当前位置:文档之家› 4量子物理练习题

4量子物理练习题

4量子物理练习题
4量子物理练习题

量子物理

1、对黑体加热后,测得总的辐出度(即单位面积辐射功率)增大为原来的16倍,则黑体的温度为原来 倍,它的最大单色辐出度所对应的波长为原来的 倍。 (参考答案:2, 0.5)

2、某黑体在nm 0.600=m λ处辐射最强,假如物体被加热使其m λ移到nm 0.500,则前后两

种情况下辐出度之比为 。(参考答案: 0.482)

3、已知某金属的逸出功为A ,用频率为ν1的光照射该金属能产生光电效应,则该金属的红限频率ν0 =_____,ν1 > ν0,且遏止电势差|U a | =______. ((参考答案:A/h ,)(1o e h ν-ν)

4、已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0 (使电子从金属逸出需作功eU 0),则此单色光的波长λ 必须满足:

(A) λ ≤)/(0eU hc (B) λ ≥)/(0eU hc .(C) λ ≤)/(0hc eU (D) λ ≥)/(0hc eU .[ A ]

5、光电效应中发射的光电子最大初动能随入射光频率ν 的变化关系如图所示.由图中的

(A) OQ (B) OP

(C) OP /OQ (D) QS /OS

可以直接求出普朗克常量. [ C ]

6、康普顿效应中,散射光中为什么既有原波长成份的光,又有波长增长的成份光?波长的增量与散射体有关吗?(参考答案: 当光子被原子外层束缚较松的电子散射时,能量部分被其吸收,散射后能量变小,故波长增长,波长的增量与散射体无关;但当光子与原子内层紧束缚电子相互作用时,相当于与整个原子作用,原子的质量远大于光子的质量,故光子将以保持原有的能量被散射,波长不变。 )

7、光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的能量为 0.1 MeV ,则散射光波长的改变量?λ与入射光波长λ0之比值为

(A) 0.20. (B) 0.25. (C) 0.30. (D) 0.35. [ B ]

8、在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的

(A) 2倍. (B) 1.5倍. (C) 0.5倍. (D) 0.25倍. [ D ]

9、玻尔的氢原子理论的三个基本假设是:

n = 1

n = 2

n = 3

n = 4

(1)_____量子定态假设__________________,

(2)__量子态跃迁频率法则h ν=E m -E n ______,

(3)___角动量量子化假设L=nh/2π__________.

10、氢原子的部分能级跃迁示意如图.在这些能级跃迁中,

(1) 从n =___的能级跃迁到n =___的能级时所发射的光子的波长最短; (4,1)

(2) 从n =___的能级跃迁到n =____的能级时所发射的光子的频率最小. (4,3)

11、若用里德伯常量R 表示氢原子光谱的最短波长,则可写成

(A) λmin =1 / R . (B) λmin =2 / R . (C) λmin =3 / R . (D) λmin =4 / R . [ A ]

12、原子的动能等于氢原子处于温度为T 的热平衡时的平均动能,氢原子的质量为m ,那么氢原子的德布罗意波波长为多少?若氢 (参考答案: λ=mkT h 3 )

13、电子和光子的波长均为0.20nm,则它们的动量和动能各是多少?

(参考答案: 动量皆为p =h /λ=3.32×10-24 kg ?m ?s -1,光子动能E k ≈6.23Kev ,电子动能E k =p 2/2m ≈37.8Kev )

14、当电子的德布罗意波长与可见光波长( λ =5500 ?)相同时,求它的动能是多少电子伏特?(电子质量m e =9.11×10-31 kg ,普朗克常量h =6.63×10-34 J ·s, 1 eV =1.60×10-

19 J) (参考答案:5.0×10-6eV )

15、静止质量为m e 的电子,经电势差为U 12的静电场加速后,若不考虑相对论效应,电子的德布罗意波长λ=_________. ( 参考答案:122/eU m h e )

16、不确定关系式 ≥???x p x 表示在x 方向上

(A) 粒子位置不能准确确定. (B) 粒子动量不能准确确定.

(C) 粒子位置和动量都不能准确确定. (D)粒子位置和动量不能同时准确确定. [ D ]

17、如果电子被限制在边界x 与x+?x 之间,?x =0.5?,则电子动量x 分量的不确定量为多少? (参考答案: 1.33×10-23kg ?m ?s -1 )

18、一束动量为P 的电子,通过缝宽为b 的狭缝,在距离狭缝为L 处放置一荧光屏,屏上衍射图样中央最大的宽度d 为 。 (参考答案: 2hL /(bP ) )

19、光子的波长为λ =3000 ?,如果确定此波长的精确度?λ / λ =10-

6,试求此光子位置的不确定量. 参考答案:Δx ≥48mm

20、光子的波长为λ=3000A,如果确定此波长的精确度?λ/λ=10-6,试求此光子位置的不确定量。(参考答案:30m)

21、一维无限深势阱中的粒子在n=3状态下,其波函数

a x

a

3 sin

2 3π

ψ=,试求粒子的概

率密度分布函数及概率密度的极值位置。(参考答案: w3=

a

2sin2(3πx/a),极大值: a/6,a/2,5a/6;极小值: 0,a/3,2a/3,a)

22、将波函数在空间各点的振幅同时增大D倍,则粒子在空间的分布概率将

(A) 增大D2倍. (B) 增大2D倍.

(C) 增大D倍.(D)不变.[D]

23、什么叫自发辐射?什么叫做受激吸收和受激辐射?何谓粒子数反转?产生激光的必要条件是什么?激光有哪几个主要特性?光学谐振腔的功能是什么?

