当前位置:文档之家› 八年级数学-一次函数压轴题练习题

八年级数学-一次函数压轴题练习题

八年级数学-一次函数压轴题练习题
八年级数学-一次函数压轴题练习题

一次函数典型例题

题型一、A卷压轴题

一、A卷中涉及到的面积问题

例1、如图,在平面直角坐标系xOy中,一次函数

12

2 3

y x

=-+与x轴、y轴分别相交于点

A和点B,直线

2 (0)

y kx b k

=+≠经过点C(1,0)且与线段AB交于点P,并把△ABO分成两部分.

(1)求△ABO的面积;

(2)若△ABO被直线CP分成的两部分的面积相等,求点P的坐标及直线CP的函数表达式。"

-

练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :12

1

+=x y 与x 轴交于点C ,两直线1l ,2l 相交于点B 。

(1)、求直线1l 的解析式和点B 的坐标;

(2)、求△ABC 的面积。

二、A 卷中涉及到的平移问题

例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的正半轴上,且A 点的坐标是(1,0)。

①直线y=43x-8

3

经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;

②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式,

③若直线1l 经过点F ??

?

??-

0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位

A

]

C

O D

x

y

交x 轴于点M ,交直线1l 于点N ,求NMF ?的面积.

\

)

练习1、如图,在平面直角坐标系中,直线1l :x y 3

4

=

与直线2l :b kx y += 相交于点A ,点A 的横坐标为3,直线2l 交y 轴于点B ,且OB OA 2

1

=

。 (1)试求直线2l 函数表达式。(6分)

(2)若将直线1l 沿着x 轴向左平移3个单位,交 y 轴于点C ,交直线2l 于点D ;试求 △BCD 的面积。(4分)。

x

O

A

)

1 1

y

L 2

题型二、B 卷压轴题 一、一次函数与特殊四边形

例1、如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A

是方程组??

?=+-=6

32y x y

x 的解,点C 是直线x y 2=与直线

AB 的交点,点D 在线段OC 上,OD=52

(1)求点C 的坐标; (2)求直线AD 的解析式;

(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.

"

练习1、.如图,在平面直角坐标系xOy 中,已知直线PA 是一次函数y=x+m (m>0)的图象,直线PB 是一次函数n n x y (3+-=>m )的图象,点P 是两直线的交点,点A 、B 、C 、Q 分别是两条直线与坐标轴的交点。

(1)用m 、n 分别表示点A 、B 、P 的坐标及∠PAB 的度数; (2)若四边形PQOB 的面积是2

11

,且CQ:AO=1:2,试求点P 的坐标,并求出直线PA 与PB 的函数表达式;

C

P

Q

x A O"

边形?若存在,求出点D的坐标;若不存在,请说明理由。

{

2、如图,在Rt△OAB中,∠A=90°,∠ABO=30°,AB的垂直平分线CD分别与AB、x轴、y轴交于点C、G、D.

(1)求点G的坐标;

(2)求直线CD的解析式;

(3)在直线CD上和平面内是否分别存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形?若存在,求出点Q得坐标;若不存在,请说明理由.

"

二、一次函数与三角形

例、如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴,y轴于A,B两点过点A 的直线交y轴正半轴与点M,且点M为线段OB的中点.

(1)求直线AM的函数解析式.

(2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标.

(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A,B,M,H 为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由

?

三、重叠面积问题

例3、已知如图,直线y=+与x轴相交于点A,与直线y=相交于点P.

①求点P的坐标.

②请判断OPA

?的形状并说明理由.

③动点E 从原点O 出发,以每秒1个单位的速度沿着O →P →A 的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF ⊥x 轴于F ,EB ⊥y 轴于B .设运动t 秒时,矩形EBOF 与△OPA 重叠部分的面积为S .求: S 与t 之间的函数关系式.

