当前位置:文档之家› 直流系统极差配合实验

直流系统极差配合实验

直流系统极差配合实验
直流系统极差配合实验

微机控制高频开关直流极差配合试验检查记录

交流电源系统技术规范

青海刚察二期10兆瓦并网光伏发电 项目 交流电源系统 技术规范书 编制: 审核: 批准: 上海太阳能科技有限公司

通用部分 1总则 1.1 本规范文件提出了对380/220V交流电源系统的功能设计、结构、性能、安装等方面的技术要求。 1.2 本规范提出的是最低限度的要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应提供符合本规范和工业标准的优质产品。 1.3 投标人应具有ISO 9001质量保证体系认证证书、宜具有ISO 14001环境管理体系认证证书、宜具有OHSAS 18001职业健康安全管理体系认证证书,并具有AAA级资信等级证书,宜具有重合同守信用企业证书并具备良好的财务状况和商业信誉。必须具备国网机构检验合格证书。必须已经生产投运过十套及以上类似或高于本规范要求的设备,并具有在相同或更恶劣的运行条件下持续稳定运行两年以上的成功经验。投标方应随同投标书提供所要求的资格证明文件及供货记录。 1.4 投标人提供的产品应具有国家或电力行业级检验检测机构试验合格的证明文件。 1.5 如果投标人没有以书面的形式对本规范的条文提出异议,则表示投标人提供的设备完全符合本规范的要求;如有与本规范要求不一致的地方,必须逐项在“项目单位技术差异表”中列出。如果没有不一致的地方,必须在“项目单位技术差异表”中写明为“无差异”。1.6 本规范所使用的标准如遇与投标人所执行的标准不一致按较高的标准执行。 1.7 本规范将作为订货合同的附件,与合同具有同等的法律效力。本规范未尽事宜,由合同签约双方在合同谈判时协商确定。 1.8 供方职责。供方的工作范围将包括但不限于下列内容: 1.8.1 提供标书内所有设备及设计说明书及制造方面的说明。 1.8.2 提供设备安装、使用的说明书。 1.8.3 提供试验和检验的标准,包括试验报告和试验数据。 1.8.4 提供图纸,制造和质量保证过程的一览表以及标书规定的其他资料。 1.8.5 提供设备管理和运行所需有关资料。 1.8.6 所提供设备应发运到规定的目的地。 1.8.7 如标准、规范与本规范的条文有明显的冲突,则供方应在制造设备前,用书面形式将冲突和解决办法告知需方,并经需方确认后,才能进行设备制造。 1.8.8 在更换所用的准则、标准、规程或修改设备技术数据时,供方有责任接受需方的选择。 1.8.9 现场服务。 2技术要求 2.1引用标准 下列标准所包含的条文,通过在本规范书中引用而构成本规范书的基本条文。在本规范出版时,所示版本均为有效。所有标准都会被修订,使用本规范的各方应探讨使用下列标准最新版本的可能性。 表1技术规范引用标准

直流系统级差配合

直流系统级差配合 前言 随着我国电力工业的不断进步,电力系统向超高压、大容量方向发展,为这些大容量电力设备提供控制、保护、信号、操作电源,直流系统的安全、可靠、经济运行就必须提到一个新的高度。 正常运行时,直流系统为断路器提供合闸电源,为继电保护及自动装置、通讯等提供直流电源;故障时,特别是交流电源中断情况下,直流系统为继电保护及自动装置、断路器合跳闸、事故照明提供安全可靠的直流电源,是电力系统继电保护、自动装置和断路器正确动作的基本保证。在直流回路中,熔断器、断路器是直流系统各出线过流和短路故障主要的保护元件,可作为馈线回路供电网络断开和隔离之用,其选型和动作值整定是否适当以及上下级之间是否具有保护的选择性配合,直接关系到能否把系统的故障限制在最小范围内,这对防止系统破坏、事故扩大和主设备严重损坏至关重要。因此,加强熔断器、断路器选择及配置的准确性,对提高电力系统运行的安全可靠性具有重要意义。 1 级差配合存在的主要问题 由于变电站直流系统供电内容多,回路分布广,在一个直流网络中往往有许多支路需要设置断路器或熔断器进行保护,并往往分成三级或四级串联,这就存在着正确选择保护方案和保护上下级之间的配合问题。 1.1 交直流断路器混用 由于交、直流的燃弧及熄弧过程不同,额定值相同的交直流断路器开断直流电源的能力并不完全一样,用交流断路器代替直流断路器或交、直流断路器混用是保护越级误动的主要原因之一。 断路器瞬时动作采用磁脱扣原理,判据为通过的电流峰值,断路器标定的额定值为有效值,而交流电的峰值高于有效值,在相同定值下,在直流回路中交流断路器实际额定值高于

直流断路器。另外,因交流断路器与直流断路器灭弧原理不同,交流断路器用于直流回路不能有效、可靠地熄灭直流电弧,容易造成上级越级动作。 1.2 熔断器质量及参数问题 各生产厂家提供的熔断器技术数据是在产品型式试验时得到的,且校验熔断器的分断能力是在交流电源周期分量有效值下做的,熔体动作选择配合特性曲线也是交流安秒特性曲线。这与变电站直流系统发生短路故障时的实际情况有一定差距。 各熔断器厂家及设计手册提供的级差配合是按同一型号、同熔体材料确定上、下级差,从而保证满足选择性的,当回路中有不同类型的熔断器时,熔断器之间的级差配合更应引起高度重视。同时,由于目前低压电器生产厂家较多,不能完全保证产品质量,所以即使同一厂家、同一型号的熔体,其参数也有一定的分散性。 1.3 上、下级间的额定值级差选择不当 熔断器采用热效应原理,而断路器是磁效应与热效应相结合,安秒特性曲线不同,配合级差也不同。对于断路器之间、断路器与熔断器之间的级差配合不应照搬熔断器间的配合规定。 2 熔断器、直流断路器级差配置现场试验 为了适应新颁DL/T5044-2003《电力工程直流设计技术规程》(以下简称设计规程)有关规定,验证变电站直流系统中断路器和熔断器几种典型的级差配置方案是否满足选择性保护的要求,探索直流断路器之间的级差配合、直流断路器与熔断器的配合及其上下级之间的选择配置,选择了石家庄供电公司所辖变电站直流系统中部分直流断路器、熔断器的典型保护级差配合方案进行了现场试验,并对具备延时功能的三段式直流断路器也进行了试验验证,确认了实现选择性保护的配合条件。 2.1 短路电流的选取 按照直流断路器及熔断器安装现场可能出现的最大短路电流,将试验元件串联安装进行

