951年珀塞尔第一次在实验中实现了粒子数反转并观察到了受激辐射;1951年汤斯首次提出实现微波放大的可能性;1954年汤斯等人成功地制成了世界上第一台“辐射的受激发射微波放大”的装置(简称脉塞Maser);1958年汤斯和肖洛论证了把微波激射技术扩展到 论的又一重大课题。在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行为,但得到的定量比热关系在低温时与实验 偏离较大。1907年爱因斯坦应用了量子假说,所得结果得到了能斯特的实验验证和大力宣传,使量子论开始被人们认识,从而打开了迅速发展的局面。从1913年玻尔提出半 经典的量子论原子模型到1928年狄拉克发表电子的相对红外区和可见光区的可能性。最终,美国休斯研究所的梅曼于1960年成功制造并运转了第一台激光器——红宝石脉冲激光器,同年12月贾万研制出第一台气体激光器——氦氖激光器。 这两种激光器的相继问世引起了全世界科技界研究激光的热潮,各种激光器陆续出现。其中有可获得大功率脉冲的钕激光器,连续输出大功率的二氧化碳激光器,可在室温下工作的小型半导体激光器,从化学反应获得能量的化学激光器,光谱线很宽的可以连续改变激光输出波长的染料激光器。后来,还出现了自由电子激光器、准分子激光器、离子激光器等等。激光的波长范围已扩展到从红外到紫外以至x射线的所有波段,激光的应用更涉及到从日常生活到高新科技各个领域.如工业上的激光切割、焊接、打孔、表面改性、测距、大气污染分析;生物上的激光育种、水产养殖、品种改良、生命活细胞的全息照相;医疗上的激光外科手术、诊断;军事上的激光制导炸弹、强激光武器;此外,激光还应用于通信、光盘、分离同位素、激光核聚变等许多方面。 激光技术是以量子理论为主的现代物理学和现代技术相结合孕育出来的一门科学技术,它的发展历史不仅充分显示出物理科学理论对技术发明的预见性,而且它本身又作为现代科学技术家族中的一个优等生,大大促进和推动着现代物理学和现代科学技术的发展。 二、从“费米统计”到半导体技术 继黑体辐射和光电效应之后,固体比热的研究是量子论的又一重大课题。在量子力学建立前,特鲁特于1900提出了经典的金属自由电子气体模型,定性的解释了金属的电导和热导行

量子力学发展史

鬼话连篇:荒诞量子力学 原创2017-01-15小学僧老和山下的小学僧 先来个绕口令渲染一下诡异的氛围,量子力学奠基人波尔曾曰:如果你第 一次学量子力学认为自己懂了,那说明你还没懂。” 为了理解这个叹为观止的理论的伟大,只能把起点设得低一些,就从认识论'说起吧!中学僧请跳过,直接看后半篇。 人类为了生存,一直试图认识和解释这个世界。最早的认识论”充满了想象,后来逐渐演化成了宗教”,比如上帝创造了万物。过了一阵子,有些人发现这种认识论"不靠谱,跪了半天祈雨,还不如萧敬腾管用!脑袋瓜好使的人就在思考世界的本源是什么”、东西为什么往下掉”,如此云云。早期的聪明人只是坐在办公室研究世界,于是这种单纯的思辨就慢慢变成了哲学” 大家围坐论道,逼格是挺高,但只能争个面红耳赤,张三说世界在乌龟背上,李四说世界在大象背上。我说哥们儿,你们就不能验证一下吗?当然不能!土鳖才动手,君子只动口,这种风气夸张到什么程度呢?亚里士多德认为女性的牙齿比男性少”,就这么一个理论,愣是被奉为经典几百年。 很长一段时间,大家就是这么靠拍脑袋研究世界。拍着拍着,突然有个家伙灵光一闪,拍出了逻辑思维,做起了实验,这就是伽利略”。伽利略是第一个系统地用严密的逻辑和实验来研究事物的人,这便是科学”的雏形,所以伽利略很伟大,属于一流伟大”这个范畴。 是不是觉得早生几百年,你我都是科学家?别天真了,其实经常以负面形象出现的亚里士多德,绝对属于当时最聪明的人,时代局限性造成的无知”不是无知。 打个补丁,本文说的科学”是单纯的一门学科,而不是形容词。啥意思呢?因为某党的某些需求,科学这个词在国内的意义急剧扩大化,以至于现在科学' 就是真理”的代名词,很多地方可以把科学”和合理”两个词互换。你的做法很科学”,你的做法很合理”,这两句话有区别吗?再看英文版:你的做法很Scienee :这可就是语病了。本文说的科学”就是“Scienee, 是—门学科,而不是理:。