练习1、如图,已知直线1l :2+-=x y 与直线2l :82+=x y 相交于点F ,1l 、2l 分别交x 轴

于点E 、G ,矩形ABCD 顶点C 、D 分别在直线1l 、2l ,顶点A 、B 都在x 轴上,且点B 与点G 重合。

(1)、求点F 的坐标和∠GEF 的度数; (2)、求矩形ABCD 的边DC 与BC 的长;

(3)、若矩形ABCD 从原地出发,沿x 轴正方向以每秒1个单位长度的速度平移,设移动时间为t ()60≤≤t 秒,矩形ABCD 与△GEF 重叠部分的面积为s ,求s 关于t 的函数关系式,并写出相应的t 的取值范围。

]

F

@

O

A x

P

E

B C

D

y

[

3、(衡阳市)如图,直线4+-=x y 与两坐标轴分别相交于A.B 点,点M 是线段AB 上任意一点(A.B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D .

(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?

(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为

)40<

出该函数的图象.

B x y }

C D

O A 图(1)

B

x 《

O

A 图(2)

B

x y

O

"

图(3)

四、关系式问题

例4、如图,已知直线的解析式为,直线与x轴、y轴分别相交于A、B两点,直线经过B、

C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线从点C向点B移动.点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t 秒().

(1)求直线的解析式.

(2)设△PCQ的面积为S,请求出S关于t的函数关系式.

2、已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C.

(1)求直线l的解析式;

(2)若点P(x,0)在线段OA上运动,过点P作l的平行线交直线y=x于D,求△PCD的面积S与x的函数关系式;S有最大值吗?若有,求出当S最大时x的值;

(3)若点P(x,0)在x轴上运动,是否存在点P,使得△PCA成为等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.

上海初二年级下学期数学函数压轴题

上海初二年级下学期数 学函数压轴题 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

1. 在梯形ABCD 中, AD ∥BC ,cm AD CD AB 5===,BC =11cm ,点P 从点D 开始沿DA 边以每秒1cm 的速度移动,点Q 从点B 开始沿BC 边以每秒2cm 的速度移动(当点P 到达点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (cm 2). (1)求y 关于x 的函数解析式,并写出它的定义域; (2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值; (3)在移动的过程中,是否存在x 使得PQ=AB ,若存在求出所有x 的值,若不存在请说明理由. 2. 如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G . (1)由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、AE 的数量之间具有怎样的关系?并证明你所得到的结论; (2)联结DF ,如果正方形的边长为2,设AE=x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域; (3)如果正方形的边长为2,FG 的长为2 5,求点C 到直线DE 的距离. 3 AC 、BD AE 的中点,AB 4已知一次函数42 1+-=x y 的图像与x 轴、y 轴分别相交于点A 、B .梯形AOBC 的边 AC = 5. (1)求点C 的坐标; (2)如果点A 、C 在一次函数y k x b =+(k 、b 为常数,且k <0)的图像上,求这 个一次函数的解析式. A B (第3题图) (供操作实验用) (供证明计算用) (第2题图) D A B

最新八年级数学(上册)压轴题专题练习

1、已知点O为等边ABC ?内一点,0 110 = ∠AOB,α = ∠BOC,以OC为一边作等边OCD ?,连接AD。 (1)当0 150 = α时,试判断AOD ?的形状,并说明理由。 (2)探究:当α为多少度时,AOD ?为等腰三角形。 2、(1)如图1:点E在正方形ABCD的边上,BF⊥AE于点F,DG⊥AE于点G,求证:△ADG ≌△BAF (2)如图2:已知AB=AC,∠1=∠2=∠BAC, 求证:△ABE≌△CAF (3)如图3:在等腰三角形ABC中,AB=AC,AB>BC,点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC,若△ABC的面积为9,则△ABE与△CDF的面积的和是多少。 图1 图2 图3 3、.问题背景,请你证明以上三个命题; ①如图1,在正三角形ABC中,N为BC边上任一点,CM为正三角形外角∠ACK的平分线,若∠ANM=60°,则AN=NM ②如图2,在正方形ABCD中,N为BC边上任一点,CM为正方形外角∠DCK的平分线,若∠ANM=90°,则AN=NM ③如图3,在正五边形ABCDE中,N为BC边上任一点,CM为正五边形外角∠DCK的平分线, O A B C D

若∠ANM=108°,则AN=NM 4、已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作△ACD 和△BCE ,且CA=CD ,CB=CE ,∠ACD=∠BCE ,直线AE 与BD 交于点F , (1)如图1,若∠ACD=60°,则∠AFB= ;如图2,若∠ACD=90°,则∠AFB= ;如图3,若∠ACD=120°,则∠AFB= ; (2)如图4,若∠ACD=α,则∠AFB= (用含α的式子表示); (3)将图4中的△ACD 绕点C 顺时针旋转任意角度(交点F 至少在BD 、AE 中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB 与α的有何数量关系?并给予证明. 提示:始终证明DCB ACE ???