变电站站用交流电源系统技术规范

变电站站用交流电源系统技术规范 ICS 备案号 : Q/CSG 中国南方电网有限责任公司企业标准 变电站站用交流电源系统技术规范 中国南方电网有限责任公司 发 布

变电站站用交流电源系统技术规范 目录 1总则 (1) 2规范引用文件 (1) 3术语与定义 (2) 4使用条件 (4) 5站用电接线 (4) 6站用变压器的选择 (5) 7380V短路电流计算 (8) 8380V低压配电屏的选择 (10) 9站用电系统的继电保护、控制、信号、测量及自动装置 (11) 10站用电设备的布置 (14) 11现场安装要求 (16) 12电缆敷设及防火技术要求 (18) 13标志、包装、运输、储存 (19) 附录A站用电系统原理接线图(规范性附录) (22) 附录B 站用电系统I/O表(规范性附录) (25) 附录C站用电源定值表(规范性附录) (26) 附录D主要站用电负荷特性表(资料性附录) (27) 附录E 500kV 变电站站用变压器负荷计算及容量选择实例(资料性附录) (28) 附录F交流断路器级差配合(资料性附录) (29) 附录G变电站站用电负荷主要设备单、双电源配置表(资料性附录) (30) 附录H 站用电源系统检验要求(资料性附录)........................................................ I

变电站站用交流电源系统技术规范 前言 变电站站用交流电源电系统为变电站的运行提供稳定可靠的低压交流电源,为规范站用交流电源系统的配置、设计、施工、验收,统一建设标准,提高其安全性与可管理性,特制定本规范。 本规范由中国南方电网公司生产设备管理部提出、归口及解释。 本规范主编单位:中国南方电网有限责任公司生产设备管理部。 本规范参编单位:广东电网公司。 本规范主要起草人:梅成林、陈曦、邓小玉、刘玮、杨忠亮、袁亮荣、徐敏敏、王奕、盛超 本规范主要审查人:佀蜀明,何朝阳,马辉,梁睿,吴东昇,黄志伟。 本规范由中国南方电网公司标准化委员会批准。 本规范自发布之日起实施。 执行中的问题与意见,请及时反馈至中国南方电网有限责任公司生产设备管理部。

直流电源系统中保护元件级差配合

直流电源系统中保护元件级差配合 发表时间:2016-12-01T13:26:05.140Z 来源:《电力设备》2016年第18期作者:韩军李世峰王海飞张小红魏晓赵鹏[导读] 能够对新站的建设起到辅助设计作用,是直流系统设计人员得力的辅助设计工具。 (国网新疆电力公司疆南供电公司新疆省 830000) 摘要:针对电力直流系统设计过程中保护元件如何正确选型及上下级之间选择性保护的配合校验问题,开发了一种直流电源系统保护元件级差配合校核软件,实现了对变电站/电厂直流系统线路配置设计、保护元件选型、灵敏度和选择性校验等功能.该软件不仅能够对已有的直流电源系统进行分析,同时也能够对新站的建设起到辅助设计作用,是直流系统设计人员得力的辅助设计工具 关键词:直流级差;依据标准;保护回路级差配合 一、直流级差保护元件 直流电源系统中保护元件级差配合是否合理,主要是指在短路情况下,串联在同一个支路的保护元件是否能选择性地将短路故障快速\准确地从系统中切除,确保将故障缩小到最小范围。断路器的短路保护脱扣器动作与否,与流经断路器的短路电流大小有密切的关系,一旦在断路器的脱扣线圈中产生足以使铁心动作的磁场,断路器动作将不可返回。因此,要保证直流系统中保护元件的级差配合满足要求,首先,必须明确直流电源系统相关各点的短路电流值,保证断路器短路故障时既不拒动,也不误动,更不能越级。直流电源系统短路电流的计算所涉及的相关参数复杂,不确定因素诸多,尤其是各个断路器厂家断路器的限流系数提供的不完全,导致目前各设计院、成套厂或运行单位均难以精确计算出各有关短路点的实际短路电流值,给断路器的选择和级差配合以及断路器灵敏度系数计算校验带来相当大的困难。 为了电力系统广大工程技术人员能够在运行现场方便、快捷地确定直流电源系统中各处的短路电流值大小,对保护元件进行快速、准确选型,北京人民电器厂有限公司依据相关标准,结合多年的直流系统配电经验,开发了直流电源系统保护元件级差配合校核软件。利用该软件,用户可以灵活进行线路配置和元件选型,并可随时了解直流系统中各处短路电流的大小以及所选保护元件级差配合的合理性。 二、当前依据标准 开发直流电源系统保护元件级差配合测试验装置,主要依据的标准为: (1)GB14048.1—2006《低压开关设备和控制设备总则》; (2)GB14048.2—2008《低压开关设备和控制设备断路器》; (3)GB10963.1—2005《家用及类似场所用过电流保护断路器第1部分:用于交流的断路器》;(4)GB10963.2—2008《家用及类似场所用过电流保护断路器第2部分:用于交流和直流的断路器》; (5)DL/T5044—2004《电力工程直流系统设计技术规程》。 断路器的选择性保护直流电源系统保护电器的级差系同一回路、同一系列保护电器上下级额定电流的等级之差。首先应明确所用保护电器的型式(熔断器或断路器等),其次是该型式系列产品的型号和额定电流的规格。如果下级负载发生短路故障时,下级的断路器瞬动,而此故障电流也要流经上一级线路。如果上一级断路器无短路短延时,则下级发生故障的瞬间,会与下级断路器一起跳闸;如果上一级断路器具有短路短延时功能,当下级断路器跳闸时,在下级断路器分断动作时间内,上级断路器保持不动作,这种配合称为选择性保护。级差配合校验系统就是校验变电站直流电源系统上下级断路器的配合关系,判断其是否有选择性。为了适应新颁DL/T5044-2003《电力工程直流设计技术规程》(以下简称设计规程)有关规定,验证变电站直流系统中断路器和熔断器几种典型的级差配置方案是否满足选择性保护的要求,探索直流断路器之间的级差配合、直流断路器与熔断器的配合及其上下级之间的选择配置,选择了石家庄供电公司所辖变电站直流系统中部分直流断路器、熔断器的典型保护级差配合方案进行了现场试验,并对具备延时功能的三段式直流断路器也进行了试验验证,确认了实现选择性保护的配合条件。 三、直流断路器的动作特性 断路器的动作特性断路器俗称空气开关,主要于电路发生过载和短路等情况时自动分断电路,是低压交直流配电系统的重要保护元件,具有过载反时限动作断开和短路快速切除的保护功能。断路器主要技术参数包括分断能力、限流能力、使用寿命和动作特性,其中动作特性最为重要。根据动作特性,断路器一般可分为两段保护型与三段保护型。两段保护型断路器的动作特性曲线由过载长延时段和短路瞬时保护段组成。 四、保护回路级差配合存在的主要问题 由于变电站直流系统供电内容多,回路分布广,在一个直流网络中往往有许多支路需要设置断路器或熔断器进行保护,并往往分成三级或四级串联,这就存在着正确选择保护方案和保护上下级之间的配合问题。 1 、交直流断路器混用 由于交、直流的燃弧及熄弧过程不同,额定值相同的交直流断路器开断直流电源的能力并不完全一样,用交流断路器代替直流断路器或交、直流断路器混用是保护越级误动的主要原因之一。断路器瞬时动作采用磁脱扣原理,判据为通过的电流峰值,断路器标定的额定值为有效值,而交流电的峰值高于有效值,在相同定值下,在直流回路中交流断路器实际额定值高于直流断路器。另外,因交流断路器与直流断路器灭弧原理不同,交流断路器用于直流回路不能有效、可靠地熄灭直流电弧,容易造成上级越级动作。