附录A:量子力学中常用的数学工具

附录A :量子力学中常用的数学工具 1. 常用数学符号 1.1 克雷内克符号 克雷内克(Kronecker )符号i j δ在物理中有广泛应用,其定义为 1,0,i j i j i j δ=?=? ≠? (A1-1) 可以用来简洁地表示基矢量或本征函数之间的正交归一性关系 *i j i j dx ψψδ=? (A1-2) 1.2 列维·西维塔符号 列维·西维塔(Levi-Civita )符号i j k ε又称为三阶反对称张量,其定义为 1,123,231,312 1,132,213,3210,i j k i jk i jk ε+=?? =-=??? 其它 (A1-3) 可以用来简洁地表示矢量积的分量关系 ,,,(), k i j k i j i j k i j k i j i j k A B A B A B C A B C εε?=??=∑∑v v v v v (A1-4) 1.3. 微分算符 在坐标表象下,动量对应梯度算符,梯度算符在直角坐标和球坐标中的表示形式为 11 sin x y z r e e e e e e x y z r r r θ?θθ? ???????=++=++??????v v v v v v (A1-5) 利用球坐标表达式r r re =v v ,得到 1sin r e e ?θθθ? ????=-??v v v (A1-6) 上式决定了角动量在球坐标中的表示形式。 (A1-6)式的平方为球面拉普拉斯算符 2 22 11sin sin sin θθθθθ?Ω????=+ ??? (A1-7) 与角动量平方相对应。拉普拉斯算符在直角坐标和球坐标中的表示形式为 22222 22222 11 r x y z r r r Ω?????=?=++=+????? (A1-8) 与动能相对应。