八年级下数学压轴题及答案

八年级下数学压轴题及 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

八年级下数学压轴题 1.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB 的数量关系:; (2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明; (3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH 的长.(可利用(2)得到的结论)

2.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F. (1)若点D是BC边的中点(如图①),求证:EF=CD; (2)在(1)的条件下直接写出△AEF和△ABC的面积比; (3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理 由.

3.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE. 求证:CE=CF; (2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD. (3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°, AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角 梯形ABCD的面积.

八年级数学期末难题压轴题汇总

(1 26.(本题满分10分) 已知:在矩形ABCD 中, AB=10, BC=12,四边形EFGH 勺三个顶点E 、F 、H 分别在 矩形 ABCD 边 AB BC DA 上, AE=2. (1)如图①,当四边形EFGH 为正方形时,求△ GFC 勺面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△ GFC 勺面积(用含a 的代数式表 示); 26 .解:(1)如图①,过点G 作GM 在正方形EFGH 中, HEF 90,EH EF . 分) 又??? A B 90;, ???/ AHE^/BEF 分)同理可证:/MF Q/BEF (1 分) BC 于M (第26题图

??? GM=BF=A=2. (1

??? FC=BC -BE10. 分) (2 )如图②,过点 G 作GM BC 于 M 连接 HF ........................................................ ( 1 分) AHE MFG. ........................................................................... ( 1 分) 又: A GMF 90;,EH GF, ? / AHE^/MFG ......................................................................... ( 1 分) ? GM=AE2. ................................................................................. ( 1 分) 如图,直线y . 3x 4、3与x 轴相交于点A ,与直线y '、3x 相交于点P . (1)求点P 的坐标. ⑵ 请判断△ OPA 的形状并说明理由. (3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A 的路线向点A 匀速运动 (E 不与点O 、A 重合),过点E 分别作EF x 轴于F , EB y 轴于B.设运动t 秒时, 矩形EBOF 与厶OPA 重叠部分的面积为S.求S 与t 之间的函数关系式 1 s 严 2 FC GM 1 於12 a ) 12 a . (1 分)

八年级下册数学经典压轴题

C2 C1 A2 B2 B1 O1 O A1 D C B A 八年级(下)数学精选压轴题、新题 1. 如图所示,在矩形ABCD中,AB=12,AC=20,两条对角线相交于点O.以OB、OC为邻边作第1个平行四边形C OBB 1 ,对角线相交于 点 1 A;再以C A B A 1 1 1 、为邻边作第2个平行四边形C C B A 1 1 1 ,对角线相交于点 1 O;再以 1 1 1 1 C O B O、为邻边作第3个平行四边形1 2 1 1 C B B O……依此类推.(1)求矩形ABCD的面积;(2)求第1个平行四边形 1 OBB C、第2个平行四边形 111 A B C C和第6个平行四边形的面积。 2、如图,菱形ABCD的对角线长分别为b a、,以菱形ABCD各边的中点为顶点作矩形A1B1C1D1,然后再以矩形A1B1C1D1的中点为顶点作菱形A2B2C2D2,……,如此下去,得到四边形A2011B2011C2011D2011的面积用含b a、的代数式表示为. 3、在直角三角形ABC中,CD是斜边AB的高,∠A的平分线AE交CD于F,交BC于E,EG⊥AB于G,求证:CFGE是菱形。 4.如图,在梯形ABCD中,,6,5,30 AD BC AC BD OCB ==∠=?,求BC+AD的值及梯形面积. 5.已知数x1,x2,x3,x4, …,x n的平均数是5,方差为2,则3x1+4,3x2+4, …,3x n+4的平均数是_______________,方差是_______________. 6、一组数据 0,-1,5,x,3,-2的极差是8,那么x的值为() A、6 B、7 C、6或-3 D、7或-3 7.观察式子: a b3 ,- 2 5 a b , 3 7 a b ,- 4 9 a b ,……,根据你发现的规律知,第8个式子为. 8、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为。 …… 第一个图第二个图第三个图 9、如图,矩形ABCD对角线AC经过原点O,B点坐标为(―1,―3),若一反比例函数 x k y=的图象过点D,则其解析式为。 _F _A_B _C _D _E _G B C A D O