(参考答案: 自发辐射: 在没有任何外界作用下激发态的原子会自发地辐射出光子而返回

到较低能态的过程。

受激吸收: 较低能级上的原子吸收一个光子而跃迁到较高能级上的过程。

受激辐射: 处在E2能级上原子在自发辐射前,若受到能量为hν=E2-E1的外

来光子的激励作用,则该原子会从E2能级跃迁到低能级E1上,同

时释放出一个与外来光子的频率、相位、偏振态及传播方向都相同

的光子,该过程称为受激辐射。

粒子数反转: 要使受激辐射多于吸收,必须使高能态上的原子数大于低能态上

的原子数。

产生激光的必要条件: 粒子数反转

激光特性: 1)方向性好;2)单色性好;3)能量集中;4)相干性极好。

光学谐振腔的功能: 由于两侧的高反镜严格平行,只有那些沿管轴方向传播的

光子才能在腔内来回反射,形成光振荡,所以光学谐振腔可提高激

光的方向性。同时,由于腔内的激光是以驻波形式存在的,只有满

足谐振条件的光波才能形成稳定的光振荡,即光学谐振腔同时也可

提高激光的单色性。

24、激光全息照相技术主要是利用激光的哪一种优良特性

(A)亮度高 (B)方向性好

(C)相干性好(D)抗电磁干扰能力强(参考答案: C)

25、本征半导体的能带与绝缘体的能带有何异同?

(参考答案:在低温下, 本征半导体的能带与绝缘体的能带结构相同. 但本征半导体的禁带较窄, 禁带宽度通常在2个电子伏特以下. 由于禁带窄, 本征半导体禁带下满带顶的电子可以借助热激发, 跃迁到禁带上面空带的底部, 使得满带不满, 空带不空, 二者都对导电有贡献.)

26、什么是P型半导体?什么是N型半导体?

参考答案:杂质在带隙中提供带有电子能级,能级略低于导带底的能量,和价带中的电子相比,很容易激发到导带中,称电子载流子。含有施主杂质的半导体,主要依靠施主热激发到导带中的电子导电即为N型半导体。

杂质在带隙中提供空的能级,价带中的电子激发到受主能级比激发到导带中容易得多。含有受主杂质的半导体,因价带中电子激发到受主能级上而在价带中产生许多空穴,这种依靠空穴导电半导体即为P型半导体。

27.硅晶体的禁带宽度为 1.2eV,适当掺入磷后, 施主能级和硅导带底的能级差为0.045eV, 试计算此掺杂半导体能吸收的光子的最大波长?(参考答案:2.76×10-5 m)

这个世界其实是你想象出来地恐怖地量子力学正彻底颠覆人类地物理世界观

这个世界其实是你想象出来的——恐怖的量子力学正彻底 颠覆人类的物理世界观 朱清时,中国科学技术大学前校长、中国科学院院士、国务院学位委员会委员、第三世界科学院院士、中国绿色化学的主要倡导者和组织者、南方科技大学创校校长、1994年获海外华人物理学会亚洲成就奖和汤普逊纪念奖。量子力学的诡异现象量子力学也是自然科学史上被实验证明最精确的一个理论,但是量子的观念,没有人能够理解。我说的没有人能够理解,绝不是指像我们这个层次的人,而是说连量子力学的创始人都不能理解。 那么量子力学最不好懂的是些什么问题呢?我先把量子力学中人们最不好懂的东西介绍给大家,而最不好懂的东西最后恰好是证明了:意识不能被排除在客观世界之外。一定要把意识加进去你才能够认识搞懂它。 - 1 - 态叠加与坍缩量子力学的第一个诡异现象叫做态叠加原理和坍缩。 为了解释量子力学观念,我先说说普通人的日常经验。一般人认为客观物体一定要有一个确定的空间位置,这种存在,是不以人的意志为转移的、是客观的。比如说,我的女儿现在在客厅里面,或者说我的女儿现在不在客厅里面,两者必居其一。

【女儿可以既在又不在客厅里吗?】但在量子力学里就不一样了。量子力学就像说你的女儿既在客厅又不在客厅,你要去看这个女儿在不在,你就实施了观察的动作。你一观察,这个女儿的存在状态就坍缩了,她就从原来的,在客厅又不在客厅的叠加状态,一下子变成在客厅或者不在客厅的唯一的状态了。 所以量子力学怪就怪在这儿:你不观察它,它就处于叠加态,也就是一个电子既在A点又不在A点。你一观察,它这种叠加状态就崩溃了,它就真的只在A点或者真的只在B点了,只出现一个。 那有人就会说了:这是诡辩,你怎么知道电子不观察它的时候,它既在A点又不在A点呢? 好,这就是量子力学发展过程中,很多实验确证的事情,其中一个最著名最重要的实验,就是干涉实验证实。【电子同时在两处】电子在没有观测的时候,没有确定的状态。所以这件事是量子力学最诡异的事情。懂了这个,就懂了量子力学最诡异的东西,而且随后我们就能来证明:量子力学离不开意识,意识是量子力学的基础。 - 2 -单体的叠加态:薛定谔的猫刚才说的是量子力学第一个诡异之点,现在我们来看看这个诡异之点往下推论,能够推出什么结果。最后结果会使大家认识到,意识是量子力学的基础,物质世界和意识不可分开。这个实验是量子力学的

量子力学习题

量子力学复习题量子力学常用积分公式 (1) (2) (3) (4) (5) (6) (7 ) ( ) (8) (a<0) ( 正偶数) (9) =

( 正奇数) ( ) (10) ( ) (11)) ( ) (12) (13) (14) (15) (16) ( )