量子力学的发展综述

量子力学的发展综述 量子力学是对经典物理学在微观领域内的一次革命,是现代物理学的基础,它从根本上否定了牛顿物理学。本文带大家再次回到那个伟大的年代,再次简要回顾下那场史诗般壮丽的革命。 标签:量子力学发展量子多世界解释 量子理论的中心思想是一切东西都是由不可预言的量子构成,但这些粒子的统计行为遵循一种可以预言的波动图样。简简单单的一句话,深入研究起来确实那样令人困惑,整个20世纪的物理学家们就是在不断的量子的迷雾中摸索着。现在我们也要沿着他们的航线领略一下量子理论奇。 一、量子的创生 19世纪末,物理学界取得了一系列举世瞩目的成就,当人们为所谓的物理学大厦已经根深蒂而感到皆大欢喜时,几个悬而未决的谜题却一直困扰着高瞻远虑的物理学家们[1]。“在物理学阳光灿烂的天空中飘浮着两朵小乌云”这句话在几乎每一本关于物理学史的书籍中被反复提到,具体一些的话,指的是人们在迈克尔—莫雷实验和黑体辐射研究中的困境。这两朵乌云带来的狂风暴雨,远远超出了人们的想象:第一朵乌云,最终导致了相对论革命的爆发;第二朵乌云,最终导致了量子论革命的爆发。1900年,普朗克在解决黑体辐射问题时,做了一个假定,“必须假定,能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。”普通的一个假设,却推翻自牛顿以来200多年,曾被认为坚固不可摧毁的物理世界。这与有史以来的一切物理学家的观念截然相反,自牛顿和伽利略以来,一切自然的过程都被当成是连续不间断的,是微积分的根本基础,牛顿、麦克斯韦那庞大的体系,都是建立在这个基础之上,从没有人怀疑过这个物理学的根基。1900年12月14日,量子的诞辰,这一天,量子这个幽灵从普朗克的方程中脱胎而出。这个幽灵拥有彻底的革命性和无边的破坏力,物理学构成的精密体系被摧毁成断壁残垣,甚至推动量子论的某些科学家最终也站到了它的对立面。量子论这场前所未有的革命,从这个叫马克思·普朗克的男人这里开始了。 二、量子力学的建立和论战 量子这个概念已经诞生了,然而他的创造者普朗克却抛弃了它,不断地告诫人们,不到万不得已不要使用,不要胡思乱想。不怪普朗克本人畏首畏尾,实在是量子这个概念太过惊世骇俗,但是接下来一系列的成就证明了它的价值:1.为了解释光电效应,1905年爱因斯坦提出光量子论,揭示了光的波粒二象性;2.玻尔结合原子的核式结构模型和量子论,1913年提出了氢原子理论;3.德布罗意从光量子理论得到启发,于1923年提出物质波假说;4.海森堡抛弃了玻尔的轨道概念,建立了矩阵力学(1925年)[2]。海森堡建立矩阵力学标志着量子力学的建立,但是刚诞生的矩阵力学立刻受到了挑战:薛定谔于1926年把物质波的思想加以发展,建立了波动力学。矩阵力学?波动力学?全新的量子论建立不到一

简述建立量子力学基本原理的思想方法

简述建立量子力学基本原理的思想方法 摘要:量子力学是大学物理专业的一门必修理论基础课程,它研究的对象是分子、原子和基本粒子。本文对建立量子力学基本原理的思想方法作一简单叙述,供学员在学习掌握量子力学的基本理论和方法时参考。 关键词:量子力学;力学量;电子;函数 作者简介 0引言 19世纪末,由于科学技术的发展,人们从宏观世界进入到微观领域,发现了一系列经典理论无法解释的现象,比较突出的是黑体辐射、光电效应和原子线光谱。普朗克于1900年引进量子概念后,上述问题才开始得到解决。爱凶斯坦提出了光具有微粒性,从而成功地解释了光电效应。 1量子力学 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 2玻尔的两条假设 玻尔在前人工作的基础上提出了两条假设,成功地解释了氢原子光谱,但对稍微复杂的原予(如氦原子)就无能为力。直到1924年德布罗意提出了微观粒子具有波粒二象性之后才得到完整解释。 1924年,德布罗意在普朗克和爱因斯坦假设的基础上提出了微观粒子具有波粒二象性的假设,即德布罗意关系。1927年,戴维孙和革末将电子作用于镍单晶,得到了与x射线相同的衍射现象,从而圆满地说明了电子具有波动性。 2.1自由粒子的波动性和粒子性 它的运动是最简单的一种运动,它充分地反映了自由粒子的波动性和粒子性,将波(平面波)粒( p,E) 二象性统一在其中。如果粒子不是自由的,而是在一个变化的力场中运动,德布罗意波则不能描写。我们将用一个能够充分反映二象性特点的

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

量子力学地发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。

量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量子力学的诞生却在本世纪二十年代,这中间曾经历一个曲折的途径,说明量子力学这个理论的诞生决不是一帆风顺的更不是靠少数科学家在头脑中凭空想出来的。 爱因斯坦在这次大会上作了题为《论我们关于辐射的本质和组成的观点的发展》的报告,首次提出光具有波粒二象性。爱因斯坦通过对光辐射的统计提醒的精辟分析得出结论:光对于统计平均现象表现为波动,而对于能量张罗现象却表现为粒子,因此,光同时具有波动性和粒子性。爱因斯坦进一步指出,这两者并不是水火不相容的。这样,爱因斯坦的第一次在更深的层次上及时处理光的神秘本性,从而也将他最尊敬的两位前辈——牛顿和麦克斯韦——关于光的理论有机的综合在一起。 量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对