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

上海初二下学期数学函数压轴题.

2013年上海初二数学函数压轴题 2013.2.11 1. 在梯形ABCD 中, AD ∥BC ,cm AD CD AB 5===,BC =11cm ,点P 从点D 开始沿DA 边以每秒1cm 的速度移动,点Q 从点B 开始沿BC 边以每秒2cm 的速度移动(当点P 到达点A 时,点P 与点Q 同时停止移动),假设点P 移动的时间为x (秒),四边形ABQP 的面积为y (cm 2). (1)求y 关于x 的函数解析式,并写出它的定义域; (2)在移动的过程中,求四边形ABQP 的面积与四边形QCDP 的面积相等时x 的值; (3)在移动的过程中,是否存在x 使得PQ=AB ,若存在求出所有x 的值,若不存在请说明理由. C B 2. 如图,在正方形ABCD 中,点E 在边AB 上(点E 与点A 、B 不重合),过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点 G . (1)由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、AE 的数量之间具有怎样的关系?并证明你所得到的结论; (2)联结DF ,如果正方形的边长为2,设AE=x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域; (3)如果正方形的边长为2,FG 的长为2 5 ,求点C 到直线DE 的距离. (供操作实验用) (供证明计算用) (第2题图) D A B B

3.如图,已知在矩形ABCD 中,对角线AC 、BD 交于点O ,CE =AE ,F 是AE 的中点,AB = 4,BC = 8.求线 段OF 的长. 4已知一次函数42 1 +- =x y 的图像与x 轴、y 轴分别相交于点A 、B .梯形AOBC 的边AC = 5. (1)求点C 的坐标; (2)如果点A 、C 在一次函数y k x b =+(k 、b 为常数,且k <0)的图像上,求这个一次函数的解析式. 5.如图,直角坐标平面xoy 中,点A 在x 轴上,点C 与点E 在y 轴上,且E 为OC 中点,BC //x 轴,且BE ⊥AE ,联结AB , (1)求证:AE 平分∠BAO ; (2)当OE =6, BC=4时,求直线AB 的解析式. (第4题图) A B C D O E F (第3题图)

苏教版八年级下册数学压轴题(非常好的题目)

压轴题精选 1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. ⑴求直线AB 的解析式; ⑵当t 为何值时,△APQ 与△AOB 相似? 2、“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数x y 1 =的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分 别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=3 1 ∠ AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1 ,(b b R ,求直线OM 对应的函数表 达式(用含b a ,的代数式表示). (2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据 此证明∠MOB=3 1 ∠AOB . 3、(14分)如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使点F 落在轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A . (1)判断△OGA 和△OMN 是否相似,并说明理由; (2)求过点A 的反比例函数解析式; (3)设(2)中的反比例函数图象交EF 于点B ,求直线AB 的解析式; (4)请探索:求出的反比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由. 4、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x 轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=。试求: (1)AN ∶AM 的值; (2)一次函数y kx b =+的图象表达式。 x O P A B