( ) 一、简答题 1. 束缚态、非束缚态及相应能级的特点。 2. 简并、简并度。 3. 用球坐标表示,粒子波函数表为 ,写出粒子在立体角 中被测到的几率。 4. 用球坐标表示,粒子波函数表为 ,写出粒子在球壳 中被测到的几率。 5. 一粒子的波函数为 ,写出粒子位于 间的几率。 6. 写出一维谐振子的归一化波函数和能级表达式。 7. 写出三维无限深势阱 中粒子的能级和波函数。 8. 一质量为 的粒子在一维无限深方势阱 中运动,写出其状态波函数和能级表达式。 9. 何谓几率流密度?写出几率流密度

的表达式。 10. 写出在 表象中的泡利矩阵。 11. 电子自旋假设的两个要点。 12. 的共同本征函数是什么?相应的本征值又分别是什么? 13. 写出电子自旋 的二本征态和本征值。 14. 给出如下对易关系: 15. 、 分别为电子的自旋和轨道角动量, 为电子的总角动量。证明: ,[ ]=0,其中 。 16. 完全描述电子运动的旋量波函数为 , 准确叙述 及 分别表示什么样的物理意义。 17. 二电子体系中,总自旋 ,写出(

)的归一化本征态(即自旋单态与三重态)。 18. 何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应? 19. 给出一维谐振子升、降算符 的对易关系式;粒子数算符 与 的关系;哈密顿量 用 或 表示的式子; (亦即 )的归一化本征态。 20. 二粒子体系,仅限于角动量涉及的自由度,有哪两种表象?它们的力学量完全集分别是什么?两种表象中各力学量共同的本征态及对应的本征值又是什么? 21. 使用定态微扰论时,对哈密顿量 有什么样的要求? 22. 写出非简并态微扰论的波函数(一级近似)和能量(二级近似)计算公式。 23. 量子力学中,体系的任意态 可用一组力学量完全集的共同本征态 展开: , 写出展开式系数 的表达式。 24. 一维运动中,哈密顿量

量子力学的概率解释

引言:黑体辐射等实验的研究以及光谱实验的诞生,促使了人们对微观世界的不断认识。经典力学的局限性也日益显著,所面临的一些棘手的问题也越来越多。因此迫使我们不得不抛弃经典力学,而重新建立一个全新的力学体系——量子力学。该力学体系描绘了微观世界中,微观粒子的运动行为及其力学特性。 题目:量子力学的概率解释 内容摘要:在经典力学中,我们知道物体的运动可由牛顿第二定律描述: 22(((),(),()))d r F m r x t y t z t dt ==r u r r ;方程的解即为物体的动力学方程。由此方程的解: ((),(),())r x t y t z t =r ;在给定的初始条件下我们即可以知道任意时刻物体在空间所处的位 置。而在微观领域中,微观粒子的运动并不适用于上述的方程所描述。实验证明他们在某一 时刻出现在空间的哪一点上是不确定的。应该用方程μH E ψ=ψ来描述。比如电子的衍射现象,海森堡的不确定性关系,还有薛定谔为批评哥本哈根学派对量子论的观点而提出的一 个思维实验(薛定谔猫)。本文利用概率与统计的相关概念对量子力学做出一些相关的阐明,并对一些相关的问题(衍射,薛定谔猫等)进行说明。对单电子体系薛定谔方程作出较为详细的讨论,并加以例题进行进一步说明。 关键词:量子力学、概率与统计、电子衍射现象、薛定谔猫、薛定谔方程 概率统计理论的简单介绍: 随机变量X :X 是定义在样本空间Ω上的实值函数;对面门一样本点ω,()X ω是一个实数。X 离散取值时,为离散随机变量。X 连续取值时,为连续型随机变量。本文只介绍连续型随机变量。 概率密度函数:当X 为连续型随机变量时,例如一条直线AB 如图:A 0 1 B 假设现在有一个点落到了AB 上,我们是否能问该点恰好落在0.5x =处的概率是多少?显然这是毫无意义的问题,因为该点恰好落在任意一点上的概率均为零。(基本事件的个数为无穷) 我们只能问该店落在某一区间[,]a b 上的概率是多少?例如[,][0,0.5]a b =;此时概率 10.5/12 p == 。 因此设X 是一随机变量,如果存在非负函数()f x 使得对任意满足a b -∞≤≤+∞的,a b 有 ()()b a p a X b f x dx ≤≤=?;就称()f x 是随机变量X 的概率密度函数。 显然()f x 应该具有如下性质: (1) ()1f x dx +∞ -∞ =? ;(量子力学中波函数的归一化性质) (2)()0.p X a ==于是()()()p a X b p a X b p a X b ≤≤==≤p p p ; (3)对于数集,()()A A p X A f x dx ∈= ?;