智能交直流一体化站用电源系统的应用

智能交直流一体化站用电源系统的应用 发表时间:2018-08-22T10:35:00.140Z 来源:《电力设备》2018年第14期作者:段宏宇 [导读] 摘要:变电站是我国电力事业中最基础最重要的基础设施,智能变电站是我国近些年较为普及和推广的一种新型电站,与以往常规的变电站相比,智能变电站的优势主要在于能够有效的改善之前的电源自动化控制管理水平较低、信息管理和系统管理难度系数较大等多种问题。智能变电站采用交直流一体化的电源系统,能够有效的实现网络通信、监控、系统联动等细节一体化的运作。 (国网吉林省电力有限公司延边供电公司吉林延边 133000) 摘要:变电站是我国电力事业中最基础最重要的基础设施,智能变电站是我国近些年较为普及和推广的一种新型电站,与以往常规的变电站相比,智能变电站的优势主要在于能够有效的改善之前的电源自动化控制管理水平较低、信息管理和系统管理难度系数较大等多种问题。智能变电站采用交直流一体化的电源系统,能够有效的实现网络通信、监控、系统联动等细节一体化的运作。 关键词:智能变电站;交直流;一体化;电源系统 0引言 随着变电站数字化程度越来越高以及智能化试点变电站的投运,相应提高站用电源整体的运行管理水平具有非常重要的意义。目前,现有站用电源在资源整合、自动化水平、管理模式等方面都还存在很大的优化空间,本文提出一种新的变电站电源系统设计理念,将站用交流电源系统、直流电源系统、逆变电源系统、通信电源系统等一体化设计、一体化配置、一体化监控。其运行工况和信息数据通过一体化监控监控单元展示并转换为DL/T860标准模型数据接入自动化系统并上传至远方控制中心。 1常规性变电站的电源系统应用现状分析 常规性变电站,依旧是我国当前电力事业中最为广泛、普遍设置的一种类型。特别是对于我国这种地域宽广,技术更新不可能协调一致,所以常规性变电站依旧在我国的变电站运作系统中发挥着重要作用,常规性变电站,它的电源系统通常分为直流系统、交流系统、UPS和通信电源系统等几种不同的类型,站用电源系统主要为变电站内主要设备提供储能、加热、通风、操作电源及站内检修照明电源。在一般的变电站运营模式下,交流系统是变电站的主要能源供应设备。例如具体的电能储蓄、电源操作等工作都需要依赖交流系统来予以完成。这就意味着,交流系统的稳定性能如何,会直接影响到整个变电站的运行是否稳定、可靠。电源是整个变电站工作和运行的重中之重,当前我们的变电站,一般采用的是各个电源子系统分开设计、分开管理和使用、分开组屏,不同的电源系统由不同的生产商进行研发、生产、组装以及后期的安装、调试等。这种模式运行下的各种电源子系统存在着很多的弊端。 ①现有变电站站用电源由不同专业人员进行管理,交流系统与直流系统由变电人员进行运行维护,UPS由自动化人员进行维护,通信电源由通信人员维护,除了人力资源不能总体调配,通信电源、UPS等也没有纳入变电站严格的巡检范围。 ②由不同供应商分别设计各个子系统,资源不能综合考虑,使一次投资显著增加,经济性较差。如:直流系统配置一套电池组,UPS、通信电源系统又各自独立配置一套电池组,这样既浪费设备,又使设备之间难以协调运行。 ③从系统设计角度来讲,变电站综合自动化系统已由集中分布式系统向数字化发展。目前综合自动化系统已成为站用电源信息共享平台,站用电源信息也一直作为综合自动化系统的简单附属信息,因此也难以实现系统管理和信息共享,在相关子系统变化时不能协调整个站用电源以最佳方式运行。 2智能站用交直流一体化电源系统的具体应用 当前所说的智能站用交直流一体化的电源系统,主要是与传统常规的电站电源系统相区别的一种电源系统,这种电源系统的忒单就在将原本独立的交流、直流、逆变、通信等多种电源系统进行统一的设计,包括前期的设计研究、监控,具体使用过程中的安装、调试等都通过统一的信息手段进行规划和管理。使得整个电源系统在使用、配合过程中实现信息监控、能够有效的进行联动,进一步提高变电站运行的安全系数、信息科技系数等多方面的系数总和。 智能站用交直流一体化电源系统的可行性分析: 2.1智能电源系统,作为一种新型的电源技术系统能够,虽然在全国推广的范围有限,但是在已经使用的电站中,大多数都已经成功运行。在智能电源系统中,有一个重要的技术改进就是针对直流核心的充电模块的开关技术进行调整和完善,利用移相谐振软开关提高电路的整体效率,在风冷的情形下自冷结合。同时,进一步加强逆变电源的控制作用,使得逆变电源在能够正常工作时进行交流供电,在交流出现断流以后切换为直流逆变。这样整个电源系统的在直流技术、交流技术的切换与正常运作方面经验相对成熟,在具体的实际应用中风险较小,具有可操作性和可行性。 2.2电源系统的控制管理更为科学,相关的监控设备和系统设置都采用双重化的模式予以配置,这样在故障出现的时候,能够有效的发现问题,并且在一部分装置出现故障时不影响整体装置的继续运行。 2.3整体设计的安全系数相对提高。常规性变电站的一大弊端就是在一个故障出现以后,常常会导致装置的整体运行产生极大的困难,甚至会导致事故的发生。智能电源系统在这一问题上进行了很好的调整与改进,将常规变电站中的走线模式予以调整,将交流和直流完全分开的进行隔离和布控,减少由于电流冲撞而引起的多种事故发生。智能电源这种完全采用直流控制电源装置的模式,使整个系统的安全系数大大增加。 3智能站用交直流一体化电源系统的主要特点 智能站用的一体化电源系统,它的优势和特点主要通过与常规性变电站的对比中得以呈现。 3.1一体化设计 与常规性的变电站相比,一体化设计是智能变电站在整体设计上的一大突破,这种一体性不仅呈现在外观的协调一致上,而且统计的设计安装,减少了组屏数,使整个电源系统更加紧凑和美观。一体化的设计使得整个操作流程更加简单,并且对于后期的维护工作而言提供了更大的便利。 3.2网络化、智能化 智能电源系统的智能性,很大程度上就体现在与电子信息手段和电子信息设备的结合上,智能电源系统同样有几个子系统组成,但是在每个子系统内部通过通信网络进行连接,直接受控于统一的监控系统,这样就使得各个独立分散的子系统通过监控系统有机的结合起来,能够快