量子力学的基本概念

一、量子力学及其意义和作用 量子力学:是研究微观粒子运动、变化基本规律的科学。 由于宏观物质全部是由微观物质组成的,宏观世界全部建立在微观世界之上,量子力学便无处不在、普遍适用。“整个世界是量子力学的!” 物理学四大力学(理论力学、热力学与统计物理、电动力学、量子力学)之一。 自从量子理论诞生以来(1900年12月14日),它的发展和应用一直广泛深刻地影响、促进和触发人类物质文明的大飞跃。例如,可以把所有学科名称前面冠以“量子”————quantum二字,就会发现:已经形成或将要形成一门新的理论、新的学科。 光学—量子光学化学—量子化学 电子学—量子电子学生物学—量子生物学 电动力学—量子电动力学宇宙学—量子宇宙学 统计力学—量子统计力学网络—量子网络 经典场论—量子场论信息论—量子信息论 计算机—量子计算机 就连投机家所罗斯的基金会也时髦的冠以“量子”二字:“量子基金会”一百年(1901—2002)来总共颁发Nobel Prize 96 次(其中1916,1931,1934,1940,1941,1942共6年未颁奖)单就物理奖而言:直接由量子理论得奖或与量子理论密切相关而得奖的次数有57 次(直接由量子理论得奖25次 量子力学自20世纪20年代创立以来,直到现在,已逐步成为核物理、粒子物理、凝聚态物理、超流和超导物理、半导体物理、激光物理等众多物理分支学科的共同理论基础。自20世纪80年代以来,量子力学又有很大发展:量子信息科学(量子计算、量子通信)目前,它正在向材料科学、化学、生物学、信息科学、计算机科学大规模渗透。不久的将来它将会成为整个近代科学共同的理论基础。国家中长期科学技术发展规划:量子调控计划二、历史的回顾 19世纪末,一些物理学家认为:辉煌的物理学大厦已经建成! Kelvin勋爵:物理学的天空上漂浮着两朵乌云: 麦克尔逊—莫雷实验相对论 黑体辐射的“紫外灾难”量子力学 经典物理、近代物理 相对论:平地起高楼,伟大的头脑 量子力学:一点一滴的积累,Plank, Einstein, Bohr, Heisenberg, Born, Pauli, de Broglie, Schrodinger, Dirac 领袖:Niels Bohr, 哥本哈根学派

《量子力学》课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射

量子力学的发展进程

量子力学的发展进程 黑体2014 摘要:简述了量子力学的发展进程。量子力学是近代物理学的重要组成部分,是研究微观粒子(分子、原子、原子核、基本粒子等)运动规律的一种基础理论。它是本世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它的发展曾经引起物理思想上的巨大变革,它产生的影响,绝不局限于物理学和化学这两门学科,而且还涉及人类认识本身的种种基本问题。因此对它的发展进程进行研究有着特别的重要意义。笔者想在这篇文章中对量子力学的发展进程作一简要的回顾,并就自己在学习周世勋《量子力学教程》这门课程中一些疑惑和感想做一说明。 关键词:量子力学;进程;学习心得

The development process of quantum mechanics Abstract:Briefly describes the development process of quantum mechanics. It is an important part of modern physics, quantum mechanics is the study of microscopic particles (molecules, atoms, nuclei, elementary particles, etc.) a basic theory of the motion law. It is in the 20 s of this century in summing up a lot of experimental facts and the old quantum theory established on the basis of it. Its development has caused physical and ideological change, the impact of it, not limited to the physics and chemistry, the two subjects, but also the basic problem of human cognition itself. So the study of its development process has a special significance. In this article the development process of quantum mechanics makes a brief review of, and in their learning Zhou Shixun in the course of the quantum mechanics course some doubts and thoughts. Key words:Quantum mechanics; Process; The learning