量子力学与经典物理

从薛定谔方程谈量子力学与经典物理的区别 梁辉(滁州师范专科学校物理系,安徽滁州239012) 摘要:薛定谔方程是量子力学的基本方程,其地位与经典物理中的牛顿运动方程相当。文章从薛定谔方程中关于微观粒子运动状态的描述和微观粒子力学量的表达等方面谈量子力学与经典物理的区别。 文章阐明,量子力学的基本规律是统计规律,而经典物理的基本规律是决定论、严格的因果律。但在普朗克常数h→0的极限情况下,量子力学就过渡到经典物理学。 关键词:薛定谔方程;运动状态;状态量;力学量;算符 1薛定谔方程 薛定谔在“微观粒子具有波粒二象性”概念的指导下,找到了单粒子量子系统的运动方程,即薛定谔方程i99tΨ(珒r,t)=^HΨ(珒r,t)这一方程将微观粒子的波动性与粒子性统一起来,用波函数Ψ(珒r,t)来描述微观粒子的状态,用^H表示微观粒子的能量算符。薛定谔方程给出了这样一幅图象[1,2]:微观粒子的状态用波函数描述,波函数Ψ(珒r,t)传递了粒子的一切力学信息;力学量用算符表达;状态的变化由薛定谔方程决定。薛定谔方程揭示了原子世界物质运动的基本规律,其地位与经典力学中的牛顿方程及电磁学中的麦克斯韦方程相当。 2量子力学与经典物理的区别 2.1关于运动状态的描述 经典力学中,质点的运动状态由坐标珒r与动量珗p(或速度珤V)描述;电磁学[3]中,场的运动状态由电场强度珝E(珒r,t)与磁感应强度珝B(珒r,t)描述。在经典物理中,运动状态描述的特点为状态量都是一些实验可以测得的量,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。量子力学中,微观粒子的运动状态由波函数珤Ψ(珒r,t)描述。但波函数珤Ψ(珒r,t)却不是实验直接可测的,即量子力学中运动状态的描述与实验直接测量的量的表达是割裂的。量子力学中的态函数珤Ψ(珒r,t)一般是一个复数,是一个理论工具。实验上仍可直接测量量子系统中粒子的坐标、动量以及场的强度,但它们并不直接代表量子态。 2.2关于状态量的解释 经典力学中,描述质点运动状态的状态量为坐标珒r(t)和动量珗p(t),且任一时刻t,质点有确定的坐标珒r和动量珗p;电磁学中,描述电磁场运动状态的状态量为电场强度珝E(珒r,t)和磁感应强度珝B(珒r,t),且任一时刻t空间任一点珒r有确定的电场强度珝E和磁感应强度珝B。这就是经典物理对状态量的解释,即所谓的经典决定论、严格的因果律[4]。量子力学中,微观粒子的运动状态由状

清华大学《大学物理》习题库试题及答案10量子力学习题解析

10、量子力学 一、选择题 1.已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? 2.在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0 λhc m eRB 2)(2 + (C) 0λhc m eRB + (D) 0λhc eRB 2+ 3.用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K 4.在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 5.要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV 6.由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 7.已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV 8.在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和1.9 eV (D) 12.1 eV ,10.2 eV 和3.4 eV 9.若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh 10.如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 11.已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?= ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 12.设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? 13.波长λ =5000 ?的光沿x 轴正向传播,若光的波长的不确定量?λ =10-3 ?,则利用不 确定关系式h x p x ≥??可得光子的x 坐标的不确定量至少为: (A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm x (A) x (C) x (B) x (D)

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

物理学史10.7 关于量子力学完备性的争论史

10.7关于量子力学完备性的争论 玻恩、海森伯、玻尔等人提出了量子力学的诠释以后,不久就遭到爱因斯坦和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、测不准原理和互补原理。双方展开了一场长达半个世纪的大论战,许多理论物理学家、实验物理学家和哲学家卷入了这场论战,这一论战至今还未结束。现在正在进行的关于隐参量的辩论就是他们论战的继续。 早在1927年10月召开的第五届索尔威会议上就爆发了公开论战。那次会议先由德布罗意介绍自己对波动力学的看法,提出了所谓的导波理论。在讨论中泡利对他的理论进行了激烈的批评,于是德布罗意声明放弃自己的观点。接着,玻恩和海森伯介绍矩阵力学波函数的诠释和测不准原理。最后他们说:“我们主张,量子力学是一种完备的理论,它的基本物理假说和数学假设是不能进一步被修改的。”玻尔也在会上发表了上节提到的演讲内容。这些话显然是说给爱因斯坦听的,但爱因斯坦一直保持沉默。只是在玻恩提到爱因斯坦的工作时,才起来作了即席发言,他用一个简单的理想实验来说明他的观点。 “设S是一个遮光屏,在它上面开一个不大的孔O(见图10-1),P是一个大半径的半球面形的照相胶片。假定电子沿着箭头所指示的方向落到遮光屏S 上。 这些电子的一部分穿过孔O,由于孔小,而电子具有速度,因此它们均匀地分布在(按:即衍射到)所有的方向从而作用在胶片上。” 这一事件的发生几率可由衍射的球面波在所考虑的点上的强度来量度。爱因斯坦说,可以有两种不同的观点来解释实验结果。按照第一种观点,德布罗意-薛定谔的ψ波不是代表一个电子,而是一团分布在空间中的电子云;量子论对于任何单个过程是什么也没有说的。它只给出关于一个相对说来无限多个基元过程的集合的知识。按照第二种观点,量子论可以完备地描述单个过程。落到遮光屏上的每个粒子,不是由位置和速度来表征而是用德布罗意-薛定谔波束来描述,这些描述概括了全部的事实和规律性。

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 物理与电子信息工程学院物理学 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。

量子力学习题.(DOC)

量子力学习题 (三年级用) 山东师范大学物理与电子科学学院 二O O七年

第一部分 量子力学的诞生 1、计算下列情况的Broglie d e -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子 () 克2410671-?=μ .n ;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-?=μ.a ; (3)飞行速度为100米/秒,质量为40克的子弹。 2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 3、利用Broglie d e -关系,及园形轨道为各波长的整数倍,给出氢原子能 量可能值。