熔断器级差配合

直流系统熔断器的配置选择与现场分析(摘要) 随着我国电力工业的不断进步,电力系统向超高压大容量方向发展,为这些大容量电力设备提供控制、保护、信号、操作电源、直流系统的安全可靠运行问题,就必须提到一个新的重视高度来认识。 电力设备正常运行时,直流系统为断路器提供合闸电源,还为继电保护及自动装置、通讯设备等提供直流电源。在系统出现电路故障时,特别是交流电源中断情况下,直流系统必须为继电保护及自动装置、断路器的合跳闸、事故照明提供安全可靠的直流电源,是电力系统继电保护、自动装置和断路器正确动作的基本保证。在直流回路中,直流熔断器和断路器是直流系统各出线过流和短路故障的主要保护元件,可作为馈线回路供电网络断开和隔离之用,其选型和动作值整定是否适当以及上、下级之间是否具有选择性保护配合,直接关系到能否把系统的故障限制在最小范围内,这对防止系统破坏、事故扩大和主设备严重损坏至关重要。因此,加强熔断器与断路器选择及配置的准确性,对提高电力系统运行的安全可靠性具有非常重要的意义.。 1、级差配合存在的主要问题 由于直流变电站系统供电内容多,回路分布广,在一个直流网络中往往有许多支路需要设置断路器与熔断器进行保护,并往往分成三级或四级串联,这就存在着正确选择保护方案和上下级之间的保护配合问题.。 1.1、熔断器质量及参数分散问题: 生产厂家提供的熔断器技术数据是在产品型式试验时得到的,校验熔断器的分断能力大多是在交流电源周期分量有效值下做的,熔体动作选择配合特性曲线也是交流安秒特性曲线,这与变电站直流系统发生短路故障时的实际情况有一定差距。为了保持与系统直流故障情况项一致,熔断器的分断能力试验应该在直流短路电流状态下进行。 熔断器厂家及设计手册提供的级差配合是按同一型号、同一熔体材料来确定上下级差,从而保证满意的保护选择性,当回路中有不同类型和不同特性的熔断器时,熔断器之间的级差配合更应引起高度重视。由于目前熔断器生产厂家较多,产品质量参差不齐,熔断片和零件材料的差异,并不能完全保证产品质量的同一性,所以即使同一厂家、同一型号的熔断器,其参数也有一定的分散性,安秒特性有一定的实际偏差.。 1.2上下级间的额定值级差选择不当: 熔断器采用热熔效应原理开断故障电流,而断路器是磁效应与热效应相结合,安秒特性曲线不同,配合级差也不同。对于断路器之间、断路器与熔断器之间的级差配合不应照

变电站站用交流电源系统技术规范

变电站站用交流电源系统技术规范

ICS 备案号: Q/CSG 中国南方电网有限责任公司企业标准 变电站站用交流电源系统技术规范 中国南方电网有限责任公司 发 布

目录 1总则 (1) 2规范引用文件 (1) 3术语和定义 (5) 4使用条件 (10) 5站用电接线 (11) 6站用变压器的选择 (15) 7380V短路电流计算 (21) 8380V低压配电屏的选择 (24) 9站用电系统的继电保护、控制、信号、测量及自动装置 26 10站用电设备的布置 (38) 11现场安装要求 (42) 12电缆敷设及防火技术要求 (45) 13标志、包装、运输、储存 (49) 附录A站用电系统原理接线图(规范性附录) (55) 附录B 站用电系统I/O表(规范性附录) (60) 附录C站用电源定值表(规范性附录) (61) 附录D主要站用电负荷特性表(资料性附录) (62) 附录 E 500kV 变电站站用变压器负荷计算及容量选择实例(资料性附录) (65) 附录F交流断路器级差配合(资料性附录) (67) 附录G变电站站用电负荷主要设备单、双电源配置表(资料性附录) (68) 附录H 站用电源系统检验要求(资料性附录) ........ I I