八年级下册数学经典压轴题

C 2 C 1A 2 B 2 B 1 O 1 O A 1 D C B A 八年级下册数学经典压轴题、新题 1. 如图所示,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O.以OB 、OC 为邻边作第1个平行四边形C OBB 1,对角线相交于点 1A ;再以C A B A 111、为邻边作第2个平行四边形C C B A 111,对角线 相交于点1O ;再以1111C O B O 、为 邻边作第3个平行四边形1211C B B O ……依此类推. (1)求矩形ABCD 的面积; (2)求第1个平行四边形1OBB C 、第2个平行四边 形 111A B C C 和第6个平行四边形的面积。 2、如图,菱形ABCD 的对角线长分别为b a 、,以菱形ABCD 各边的中点为顶点作矩形A 1B 1C 1D 1,然后再以矩形A 1B 1C 1D 1的中点为顶点作菱形A 2B 2C 2D 2,……,如此下去,得到四边形A 2011B 2011C 2011D 2011的面积用含 b a 、的代数式表示为 . 3、在直角三角形ABC 中,CD 是斜边AB 的高,∠A 的平分线AE 交CD 于F ,交BC 于E ,EG?AB 于G ,求证:CFGE 是菱形。 4.如图,在梯形ABCD 中, ,6,5,30AD BC AC BD OCB ==∠=?P ,求 BC+AD 的值及梯形面积. 5.已知数x 1,x 2,x 3,x 4, …,x n 的平均数是5,方差为2,则 3x 1+4,3x 2+4, …,3x n +4的平均数是_______________,方差是_______________. 6、一组数据 0,-1,5,x ,3,-2的极差是8,那么x 的值为( ) A 、6 B 、7 C 、6或-3 D 、7或-3 7.观察式子:a b 3,-25a b ,37a b ,-4 9 a b ,……,根据你发现的规律知,第8个式子为 . 8、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图, 依此规律第10个图形的周长为 。 …… 第一个图 第二个图 第三个图 9、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为 (―1,―3),若一反比例函数 x k y = 的图象过点D ,则其 解析式为 。 第16题图 10.下图是我国古代着名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是 _________ . 11.若关于x 的分式方程 无解,则常数m 的值为 _________ . _F _A _B _C _D _E _G B C A D O

中考数学二次函数压轴题题型归纳

1 中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立)

高中数学函数压轴题精制

高考数学函数压轴题: 1. 已知函数31()(,)3 f x x ax b a b R =++∈在2x =处取得的极小值是43 -. (1)求()f x 的单调递增区间; (2)若[4,3]x ∈-时,有210 ()3 f x m m ≤++ 恒成立,求实数m 的取值范围. 2. 某造船公司年最高造船量是20艘. 已知造船x 艘的产值函数R (x)=3700x + 45x 2 – 10x 3(单位:万元), 成本函数为 C (x) = 460x + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本) (1) 利润函数P(x) 及边际利润函数MP(x); (2) 年造船量安排多少艘时, 可使公司造船的年利润最大 (3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么 3. 已知函数155)(2++=x x x ?)(R x ∈,函数)(x f y =的图象与)(x ?的图象关于点)2 1,0(中心对称。 (1)求函数)(x f y =的解析式; (2)如果)()(1x f x g =,)2,)](([)(1≥∈=-n N n x g f x g n n ,试求出使0)(2

(完整版)八年级数学期末难题压轴题

26.(本题满分10分) 已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2. (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式 表示);(5分) D (第26题图1) F D C A B E (第26题图2) F H G

26.解:(1)如图①,过点G 作GM BC ⊥于M . …………………………………………(1分) 在正方形EFGH 中, 90,HEF EH EF ∠==o . …………………………………………………………(1 分) 90. 90,. AEH BEF AEH AHE AHE BEF ∴∠+∠=∠+∠=∴∠=∠o o Q 又∵90A B ∠=∠=o , ∴⊿AH E ≌⊿BEF …………………………………………………………(1 分)同理可证:⊿MFG ≌⊿BEF . …………………………………………………………(1分) ∴GM=BF=AE =2. ∴FC=BC-BF =10. …………………………………………………………(1分) (2)如图②,过点 G 作GM BC ⊥于 M .连接 HF . …………………………………………(1分) //,. //,. AD BC AHF MFH EH FG EHF GFH ∴∠=∠∴∠=∠Q Q .AHE MFG ∴∠=∠ …………………………………………………(1分) 又90,,A GMF EH GF ∠=∠==o Q ∴⊿AHE ≌⊿MFG . ………………………………………………………(1 分) ∴GM=AE =2. ……………………………………………………………(1 分) 11 (12)12. 22 GFC S FC GM a a ∴=?=-=-V …………………………………………(1分)