第二部分 波函数与Schr?dinger 方程 1、设()() 为常数a Ae x x a 222 1 -= ? (1)求归一化常数 (2).?p ?,x x == 2、求ikr ikr e r e r -=?=?1121和的几率流密度。 3、若() ,Be e A kx kx -+=? 求其几率流密度,你从结果中能得到什么样的 结论?(其中k 为实数) 4、一维运动的粒子处于 ()? ? ?<>=?λ-0 00x x Axe x x 的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。 5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证 0=υ?? 其中ρ= υ/j 6、一维自由运动粒子,在0=t 时,波函数为 ()()x ,x δ=?0 求: ?)t ,x (=?2

第三部分 一维定态问题 1、粒子处于位场 ()00 0000 ??? ?≥?=V x V x V 中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动) 2、一粒子在一维势场 ?? ???>∞≤≤<∞=0 000x a x x V ) x ( 中运动。 (1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ?态,证明:,/a x 2= () .n a x x ?? ? ??π-=-2222 6112 3、若在x 轴的有限区域,有一位势,在区域外的波函数为 如 D S A S B D S A S C 22211211+=+=

量子物理练习题

第15章 量子物理 一、选择题 1. 用X 射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中 [ ] (A) 只包含有与入射光波长相同的成分 (B) 既有与入射光波长相同的成分,也有波长变长的成分,且波长的变化量只与散 射光的方向有关,与散射物质无关 (C) 既有与入射光波长相同的成分,也有波长变长的成分和波长变短的成分,波长 的变化量既与散射方向有关,也与散射物质有关 (D) 只包含着波长变化的成分,其波长的变化量只与散射物质有关,与散射方向无关 2. 在氢原子中, 电子从n = 2的轨道上电离时所需的最小能量是 [ ] (A) 3.4 eV (B) 13.6 eV (C) 10.2 eV (D) 6.8 eV 3. 根据玻尔理论, 氢原子系统的总能量就是 [ ] (A) 原子系统的静电势能之总和 (B) 电子运动动能之总和 (C) 电子的静电势能与运动动能之总和 (D) 原子系统的静电势能与电子运动动能之总和 4. 原子从能量为E m 的状态跃迁到能量为E n 的状态时, 发出的光子的能量为 [ ] (A) h E E n m - (B) 2m 2n m E n E - (C) n m E E + (D) n m E E - 5. 量子力学中对物质世界认识的一次重大突破是什么? [ ] (A) 场也是物质 (B) 物质是无限可分的 (C) 实物物质的波粒二象性 (D) 构成物质的基元——原子是有结构的 6. 根据德布罗意假设, 实物物质粒子性与波动性的联系是 [ ] (A) 不确定关系 (B) 薛定谔方程 (C) 德布罗意公式 (D) 粒子数守恒 7. 下列事实中, 说明微观粒子运动的状态只能用波函数来描述的是 [ ] (A) 不确定关系 (B) 微观粒子体积较小 (C) 微观粒子的运动速度较小 (D) 微观粒子一般运动速度较大 8. 我们不能用经典力学来描述微观粒子, 这是因为 [ ] (A) 微观粒子的速度很小 (B) 微观粒子位置不确定 (C) 微观粒子动量不确定 (D) 微观粒子动量和位置不能同时确定 图15-1-41 m n E

经典力学与量子力学中的一维谐振子

经典力学与量子力学中的一维谐振子 [摘要]一维谐振动是一种最简单的振动形式,许多复杂的运动都可分析为一维谐振动。本文以一维谐振子为研究对象,首先讨论经典力学与量子力学中的一维谐振子的运动方程和能量特征,然后分析坐标表象以及粒子数表象下的一维谐振子,最后讨论经典力学与量子力学中的一维谐振子的区别与联系。 [关键词]谐振子经典力学量子力学运动方程能量分布 1 前言 所谓谐振,在运动学中就是简谐振动。一个劲度系数为k的轻质弹簧的一端固定,另一端固结一个可以自由运动的质量为m的物体,就构成一个弹簧振子[1]。该振子是在一个位置(即平衡位置)附近做往复运动。在这种振动形式下,物体受力的大小总是和它偏离平衡位置的距离成正比,并且受力方向总是指向平衡位置。这种情况即为一维谐振子。 一维谐振子在应用上有很大价值,因为经典力学告诉我们只要选择适当的坐标,任意粒子体系的微小振动都可以认为是一些相互独立的振子的运动的集合。普朗克在他的辐射理论中将辐射物质的中心当作一些谐振子,从而得到和实验相符合的结果。在分子光谱中,我们可以把分子的振动近似地当作谐振子的波函数。另外在量子场论中电磁场的问题也能归结成谐振子的形式。因此在量子力学中,谐振子问题的地位较经典物理中来得重要。应用线性谐振子模型可以解决许多量子力学中的实际问题。 本文将以一维谐振子为研究对象,首先分别讨论经典力学与量子力学中一维谐振子的运动方程和能量特征,然后讨论坐标表象以及粒子数表象下的一维谐振子,最后分析经典力学与量子力学中的一维谐振子的区别与联系并简要讨论经典力学与量子力学的过渡问题。从而帮助我们更加深入的理解一维谐振子的物理实质,充分认识微观粒子的波粒二象性。 2 经典力学中的一维谐振子 在经典力学中基本方程以牛顿定律为基础,研究质点位移随时间变化的规