量子力学教程-周世勋-课程教案(轻松学量子力学)

量子力学讲义

一、量子力学是什么? 量子力学是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论。 研究对象:微观粒子,大致分子数量级,如分子、原子、原子核、基本粒子等。 二、量子力学的基础与逻辑框架 1.实验基础 ——微观粒子的波粒二象性: 光原本是波 ——现在发现它有粒子性; 电子等等原本是粒子 ——现在发现它有波动性。 2.(由实验得出的)基本图象 —— de Broglie 关系与波粒二象性 Einstein 关系(对波动):E h ν=,h p λ = de Broglie 关系(对粒子): E =ω, p k = 总之,),(),(k p E ω? 3.(派生出的)三大基本特征: 几率幅描述 ——(,)r t ψ 量子化现象 —— ,,,321E E E E = 不确定性关系 ——2 ≥ ???p x 4.(归纳为)逻辑结构 ——五大公设 (1)、第一公设 ——波函数公设:状态由波函数表示;波函数的概率诠释;对波函数性质的要求。 (2)、第二公设 ——算符公设 (3)、第三公设 ——测量公设 ?=r d r A r A )(?)(* ψψ (4)、第四公设 ——微观体系动力学演化公设,或薛定谔方程公设 (5)、第五公设 ——微观粒子全同性原理公设 三、作用 四、课程教学的基本要求 教 材:《量子力学教程》周世勋, 高等教育出版社 参考书:1. 《量子力学》,曾谨言,2. 《量子力学》苏汝铿, 复旦大学出版社 3. 《量子力学习题精选与剖析》钱伯初,曾谨言, 科学出版社

第一章 绪论 §1.1 辐射的微粒性 1.黑体辐射 所有落到(或照射到)某物体上的辐射完全被吸收,则称该物体为黑体。G. Kirchhoff (基尔霍夫)证明,对任何一个物体,辐射本领)T ,(E ν与吸收率)T ,(A ν之比是一个与组成物体的物质无关的普适函数,即 )T ,(f )T ,(A )T ,(E ν=νν (f 与物质无关)。 辐射本领:单位时间内从辐射体表面的单位面积上发射出的辐射能量的频率分布,以)T ,(E ν表示。在t ?时间,从s ?面积上发射出频率在 ν?+ν-ν 范围内的能量为: ν???νs t )T ,(E )T ,(E ν的单位为2 /米焦耳;可以证明,辐射本领与辐射体的能量密度分布的关系为 )T ,(u 4 c )T ,(E ν=ν ()T ,(u ν单位为秒米 焦耳3 ) 吸收率:照到物体上的辐射能量分布被吸收的份额。由于黑体的吸收率为1,所以它的辐射本领 )T ,(f )T ,(E ν=ν 就等于普适函数(与物质无关)。所以黑体辐射本领研究清楚了,就把普适函数(对物质而言)弄清楚了。我们也可以以)T ,(E λ来描述。 ????λ λ ν=λλλν=λλ νν=ννd c )T ,(E d d c d ) T ,(E d d d ) T ,(E d )T ,(E 2 )T ,(E c )T ,(E 2 νν = λ (秒米焦耳?3 ) A. 黑体的辐射本领 实验测得黑体辐射本领 T ,(E λ与λ的变化关系在理论上, ① 维恩(Wein )根据热力学第二定律及用一模型可得出辐射本领 h 32 e c h 2)T ,(E ν-νπ= ν ?? ?=π=k h c c h 2c 22 1(k 为Boltzmann 常数:K 1038.123 焦耳-?)