2018年中考数学二次函数压轴题集锦(50道含解析)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC. (1)请直接写出二次函数y=ax2+x+c的表达式; (2)判断△ABC的形状,并说明理由; (3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标; (4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标. 2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N). 已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2). (1)求d(点O,△ABC); (2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围; (3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t 的取值范围. 3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1). (1)求线段AB的长; (2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点 H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;

(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由. 4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C. (1)求抛物线的解析式; (2)过点A的直线交直线BC于点M. ①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标; ②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

八年级数学上册压轴题训练

八年級數學上冊壓軸題訓練 1.問題背景: 如图1:在四边形ABC中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上の点.且∠EAF=60°.探究图中线段BE,EF,FD之间の数量关系. 小王同学探究此问题の方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他の结论应是; 探索延伸: 如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上の点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由; 實際應用: 如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°のA处,舰艇乙在指挥中心南偏东70°のB 处,并且两舰艇到指挥中心の距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时の速度前进,舰艇乙沿北偏东50°の方向以80海里/小时の速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间の夹角为70°,试求此时两舰艇之间の距离.

2.【问题提出】学习了三角形全等の判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等の判定方法 (即“HL”)后,我们继续对“两个三角形满足两边和其中一边の对角对应相等”の情形进行研究. 【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=D F,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究. 【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF. (1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°, 根据,可以知道Rt△ABC≌Rt△DEF. 第二种情况:当∠B是钝角时,△ABC≌△DEF. (2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、 ∠E都是钝角,求证:△ABC≌△DEF. 第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等. (3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF, 使△DEF和△ABC不全等.(不写作法,保留作图痕迹) (4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF, ∠B=∠E,且∠B、∠E都是锐角,若,则△ABC≌△DEF.

(完整word版)高中数学函数压轴题(精制).doc

高考数学函数压轴题: 1. 已知函数 f (x) 1 x 3 ax b(a, b R) 在 x 2 处取得的极小值是 4 . 3 3 (1) 求 f (x) 的单调递增区间; (2) 若 x [ 4,3] 时,有 f ( x) m 2 m 10 恒成立,求实数 m 的取值范围 . 3 2. 某造船公司年最高造船量是 20 艘 . 已知造船 x 艘的产值函数 R (x)=3700x + 45x 2 – 10x 3( 单位:万元 ), 成本函数 为 C (x) = 460x + 5000 ( 单位:万元 ). 又在经济学中,函数 f(x) 的边际函数 Mf (x) 定义为 : Mf (x) = f (x+1) – f (x). 求 : (提示:利润 = 产值 – 成本) (1) 利润函数 P(x) 及边际利润函数 MP(x); (2) 年造船量安排多少艘时 , 可使公司造船的年利润最大 ? (3) 边际利润函数 MP(x) 的单调递减区间 , 并说明单调递减在本题中的实际意义是什么? 3. 已知函数 (x) 5x 2 5x 1 ( x R) ,函数 y f ( x) 的图象与 ( x) 的图象关于点 (0, 1 ) 中心对称。 2 ( 1)求函数 y f ( x) 的解析式; ( 2)如果 g 1 ( x) f ( x) , g n (x) f [ g n 1 ( x)]( n N , n 2) ,试求出使 g 2 (x) 0 成 立的 x 取值范围; ( 3)是否存在区间 E ,使 E x f (x) 对于区间内的任意实数 x ,只要 n N ,且 n 2 时,都有 g n ( x) 0 恒成立? 4.已知函数: f ( x) x 1 a (a R 且 x a) a x (Ⅰ)证明: f(x)+2+f(2a - x)=0 对定义域内的所有 x 都成立 . (Ⅱ)当 f(x) 的定义域为 [a+ 1 ,a+1] 时,求证: f(x) 的值域为 [ - 3,- 2] ; 2 +|(x 2 (Ⅲ)设函数 g(x)=x - a)f(x)| , 求 g(x) 的最小值 . 5. 设 f (x) 是定义在 [ 0,1] 上的函数,若存在 x * (0,1) ,使得 f ( x) 在 [0, x * ] 上单调递增,在 [ x * ,1] 上单调递减,则称 f ( x) 为 [0,1] 上的单峰函数, x * 为峰点,包含峰点的区间为含峰区间 . 对任意的 [0,1] 上的单峰函数 f ( x) ,下面研究缩短其含 峰区间长度的方法 . ( 1)证明:对任意的 x 1 , x 2 (0,1) , x 1 x 2 ,若 f (x 1 ) f ( x 2 ) ,则 (0, x 2 ) 为含峰区间;若 f ( x 1 ) f ( x 2 ) ,则 ( x 1 ,1) 为含峰区间; ( 2)对给定的 r ( 0 r 0.5) ,证明:存在 x 1 , x 2 (0,1) ,满足 x 2 x 1 2r ,使得由( 1)所确定的含峰区间的长度不 大于 0.5 r ; 6. 2 ax 2 0 的两根分别为 ,函数 f (x) 4x a 设关于 x 的方程 2x 、 2 1 x ( 1)证明 f ( x) 在区间 , 上是增函数; ( 2)当 a 为何值时, f (x) 在区间 , 上的最大值与最小值之差最小 7. 甲乙两公司生产同一种新产品,经测算,对于函数 f x x 8 , g x x 12 ,及任意的 x 0,当甲公司投 入 x 万元作宣传时,乙公司投入的宣传费若小于 f x 万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投