量子力学练习题

量子力学练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一. 填空题 1.量子力学的最早创始人是 ,他的主要贡献是于 1900 年提出了 假设,解决了 的问题。 2.按照德布罗意公式 ,质量为21,μμ的两粒子,若德布罗意波长同为 λ,则它们的动量比p 1:p 2= 1:1;能量比E 1:E 2= 。 3.用分辨率为1微米的显微镜观察自由电子的德布罗意波长,若电子的能量 E=kT 23 (k 为玻尔兹曼常数),要能看到它的德布罗意波长,则电子所处的最高温度T max = 。 4.阱宽为a 的一维无限深势阱,阱宽扩大1倍,粒子质量缩小1倍,则能级间距将扩大(缩小) ;若坐标系原点取在阱中心,而阱宽仍为a ,质量仍为μ,则第n 个能级的能量E n = ,相应的波函数 =)(x n ψ()a x a x n a n <<= 0sin 2πψ和 。 5.处于态311ψ的氢原子,在此态中测量能量、角动量的大小,角动量的z 分量的值分别为E= eV eV 51.13 6 .132-=;L= ;L z = ,轨道磁矩M z = 。 6.两个全同粒子组成的体系,单粒子量子态为)(q k ?,当它们是玻色子时波函数为 ),(21q q s ψ= ;玻色体系 为费米子时 =),(21q q A ψ ;费米体系 7.非简并定态微扰理论中求能量和波函数近似值的公式是 E n =() () +-'+'+∑≠0 020m n n m mn mn n E E H H E , )(x n ψ = () ) () +-'+∑≠000 2 0m m n n m mn n E E H ψψ, 其中微扰矩阵元 'mn H =()() ?'τψψd H n m 00?; 而 'nn H 表示的物理意义是 。该方法的适用条 件是 本征值, 。

(量子力学) 未来可以影响现在和过去

(量子力学) 未来可以影响现在和过去 一种新的理论认为,过去、现在、未来是可以相互影响的…… “客观世界仅仅是存在,并没有发生着什么。”——数学家兼物理学家的赫尔曼·外尔于1949年如是写道。以他的这一观点看,宇宙就像延展在空间中那样也延展在时间里。时间并不流逝,过去、未来和现在一样真实。倘若这和你的直觉相悖,那恐怕只有一个理由:因果方向性。过去的事件导致现在,进而引出未来。如果时间果真像空间那样,那为什么未来的事件不能对现在和过去造成影响呢? 未来可以影响现在和过去 它们也许真的可以。知名物理学家如约翰·惠勒、理查德·费曼、丹尼斯·夏默以及亚基尔·阿哈罗诺夫都猜想因果性是双向的,未来或许可以影响过去。如今,这一立场的头号倡导者是剑桥大学专研物理时间的哲学家胡·普莱斯。“‘这个世界是否允许我们对过去进行有限的控制?’这个问题的答案——”普莱斯称,“是可以。”而且,普莱斯以及其他一些人还声称,这种控制存在的证据已经等待我们半个多世纪了。 他们说,证据就是“纠缠”:它是量子力学的一个典型特征。在这里,“纠缠”的含义和男女纠缠有相通的内涵,都是一种特殊的、暗含麻烦的关系。相纠缠的粒子在实验室中生成时相距很近,随后被发射分开。它们就像一对魔术骰子,你在拉斯维加斯“掷”出一个(即对它进行一次测量),而你的朋友在新泽西州的大西洋城掷出另一个,每个骰子的点数都是随机的。但不论两边点数是多少,它们都之间都有一个联系:比如相等,或者总是相差一个点。如果平时见到这种事,你也许会认为投掷前骰子就有偏向或受控制。但任何千术都做不到这一点:毕竟,大西洋城的骰子会根据拉斯维加斯的结果改变自己的点数,反之亦然,而且即便是两边同时掷出也是如此。 纠缠的标准解释是,两个粒子之间有某种瞬时联系。它们之间的任何联系都会瞬间通过它们之间的距离,速度无限快。显然这已经突破了相对论所允许的信息传递最快速度——光速。根据爱因斯坦的理论,任何事物都不应该违背这一点。他由此想到,这背后一定有一种超出量子力学解释范围的新的物理规律在起作用。 试想,如果不是粒子(骰子)之间以瞬时相联系,也不是它们的结果已经提前确定,我们似乎已经没有别的解释。但现在普莱斯让我们考虑这么一种难以置信的情形:对纠缠中的粒子之一做的任何操作会引发一个效果,这个效果沿时间向过去运动,回到

第四章从经典物理学到量子力学

第四章从经典物理学到量子力学 §4 - 1 从经典物理学到前期量子论 到19世纪末,经典物理学已经建立了比较完整的理论体系。 力学分析力学,存在海王星的预言及其被证实 电磁学麦克氢原子光谱斯韦方程组,预言了电磁波的存在 热力学+统计物理学 量子力学的研究对象:微观粒子。

量子理论的发展轨迹: 能量子:黑体辐射 光量子:光电效应 固体比热 氢原子光谱 一黑体辐射普朗克的能量子假说( 1 ) 热辐射的基本概念 热辐射:一切物体的分子热运动将导致物体向外不断地发射电磁波。这种辐射与温度有关。温度越高,发射的能量越大,发射的电磁波的波长越短。

平衡热辐射或平衡辐射:如果物体辐射出去的能量恰好等于在同一时间内所吸收的能量,则辐射过程达到了平衡。 单色辐射出射度(简称单色辐出度,用)(T M λ表示):在单位时间内从物体表面单位面积上所辐射出来的,单位波长范围内的电磁波能量,即 λλd )(d )(T M T M =, (4. 1) where d M ( T ):在单位时间内从物体表面单位面积上所辐射出来的,波长在λ 到