前言 变电站站用交流电源电系统为变电站的运行提供稳定可靠的低压交流电源,为规范站用交流电源系统的配置、设计、施工、验收,统一建设标准,提高其安全性和可管理性,特制定本规范。 本规范由中国南方电网公司生产设备管理部提出、归口及解释。 本规范主编单位:中国南方电网有限责任公司生产设备管理部。 本规范参编单位:广东电网公司。 本规范主要起草人:梅成林、陈曦、邓小玉、刘玮、杨忠亮、袁亮荣、徐敏敏、王奕、盛超 本规范主要审查人:佀蜀明,何朝阳,马辉,梁睿,吴东昇,黄志伟。 本规范由中国南方电网公司标准化委员会批准。I

智能电网站用交直流一体化电源系统简介

智能电网站用交直流一体化电源系统简介 近年来,高中压开关电器、综自系统在电力系统受到高度重视,变电站综合技术与智能化水平得到了极大的提升。然而,针对站用电源的技术研究与产品创新却相对滞后,传统站用电源设计方案已难以适应新型变电站的发展需要。 本文针对传统站用电源分散设计存在的问题,阐述了站用交直流一体化电源系统的设计方案及其技术特点,并对其所产生的经济效益与社会效益等方面进行了综合分析。 1、传统站用电源分散设计存在的问题 一直以来,变电站站用电源分为交流电源系统、直流电源系统、UPS不间断电源系统、通信电源系统等,各子系统采用分散设计,独立组屏,设备由不同的供应商生产、安装、调试,供电系统也分配不同的专业人员进行管理。站用电源的分散设计与管理,存在着诸多问题: 1)站用电源难以实现系统管理 由不同供应商提供的交流系统与直流系统通信规约一般不兼容,难以实现网络化系统管理,自动化程度低。由于没有统一的监控设备对整个站用电源进行管理,不能实现系统数据共享,无法进行站用电源协调联动、状态检修等深层次开发应用。 2)可靠性受到影响 由于站用电源信息不能网络共享,针对故障或告警信息不具备进行综合分析的基础平台,不同专业的巡检人员分别管理各个电源子系统,难以进行系统分析判断、及时发现事故隐患。 对于涉及需站用电源各子系统协调才能解决的问题难以统一处理。如:防雷配置,避雷器参数选择,安装位置只有将整个站用电源交直流系统统一考虑才能解决;由于充电模块均流对于直流母线上纹波较敏感,需要对母线所接负荷,如逆变电源等反灌电流进行统一治理等。 3)经济性较差

由不同供应商分别设计各个子系统,资源不能综合考虑,造成配置重复,一次性投资显著增加。如:直流电源,UPS不间断电源、通讯电源分别配置独立的蓄电池,浪费用严重;交流系统配置电源自动切换设备,充电模块前又重复配置,既浪费又使设备之间难于协调运行。 4)长期维护不方便,增加成本 各个供应商由于利益差异使安装、服务协调困难,站用电源一旦出现故障需向多个厂家进行沟通协调,造成沟通困难与效率低下。 现有变电站站用电源分配不同专业人员进行管理:交流系统与直流系统由变电人员进行运行维护,UPS由自动化人员进行维护,通信电源由通信人员维护。人力资源不能总体调配,通信电源、UPS等也没有纳入变电严格的巡检范围,可靠性得不到保障。 2、交直一体化电源系统设计方案及特点 通过分析与研究传统站用电源分散设计存在的问题,针对性提出了站用交直流一体化的设计思路,以实现:第一、建立站用电源统一网络智能平台;第二、消除站用电源隐患;第三、提高站用电源管理水平;第四、进行深层次开发,提高站用电源安全与智能化水平。 1)交直流一体电源系统的定义 站用交直流一体化电源系统是指:将站用交流电源系统、直流电源系统、逆变电源系统、通信电源系统统一设计、监控、生产、调试、服务,通过网络通信、设计优化、系统联动方法,实现站用电源安全化、网络智能化设计,实现站用电源交钥匙工程,实现效益最大化目标。 智能站用电源交直流一体化系统包括:智能交流电源子系统、智能直流电源子系统、智能逆变电源子系统、智能通信电源子系统、一体化监控子系统。 2)主要技术特征 站用交直流一体化电源系并不是对交流、直流电源系统的简单混装,其主要技术特征表现在: (1)网络智能化设计:通过一体化监控器对站用交流电源、直流电源、逆变 电源、通信电源进行统一监控,建立统一的信息共享平台,实现网络智 能化。支持61850通讯规约。

单值移动极差

第4节 单值和移动极差图(X—MR) 在某些情况下,有必要用单位而不是子组来进行过程控制,在这样的情况下,子组内的变差实际上为0,这种情况通常发生在测量费用很大时(例如破坏性试验),或是当在任何时刻点的输出性质比较一致时(例如:化学溶液的pH值)。在这些情况下,可按下面介绍的方法绘制单值控制图,但要注意下面4点: ?单值图在检查过程变化时不如X—R图敏感; ?如果过程的分布不是对称的,则在解释单值控制图时要非常小心; ?单值控制图不能区分过程的零件间重复性,因此,在很多情况下,最好还是使用常规的子组样本容量较小(2到4)的X—R控制图,尽管在子组间都要求较长的时间; ?由于每一子组仅有一个单值,X和σ值会有较大的变异性,(即过程是稳定的)直到子组数达到100以上为止。 单值控制图的详细介绍与X—R图有些相同,不同之处如下:A.收集数据(见图27) (见本章第1节A部分,不同之处如下) ?在数据图上从左至右记录单值读数(X)。 ?计算单值间的移动极差(MR)。通常最好是记录每对连续读数间的差值(例如:第一和第二个读数点的差,第二和第三个读数间的差等)。这样移动极差的个数比单值读数的个数少一个(25个读数可得到24个移动极差)。在很少的情况下,可在较大的移动组(例如3或4个(或固定的子组(例如所有的读数均在一个班上读取)的基础上计算移动极差。注意,尽管测量是单独抽样的,但是读数的个数形成移动极差的成组(例如,2、3或4)决定了各义样本容量n,当查系数表时必须考虑该值; ?单值图(X图)的刻度按下列最大者选取(a)产品的规范容差加上超过规范的读数的允许值,或(b)最大单值读数与最小单值读数之差的1.5到2倍。移动极差(MR)图的刻度间隔与X图一致。 B.计算控制图 (见本章第1节B部分,不同之处如下) ?计算并描绘过程均值(单值读数之和除以读数的个数,按常规记为X,见附录珠术语,并计算平均极差(R),注意对于样本容量为