2018年中考数学二次函数压轴题汇编

1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B. (1)求点B的坐标和抛物线的解析式; (2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB 及抛物线分别交于点P,N. ①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标; ②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值. 2.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′. (1)求抛物线C的函数表达式; (2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围. (3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.

3.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M 的关联点. (1)当⊙O的半径为2时, ①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是. ②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围. 4.如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B (3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C. (1)求抛物线y=﹣x2+ax+b的解析式; (2)当点P是线段BC的中点时,求点P的坐标; (3)在(2)的条件下,求sin∠OCB的值. 5.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x 轴的垂线,垂足为E,连接BD.

八年级数学上册压轴题专题练习

1、已知点O 为等边ABC ?内一点,0 110=∠AOB ,α=∠BOC ,以OC 为一边作等边 OCD ?,连接AD 。 (1)当0 150=α时,试判断AOD ?的形状,并说明理由。 (2)探究:当α为多少度时,AOD ?为等腰三角形。 2、(1)如图1:点E 在正方形ABCD 的边上,B F ⊥AE 于点F,DG ⊥AE 于点G ,求证:△ ADG ≌△BAF (2)如图2:已知AB=AC ,∠1=∠2=∠BAC, 求证:△ABE ≌△CAF (3)如图3:在等腰三角形ABC 中,AB=AC,AB>BC ,点D 在边BC 上,CD=2BD ,点E 、F 在线段AD 上,∠1=∠2=∠BAC,若△ABC 的面积为9,则△ABE 与△CDF 的面积的和是多少。 图1 图2 图3 3、.问题背景,请你证明以上三个命题; ① 如图1,在正三角形ABC 中,N 为BC 边上任一点,CM 为正三角形外角∠ACK 的平分线,若∠ANM=60°,则AN=NM ② 如图2,在正方形ABCD 中,N 为BC 边上任一点,CM 为正方形外角∠DCK 的平分线,若∠ANM=90°,则AN=NM ③ 如图3,在正五边形ABCDE 中,N 为BC 边上任一点,CM 为正五边形外角∠DCK 的平分线,若∠ANM=108°,则AN=NM O A B C D

4、已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作△ACD 和△BCE ,且CA=CD ,CB=CE ,∠ACD=∠BCE ,直线AE 与BD 交于点F , (1)如图1,若∠ACD=60°,则∠AFB= ;如图2,若∠ACD=90°,则∠AFB= ;如图3,若∠ACD=120°,则∠AFB= ; (2)如图4,若∠ACD=α,则∠AFB= (用含α的式子表示); (3)将图4中的△ACD 绕点C 顺时针旋转任意角度(交点F 至少在BD 、AE 中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB 与α的有何数量关系?并给予证明. 提示:始终证明DCB ACE ???

相关主题
文本预览
相关文档 最新文档