λ+d λ 范围内的电磁波能量。 辐射出射度(简称辐出度,在单位时间内从物体表面单位面积上辐射出来的各种波长电磁波能量的总和) ?? ∞==0d )()(d )(λλT M T M T M . (4. 2) 单色吸收比),(T λα和单色反射比),(T λρ:在温度为T 时,物体吸收和反射波长在λ 到λ + d λ 范围内的电磁波能量,与相应波长的入射电磁波能量之比,分别称为该物体的单

色吸收比),(T λα和单色反射比),(T λρ。对于不透明的物体,有 1),(),(=+T T λρλα. (4. 3) ( 2 ) 基尔霍夫定律和黑体 基尔霍夫辐射定律: 对每一个物体来说,单色辐出度与单色吸收比的比值),(/)(T T M λαλ,是一个与物体性质无关(而只与温度和辐射波长有关)的普适函数。即 ),(),()(),()(2211T I T T M T T M λλαλαλλ===Λ, (4. 4)

量子力学第一章课外练习题

第一章绪论 一、填空题 1、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性,对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为 (保留三位有效数字)。 2、自由粒子的质量为m,能量为E,其德布罗意波长为_________________(不考虑相对论效应)。 3、写出一个证明光的粒子性的实验__________________________。 4、爱因斯坦在解释光电效应时,提出概念。 5、德布罗意关系为(没有写为矢量也算正确)。 7、微观粒子具有二象性。 8、德布罗意关系是粒子能量E、动量P与频率、波长之间的关系,其表达式为。 9、德布罗意波长为λ,质量为m的电子,其动能为____ _ 。 10、量子力学是的理论。 11、历史上量子论的提出是为了解释的能量分布问题。用来解释光电效应的爱因斯坦公式为。 12、设电子能量为4电子伏,其德布罗意波长为 nm。 13、索末菲的量子化条件为,应用这个量子化条件可以 E。 求得一维谐振子的能级= n 14、德布罗意假说的正确性,在1927年为戴维孙和革末所做的子衍射实验所证实,德布罗意关系(公式)为和。 15、1923年,德布洛意提出物质波概念,认为任何实物粒子,如电子、质子等,也具有波动性。根据其理论,质量为μ,动量为p的粒子所对应的物质波的频率为 ,波长为。若对于质量为1克,速度为1米/秒的粒子,其德布洛意波长为(保留三位有效数字)。 16、1923年, 提出物质波概念,认为任何实物粒子,如

电子、质子等,也具有波动性,对于经过电压为100伏加速的电子,其德布洛意波长为(保留三位有效数字)。 二、选择题 1、利用提出的光量子概念可以成功地解释光电效应。 A.普朗克 B. 爱因斯坦 C. 玻尔 D. 波恩 2、1927年和等人所做的电子衍射试验验证了德布洛意的物质波假设。 A. 夫兰克赫兹 B. 特恩革拉赫 C. 戴维逊盖末 D. 康普顿吴有训 3、能量为0.1eV的自由中子的德布罗意波长为 A. 0.92? B.1.23? C. 12.6 ? D.0.17 ? 4、一自由电子具有能量150电子伏,则其德布罗意波长为 A.1 A B.15 A C.10 AD.150 A 5、普朗克在解决黑体辐射时提出了。 A、能量子假设B、光量子假设 C、定态假设 D、自旋假设 6、证实电子具有波动性的实验是。 A、戴维孙——革末实验B、黑体辐射 C、光电效应 D、斯特恩—盖拉赫实验 7、1900年12月发表了他关于黑体辐射能量密度的研究结果,提出原子振动能量假设,第一个揭示了微观粒子运动的特殊规律:能量不连续。 A. 普朗克B.爱因斯坦 C. 波尔D. 康普顿8、普朗克量子假说是为解释 (A) 光电效应实验规律而提出来的 (B) X射线散射的实验规律而提出来的 (C) 黑体辐射的实验规律而提出来的 (D) 原子光谱的规律性而提出来的 9、康普顿效应的主要特点是

量子力学讲义

量子力学的通俗讲座 一、粒子和波动 我们对粒子和波动的概念来自直接的经验。和粒子有关的经验对象:小到石子大到天上的星星等;和波动有关的经验对象:最常见的例子是水波,还有拨动的琴弦等。但这些还不是物理中所说的模型,物理中所谓粒子和波动是理想化的模型,是我们头脑中抽象的对象。 1.1 粒子的图像 在经典物理中,粒子的概念可进一步抽象为:大小可忽略不计的具有质量的对象,即所谓质点。质量在这里是新概念,我们可将其定义为包含物质量的多少,一个西瓜,比西瓜仔的质量大,因为西瓜里包含的物质的量更大。 为叙述的简介,我们现在可把粒子等同于质点。要描述一个质点的运动状态,我们需要知道其位置和质量(x,m ),这是一个抽象的数学表达。 但我们漏掉了时间,时间也是一个直观的概念,这里我们可把时间描述为一个时钟,我们会发现当指针指到不同位置时,质点的位置可能不同,于是指针的位置就定 义了时刻t 。有了时刻 t ,我们对质点的描述就变成了(x,t,m ),由此可定义速度v ,现在我们对质点运动状态的描述是(x,v,t,m )。 在日常经验中我们还有相互作用或所谓力的概念,我们在地球上拎起不同质量物体时肌肉的紧张程度是不同的,或者说弹簧秤拎起不同质量物体时弹簧的拉伸程度是不同的。 以上我们对质量、时间、力等的定义都是直观的,是可以操作的。按照以上思路进行研究,最终诞生了牛顿的经典力学。这里我们可简单地用两个公式:F=ma (牛顿第二定律) 和 2 GMm F x (万有引力公式) 来代表牛顿力学。前者是质点的运动方程,用数学的语言说是一个关于位置x 的二阶微分方程,所以只需要知道初始时刻t=0时的位置x 和速度v 即可求出以后任意时刻t 质点所处的位置,即x(t),我们称之为轨迹。 需要强调的是一旦我们知道t=0时x 和v 的精确值(没任何误差),x(t)的取值也是精确的,即我们得到是对质点未来演化的精确预测,并且这个求 解对t<0也精确成立,这意味着我们还可精确地反演质点的历史。这些结论都是由数学理论严格保证的,即轨迹是一根理想的线。 经典的多粒子系统