空开级差配合要求

附件1 空开级差配合要求 注:本内容参考《南方电网公司变电站直流电源系统技术规范》(2012年修订) 1 直流电源系统支路直流熔断器和直流断路器级差配合原则如下: 1.1 变电站所有直流负荷必须带直流保护电器。根据工程具体情况,可采用直流熔断器,甚至熔断器和直流断路器混用,但应注意上下级之间的配合。当直流断路器与熔断器配合时,应考虑动作特性的不同,对级差做适当调整。直流断路器下一级不宜再接熔断器。 1.2 上、下级均为直流断路器的,额定电流宜按照4级及以上电流级差选择配合。 1.3 蓄电池出口为熔断器,下级为直流断路器的,宜按照2倍及以上额定电流选择级差配合。 1.4 变电站内设置直流保护电器的级数不宜超过4级。 1.5 500kV变电站当设置直流分电屏时,直流主馈电屏宜采用塑壳式直流断路器。 2 直流电源系统的直流断路器、熔断器典型配置方案推荐如下:2.1 300Ah蓄电池出口可采用额定电流315A的熔断器;500Ah蓄电池出口可采用额定电流

400A的熔断器;800Ah蓄电池出口可采用额定电流630A的熔断器。 2.2 60A充电装置总输出可采用额定电流80A的直流断路器;80A 充电装置总输出可采用额定电流100A的直流断路器;120A充电装置总输出可采用额定电流160A的直流断路器。 2.3 保护装置、测控装置、故障录波、PMU、安全自动装置等二次设备和断路器控制回路宜采用额定电流不大于6A直流断路器。 资料性附录 附录1熔断器-自动空气开关的特性配合 当预期的短路电流较大、且超过自动空气开关的额定分断能力时,或系统短路电流过大没有可供选择的自动空气开关时,采用熔断器与自动空气开关的组合方式具有既经济又简单的优点。 1)熔断器安-秒特性曲线应位于自动空气开关脱扣器跳闸曲线上方,并保持足够的距离(见图1)。 2)当系统短路电流超过自动空气开关的额定分断能力时,应使其曲线在稍小于自动空气开关额定分断能力的点上与自动空气开关瞬时短路脱扣器的跳闸曲线相交,以保证在较小短路电流时,自动空气开关跳闸,在较大的超过自动空气开关额定分断能力的短路电流情况下,由熔断器来分断。 3)熔断器的额定电流等级应高于自动空气开关的额定电流等级,以保证分断的选择性。

变电站站用交流电源系统改造方案

变电站站用交流电源系统改造方案 摘要:根据《变电站站用交流电源系统技术规范》的配置要求以及变电站站用交流电源系统继电保护有关技术要求,结合现场实际对220kV兴宁变电站站用380V交流系统进行改造,提供了改造方案。 关键词:变电站 380V站用交流系统改造 引言 变电站380V站用交流电源系统应满足《变电站站用交流电源系统技术规范》的配置要求。站用交流电源系统故障时保护应保证故障可靠隔离,正常运行时不发生单一故障导致同时失去两路站用电源。 380V备自投应具备完善的外部闭锁回路,380V系统故障时应可靠闭锁。站用变高压侧过流、站用变低压侧零序过流保护动作和低压配电屏进线断路器保护动作无法闭锁380V备自投装置或ATSE的情况下,禁止投入备自投装置,或将ATSE的切换模式设置为“手动”模式,避免380V母线故障时两路交流电源全停。 380V站用交流系统开关配置选型是保护配合满足选择性的基础,应通过规范开关配置选型简化保护上下级配合,设计及物资采购阶段应严格按《变电站站用交流电源系统技术规范》及本技术要求开展设备选型及配合关系校核,保证上下级配合关系。当开关配置选型无法满足保护选择性要求时,应梳理风险及防控、整改措施,相关风险应做好备案。 1 改造前变电站交流系统设备状况 220kV兴宁站380V站用交流系统于2006年11月份投运,由于当时技术规范要求及设备技术的局限性,有如下几点不满足要求: 1、站用变保护测控装置只有跳站用变高压侧断路器的回路,没有跳380V站用交流系统进线开关及闭锁380V站用交流系统备自投的回路。如果站用交流系统故障,站用变保护动作将无法跳380V站用交流系统进线开关及闭锁380V备自投。 2、380V站用交流系统进线开关应具备二段式过流保护功能,应实现短延时定时限+长延时反时限跳闸,并配置保护出口接点用于闭锁380V备自投装置。而此380V站用交流系统进线开关不具备短延时定时限保护功能,且没有配置保护出口接点用于闭锁380V备自投装置。 3、变电站消防系统电源回路未使用具有电动机特性的开关; 综上所述,需要对380V站用交流系统备自投及相关设备进行升级改造。 2、改造方案 2.1交流系统接线方式 220kV兴宁站380V站用交流系统采用双电源双ATS双母线接线方式 2.2更换380V站用交流系统进线开关 根据现行要求,380V站用交流系统进线开关需具有长延时反时限+短延时定时限保护,原进线开关没有短延时保护,需要更换新的进线开关。 2.3增加站用变保护跳380V站用交流系统进线开关回路 通过给进线开关增加分励脱扣器,设计站用变保护跳进线开关回路,控制回路参考如下图: 该项工作需要敷设站用变保护高压柜至交流系统进线柜的控制电缆,增加进