量子力学的发展及应用

量子力学论文题目: 量子力学发展历史及应用领域 学生姓名武术 专业电子科学与技术 学号_ 222009322072082 班级2009 级 2班 指导教师张济龙 成绩 _ 工程技术学院 2011年12 月

量子力学发展历史及应用领域 武术 西南大学工程技术学院,重庆 400716 摘要:量子力学发展至今已有一百年了,它发展的道路并不是一帆风顺的。这一百年虽是艰难的,但是辉煌的。此后,人们发现量子力学与现代科技的联系日益紧密,它的发展潜力是不能低估的。本文从两个部分逐次论述了量子力学的发展及应用。第一部分是量子力学的发展,这部分阐述了早期量子论。第二部分是量子力学的应用,这部分阐明了量子力学在固体物理和信息科学中的应用。 关键词:早期量子论;量子力学的发展;量子力学的应用 量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。 建立在量子概念的量子力学及其物理诠释,促使人类的思想观念产生根本性转变;虽然这新概念很抽象,但就目前文明的空前繁荣而言,量子力学所产生的影响是相当广泛的。而看看量子力学的前沿性进展新貌,则会感到心驰神往。 量子力学可谓是量子理论的第二次发展层次,第一次常称作早期量子论,第三次就是量子场论。本文除了论述这三个层次以外,又说了它在现代物理乃至现代物质科学中的地位,阐述了它应用的状况。 一.量子力学的发展 19世纪末20世纪初,人们认为经典物理发展很完美的时候,一系列经典理论无法解释的现象一个接一个的发现了。经典力学时期物理学所探讨的主要是用比较直接的实验研究就可以接触到的物理现象的定理和理论。牛顿定理和麦克斯韦电磁理论在宏观和慢速的世界中是很好的自然规律。而对于微观世界的

量子力学基础简答题(经典)【精选】

量子力学基础简答题 1、简述波函数的统计解释; 2、对“轨道”和“电子云”的概念,量子力学的解释是什么? 3、力学量G ?在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系; 5、电子在位置和自旋z S ?表象下,波函数??? ? ??=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。 6、何为束缚态? 7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在 ψ(,) r t 状态中测量力学量F 的可能值及其几率的方法。 8、设粒子在位置表象中处于态),(t r ψ,采用Dirac 符号时,若将ψ(,) r t 改写为ψ(,) r t 有何 不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。 10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关? 14、在简并定态微扰论中,如 () H 0的某一能级) 0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…, f ),为什么一般地i φ不能直接作为()H H H '+=???0的零级近似波函数? 15、在自旋态χ1 2 ()s z 中, S x 和 S y 的测不准关系( )( )??S S x y 22?是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量 对应的各简并态的迭加是否仍为定态Schrodinger 方程的解? 17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。 18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。 19何谓选择定则。 20、能否由Schrodinger 方程直接导出自旋? 21、叙述量子力学的态迭加原理。 22、厄米算符是如何定义的? 23、据[a ?,+ a ?]=1,a a N ???+=,n n n N =?,证明:1 ?-=n n n a 。 24、非简并定态微扰论的计算公式是什么?写出其适用条件。