大学物理量子物理作业答案

No.6 量子物理 (运输) 一 选择题 1. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足 (A )λ≤ 0eU hc (B )λ≥0 eU hc (C )λ≤hc eU 0 (D )λ≥hc eU 0 [ A ] 2. 光子能量为 0.5 MeV 的X 射线,入射到某种物质上而发生康普顿散射.若反冲电子的动能为 0.1 MeV ,则散射光波长的改变量?λ与入射光波长λ0之比值为 (A ) 0.20. (B) 0.25. (C) 0.30. (D) 0.35. [ B ] 3.氢原子从能量为-0.85eV 的状态跃迁到激发能(从基态到激发态所需的能量)为-10.19eV 的状态时,所发射的光子的能量为 (A )2.56 eV (B )3.41 eV (C )4.26 eV (D )9.34 eV [ A ] 4. 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h . (B) )/(eRB h . (C) )2/(1eRBh . (D) )/(1eRBh . [ A ] 5. 关于不确定关系 ≥??x p x ()2/(π=h ),有以下几种理解: (1) 粒子的动量不可能确定. (2) 粒子的坐标不可能确定. (3) 粒子的动量和坐标不可能同时准确地确定. (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子. 其中正确的是: (A) (1),(2). (B) (2),(4). (C) (3),(4). (D) (4),(1). [ C ] 6.描述氢原子中处于2p 状态的电子的量子态的四个量子数(n ,l ,m l ,m s )可能取值为 (A )(3,2,1,-21) (B )(2,0,0,21 ) (C )(2,1,-1,-21) (D )(1,0,0,2 1 )

量子力学之谬

量子力学之谬 曲昭伟 吉林大学教授博士生导师 一、引言 量子力学被称为现代科学的基础,它和相对论一道被称为二十世纪物理学的两大里程碑。 在现代科学研究中,人们已经形成了这样的思维定式:先提出一个理论,然后做一个预言。一旦这个预言被证实了(哪怕是所谓的证实),就证明这个理论是对的。如果这个理论是由一个权威提出来的,那么以后就只能不断去证明它是对的。证明它不对的文章,永远也不能发表了。 一个理论的对错取决于它到底错没错,而不是一味地说它多么成功,更不要说物理学家建立它一定是有根据的。当初提出地心说也是有根据的。在一个理论之上建立的其他理论的多少以及获诺奖的多少也绝对不是该理论是否正确的依据。一个理论到底错没错搞清楚了,成功属不属于它自然就有答案了。如果一个理论的根基都错了,再说什么自恰或被多少个实验证实了,都是荒唐的。这是最基本的逻辑。 科学讲究逻辑+实证,逻辑在先。合乎逻辑的,它反映的未必是客观世界的真实情景,还必须要经过实证。不合乎逻辑的,一定是错误的,根本无需实证。说不合乎逻辑的理论通过了实验验证,因而认为该理论是正确的,是十分荒唐的。要证明一个理论是对的,一千个例子也不够充分。要证明一个理论是错的,只要证明它不合逻辑或举出一个反例足矣。 爱因斯坦为什么要寻找隐变量?当表示一个粒子状态的变量全部给定或测定后,这个粒子的状态就唯一确定了。当表示一个粒子状态的全部变量中有没有给定的变量时,比如给定了位置、速度,没有给定加速度,那么这个粒子的状态就没有完全确定,不同的加速度对应着不同的状态。你在给定位置测得给定速度的粒子可能对应不同的加速度,即对应不同的状态。实验测得的不同状态要么是不同粒子的状态,要么是同一粒子不同时刻的状态,并不是同一物体同一时刻对应多个状态,更不是什么隐变量取不同值造成了同一粒子状态变量取不同值。爱因斯坦一面说上帝不掷骰子,一面因所谓的叠加态去寻找隐变量,这本身就是自相矛盾的。他因此败给了玻尔也就不奇怪了。 二、量子力学基础中的问题 我下面要谈的是量子力学基础中的问题,包括哥本哈根学派的解释问题,但不仅仅是哥本哈根学派的解释问题。 1. 关于量子 由于Wien的黑体辐射公式在低频部分与实验结果有明显偏差,Planck提出了一个新的黑体辐射公式(Planck公式)。他发现,如果作如下假设,就可以从理论上推出他找到的黑体辐射的公式。这个假设是:对于一定频率 的电磁辐射,

量子力学和经典力学的区别与联系(完整版)

量子力学和经典力学的区别与联系 量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系 三、目录 摘要............................................................ ............ ... ... ...... (1) 关键字.................................................................. ...... ... ... ...... (1) 正文..................................................................... ...... ... ... ...... (3) 一、量子力学及经典力学基本内容及理论...... ............ ... ............ ...... ... (3) 经典力学基本内容及理论........................... ...... ......... ...... (3) 量子力学的基本内容及相关理论.................................... ...... (3) 二、量子力学及经典力学在表述上的区别与联系.................. ...... ... ...... (4)

相关主题
相关文档 最新文档