平均数-极差控制图

平均数—极差控制图 控制图是控制连续型质量特性数据最常用的控制图,其中指样本平均数,R指极差。它可用于控制对象为长度、重量、强度、纯度、时间和生产量等计量值的场合。 1一、相关的数理统计原理 1、总体与样本 在实际工作中,我们将所研究对象的全体称为总体,例如某车间±产的电阻器的寿命、某地区所有邮电所每天的营业额等。组成总体的每一个基本单位称为个体,如每件产品的寿命、每个邮电所每天的营业额等。总体所包含的个体的数目,可以是有限的也可以是无限的,对于无限多的个体,一一考察其某个质量特性数据,显然是不可能的。有时即使是有限多个个体,但由于某些原因,如数量较大或考察方法是破坏性的,也就不可能全数进行考察,而只能通过抽取总体中的一小部分样本来了解和分析总体的情况,称为抽样检验。 对于来自总体的容量为n的样本观察值:,,…,在数理统计中定义样本的数字特征值如下: 称为样本平均值,描述样本的位置特征; 称为样本标准差,样本方差或样本标准差描述样本的离散特征。

在数理统计中已经证明了:对样本平均值再求平均等于总体的平均值,即 样本方差是总体方差的,即。 2、中心极限定理 如前所述,正态分布是质量管理中连续型质量特性数据经常遇到的一种分布状态,但在生产中还存在许多非正态分布的质量特性数据。这样的问题,可以通过对样本平均数分布状态特点的研究加以 解决。 根据数理统计的中心极限定理,任意总体,不论其分布状态如何,若总体的平均数和标准偏差存在,则随机变量的样本平均数的分布状态,随着样本量n的增大而逐渐接近于正态分布(见图5-9)。简而言之,不论总体分布状态如何,当n足够本时,它的样本平均数总是趋于正态分布。这就是样本平均数分布状态的特点。利用这个特点,可以把非正态分布的总体变成正态分布,从而运用正态分布的规律 对生产过程进行控制。 总体z的分布

站用380V交流电源系统各级开关保护选择性问题的研究2014.01.21要点

中国南方电网有限责任公司科技项目申请书及可行性研究报告 项目名称:站用380V交流电源系统各级开关保护选择性问题的研究 申请单位: 起止时间: 项目负责人: 联系电话: 通信地址: 申请日期:

填写说明 一、请严格按照要求填写各项。 二、专业类别根据项目所属专业种类从发电(能源)、输电、变电一次、配电一次、电力建设、系统运行、继保自动化、电网规划设计技术、通信及信息技术、计量营销、智能电网新技术、综合研究共12类技术中选择。 三、项目摘要应简要说明项目研究内容和预期成果,字数要求500字以内。 四、项目申请单位指提出项目建议与申请的单位或部门,如总部各部门、直属机构、各分子公司及其所属基层单位等。 五、项目分工应主要描述项目申请单位与协作单位的任务划分,项目计划进度安排应按时间段列出研究推进计划,并明确各阶段交付物及标志性里程。 六、科技经费预算支出科目具体解释见附件1。

项目简表 项目 名称 站用380V交流电源系统各级开关保护选择性问题的研究 项目负责人姓名工作单位性别年龄职称 项目分类1、发电(能源)[ ] 2、输电[ ] 3、变电一次[ ] 4、配电一次[ ] 5、电力建设[ √] 6、系统运行[ √] 7、继保自动化[ ] 8、电网规划设计技术[ ] 9、通信及信息技术[ ] 10、计量营销[ ] 11、智能电网新技术[√] 12、综合研究[√] 项目起止 时间 2014.2-2015.2 申请经费总额155万 项目摘要(500字以内): 在变电站中不时发生因站用380V交流电源馈线开关、进线开关和变压器高压开关之间保护级差配合不当,导致馈线回路故障不能隔离引起变压器高压开关跳闸的事故发生;而无人值守变电站特别是偏远变电站因开关跳闸无法及时排除故障恢复供电,导致电池耗尽造成全站失电的事故。因此提高站用电源的可靠性就必须解决各级开关级差配合问题和故障排除快速恢复供电问题。 本项目主要研究解决站用380V交流电源馈线开关、进线开关和变压器高压开关之间的级差配合保护问题(考虑消防泵启动和相不平衡电流等影响);解决终端负载小电流短路故障隔离以及故障停电快速恢复供电问题。 主要研究内容: 1.调研 1.变电站站用交流负荷,按照负荷类型进行分类均匀配置,减少站用变三相电源不平衡。 2.研制 1.研制有保护功能并能进行保护级差配合的微机备自投装置和馈线监控装置。

变电站站用交流电源系统技术规范

ICS 备案号: Q/CSG 中国南方电网有限责任公司企业标准 Q/CSG- 变电站站用交流电源系统技术规范

2012-9-28 实施2012-9-28 发布 中国南方电网有限责任公司发布 目录 1 总则 (1) 2 规范引用文件 . (1) 3 术语和定义 (2) 4 使用条件 (4) 5 站用电接线 (4) 6 站用变压器的选择 . (5) 7 380V 短路电流计算 (9) 8 380V 低压配电屏的选择 (10) 9 站用电系统的继电保护、控制、信号、测量及自动装置 (11) 10 站用电设备的布置 . (14) 11 现场安装要求 . (16) 12 电缆敷设及防火技术要求. (18) 13 标志、包装、运输、储存. (20) 附录A站用电系统原理接线图(规范性附录) (23) 附录 B 站用电系统 I/O 表(规范性附录) (28) 附录C站用电源定值表(规范性附录) (29) 附录D主要站用电负荷特性表(资料性附录) (30) 附录 E 500kV 变电站站用变压器负荷计算及容量选择实例(资料性附录) (31) 附录F交流断路器级差配合(资料性附录) (32) 附录G变电站站用电负荷主要设备单、双电源配置表(资料性附录) (33) 附录 H 站用电源系统检验要求(资料性附录)................................................................ I

变电站站用交流电源电系统为变电站的运行提供稳定可靠的低压交流电源,为规范站用交流电源系统的配置、设计、施工、验收,统一建设标准,提高其安全性和可管理性,特制定本规范。 本规范由中国南方电网公司生产设备管理部提出、归口及解释。 本规范主编单位:中国南方电网有限责任公司生产设备管理部。 本规范参编单位:广东电网公司。 本规范主要起草人:梅成林、陈曦、邓小玉、刘玮、杨忠亮、袁亮荣、徐敏敏、王奕、盛超 本规范主要审查人:侣蜀明,何朝阳,马辉,梁睿,吴东昇,黄志伟。 本规范由中国南方电网公司标准化委员会批准。 本规范自发布之日起实施。 执行中的问题和意见,请及时反馈至中国南方电网有限责任公司生产设备管理部。