量子力学原理及其应用

量子力学原理及其应用 师燕光电8班2012059080029 量子力学是近代自然科学的最重要的成就之一.在量子力学的世界里,一个 量子微观体系的状态是由一个波函数来描述的,而非由粒子的位置和动量描述, 这就是它与经典力学最根本的区别。这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——例如科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)?? 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 直到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟是如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书引言中的所述:“量子力学在哪?你不正沉浸于其中吗。” 一、量子计算机 量子力学的海森堡测不准原理决定了粒子的位置和动量是不能同时确定的( )。当计算机芯片的密度很大时(即很小)将导致很大, 电子不再被束缚, 产生 量子干涉效应,而这种干涉效应会完全破坏芯片的功能。为了克服量子力学对计算机发展的限制,计算机的发展方向必然和量子力学相结合,这样不仅可以越过 量子力学的障碍,而且可以开辟新的方向。量子计算机就是以量子力学原理直接 进行计算的计算机.保罗·贝尼奥夫在1981 年第一次提出了制造量子计算机的理论。量子计算机的存储和读写头都以量子态存在的,这意味着存储符号可以是0、1 以及它们的叠加。 近年来的种种试验表明,量子计算机的计算和分析能力都超越了经典计算机。它具有如此优越的性质正在于它的存储读取方式量子化。对量子计算机的原理分析可知,以下两个个特性是令量子计算机优越性的根源所在:存储量大,速度高;可以实现量子平行态。 随着现代科学技术的发展,量子计算机也会逐渐走向现实研制和现实运用。量子计算机不但于未来的计算机产业的发展紧密相关,更重要的是它与国家的保密、电子银行、军事和通讯等重要领域密切相关。实现量子计算机是21 世纪科学技术的最重要的目标之一。 二、晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。1945 年的秋天,美国军方成功地制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30 吨,占地面积接近一个小型住宅,总花费高达100 万美元。如此巨额的投入,注定了真空管这种

量子力学中要用到的数学知识大汇总

第一章矩阵 1.1矩阵的由来、定义和运算方法 1.矩阵的由来 2.矩阵的定义 3.矩阵的相等 4.矩阵的加减法 5.矩阵和数的乘法 6.矩阵和矩阵的乘法 7.转置矩阵 8.零矩阵 9.矩阵的分块 1.2行矩阵和列矩阵 1.行矩阵和列矩阵 2.行矢和列矢 3.Dirac符号 4.矢量的标积和矢量的正交 5.矢量的长度或模 6.右矢与左矢的乘积 1.3方阵 1.方阵和对角阵 2.三对角阵 3.单位矩阵和纯量矩阵 4.Hermite矩阵 5.方阵的行列式,奇异和非奇异方阵 6.方阵的迹 7.方阵之逆 8.酉阵和正交阵 9.酉阵的性质 10.准对角方阵 11.下三角阵和上三角阵 12.对称方阵的平方根 13.正定方阵 14.Jordan块和Jordan标准型 1.4行列式求值和矩阵求逆 1.行列式的展开 https://www.doczj.com/doc/c36167423.html,place展开定理 3.三角阵的行列式 4.行列式的初等变换及其性质 5.利用三角化求行列式的值 6.对称正定方阵的平方根 7.平方根法求对称正定方阵的行列之值 8.平方根法求方阵之逆 9.解方程组法求方阵之逆 10.伴随矩阵

11.伴随矩阵法求方阵之逆 1.5线性代数方程组求解 1.线性代数方程组的矩阵表示 2.用Cramer法则求解线性代数方程组 3.Gauss消元法解线性代数方程组 4.平方根法解线性代数方程组 1.6本征值和本征矢量的计算 1.主阵的本征方程、本征值和本征矢量 2.GayleyHamilton定理及其应用 3.本征矢量的主定理 4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换 1.线性变换的矩阵表示 2.矢量的酉变换 3.相似变换 4.等价矩阵 5.二次型 6.标准型 7.方阵的对角化 参考文献 习题 第二章量子力学基础 2.1波动和微粒的矛盾统一 1.从经典力学到量子力学 2.光的波粒二象性 3.驻波的波动方程 4.电子和其它实物的波动性——de Broglie关系式 5.de Broglie波的实验根据 6.de Broglie波的统计意义 7.态叠加原理 8.动量的几率——以动量为自变量的波函数 2.2量子力学基本方程——Schrdinger方程 1.Schrdinger方程第一式 2.Schrdinger方程第一式的算符表示 3.Schrdinger方程第二式 4.波函数的物理意义 5.力学量的平均值(由坐标波函数计算) 6.力学量的平均值(由动量波函数计算) 2.3算符 1.算符的加法和乘法 2.算符的对易 3.算符的平方 4.线性算符 5.本征函数、本征值和本征方程

相关主题
文本预览
相关文档 最新文档