基站电源系统的介绍

基站电源系统(详) 一基站供电系统结构 基站供电系统主要由交流供电系统和直流供电系统组成。 交流供电系统:由一路市电电源、一路移动油机电源、浪涌保护器、交流配电箱(具备市电油机转换功能)组成。 直流供电系统:由高频开关组合电源(含交流配电单元、监控模块、整流模块、直流配电单元)、两组(或一组)蓄电池组组成。 交流供电系统运行方式: (1)市电正常时,由市电供电; (2)市电停电后,移动油机未到站时,站通信设备由蓄电池放电供电;

(3)移动油机到站,待油机启动后,由油机供电; (4)市电恢复后,由市电供电。 直流供电系统的运行方式: 在线恒压充电的全浮充供电方式。 (1)当交流电源正常时,由整流器和蓄电池并联浮充供电(整流器一方面给通信设备,一方面又给蓄电池充电,以补充蓄电池因自放电而失去的电量); (2)当交流电源中断后,由蓄电池单独向通信设备供电; (3)当交流电源恢复供电时,开关电源的监控模块自动启动整流器向通信负荷供电,并对蓄电池进行充电。 蓄电池组既为备用电源,又可以吸收高频纹波电流。 二基站电源系统实物布局

基站电源相关设备主要有:交流配电箱、浪涌保护器、室地线排、高频开关组合电源、蓄电池组。 三交流供电部分 3.1 交流供电系统分为两种型式 1. TN型:系统中,电源端有一点与地直接连接,电气装置的外露可导电部分与电源端接地点用保护线直接连接;又可分为:TN-C、TN-S、TN-C-S三种。 2.TT型:在此系统中,电源端有一点与地直接连接,负荷侧电气装置外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。 移动基站中常用TT型式供电

直流电源保护电器级差配合

一、概述 当前由阀控式密封铅酸蓄电池,高频开关整流器或微机型晶闸管整流器,直流电源监控装置,直流断路器或熔断器构成的直流电源系统,已经成为电力系统发电厂、变电所不可缺少的必要装备。直流电源在电力工程和电力系统安全生产中的作用以及直流电源各个环节的可靠性不再论述。现仅将直流电源保护电器级差配合的有关问题,论述如下: 二、背景资料 蓄电池在直流电源系统的应用也有50多年历史,基本上是采用刀开关+熔断器的配电系统,接线上也多采用端电池调节,控制和合闸母线,以及环形供电,熔断器保护理论上在大于1.6倍In的级差配合的条件下应该是可靠的,运行维护上只是一个定期更换同一厂家熔断器即可,那时的人们也十分重视熔断器的安秒特性曲线。30多年前国外成套引进了一批发电设备(前苏联除外)直流电源已全部采用了断路器(如陡河、大港、姚孟等电厂)。国内工程接受HIS、XML等电厂因蓄电池出口熔断器接触不良,或已熔断,当交流失电时,直流母线也失去浮充电源而失电引起继电保护和自动装置失电,高压断路也无法工作,进而引起主设备烧坏的重大事故,采用加强浮充电检测和更换为带有报警信号触点的熔断器的办法,是当时的反措重点。上世纪80年代已采用交流断路器和高分断能力的交流熔断器,90年代中期又大量采用交直流两用断路器和直流断路器,近年来又因直流断路器瞬动电流不易整定又大量采用熔断器或与断路器混装。具体情况是蓄电池出口害怕断路器瞬动脱扣误动。要求拆除瞬动脱扣或要求一定要装熔断器。直流母线进出线保护电器,从便于安装和操作方便的需要,也从刀开关+熔断器方案改为断路器,由于安装处短路电流差别不大,断路器瞬动脱扣器的整定重视不够。负荷侧(指成套保护装置,高压断路器等)的直流电源保护电器,大多数成套厂配置为熔断器;但近年来,各成套厂和高压断路器厂也多更换为不同品牌的直流断路器或交流或交直流两用断路器。上述情况,造成了直流电源配电系统的保护 级差配合问题显现出来了。 三、级差配合问题的复杂性 1、接线复杂。原则上应该简化接线即蓄电池接单母线运行辐射供电。但是目前的控制合闸母线环形供电;硅降压,闪光母线不变的情况下,强制将熔断器改为直流断路器级差配合是十分复杂的,短路电流无法计算,控母合母馈线合用断路器,控母闪光合用断路器无法整定瞬动脱扣器等一系列问题没有很好解决。 2、交流或交直流两用断路器应用在直流电源中,其降容能力,临界分断能力,没有产品数据,试验证明交流断路器的分断能力仅为直流断路器的分断能力的1/5~1/8,额定电流分断直流电流弧光引起烧坏触头现象经常发生,全分断时间的不确定性,也是级差配合中成为难题。 3、熔断器保护由于特性的不稳定性,温度和湿度影响较大,而且和接触松紧及熔片是否经受过大电流冲击损伤有关,必须定期更换合格产品。 4、熔断器和直流断路器混装且品牌不成系列,安秒特性的不完善也给级差配合带来困难。 5、直流电源负荷侧的成套继电保护和自动装置保护电器是由成套厂选用,往往是从供电可靠性出发,而不按满足最大负荷电流的选择原则,选用了较大额定电流的保护电器,并且有多路供电的要求。这给直流电源馈线保护电器的选择和级差配合出了难题。 6、短路电流计算和实测的复杂性,蓄电池内阻是动态的,计算中无法取得准确值,回路电阻值包括断路器内阻以及限流性能(断路器分断时的电弧限流,熔断器承受冲击电流使熔片改变特性的限流等)都给短路电流计算带来困难,因此脱扣器的整定和灵敏度检验也十分困难O 7、不同保护电器有不同的保护特性和离散特性,例如直流断路器瞬动脱扣电流按制造标准规定:直流微型断路器为7~15In,塑壳断路器为8~12In,短路电流大小也对断路器的全分断时间有一定分散性。

相关主题
相关文档 最新文档