当前位置:文档之家› 谐振变压器过电压

谐振变压器过电压

谐振变压器过电压
谐振变压器过电压

https://www.doczj.com/doc/c35519558.html, 谐振变压器过电压,华天电力是串联谐振装置的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找串联谐振,就选华天电力。

随着电力电子技术的发展,采用高压谐振技术对大容量电气设备进行工频耐压试验已经成为可能,目前已被广泛用于电缆,电容器、发电机等具有大电容的电力设备的交流试验。原理是通过调节铁心磁路的气隙长度,得到连续变化的电感L,使其与被试品对地电容C发生谐振。

谐振变压器在铁磁共振变压器也知道作为一个恒定电压互感器或CVT 。它的任务是把一个输入电压,该电压可以变化高达5 %或10%,并输出一个恒定电压,它是独立的电压变化的。

谐振过电压的持续时间与操作过电压相比要长得多,谐振过电压受到有功负荷的阻尼作用能自动消失,但有些谐振现象能稳定存在,直至谐振条件遭到破坏,如电网接线方式改变等。常见的谐振过电压有:铁磁谐振过电压、凸极点及参数谐振过电压、断线谐振过电压、定相引起的谐振过电压、电压互感器与断路器均压电容或网络对地电容的谐振过电压、配电变压器一点接地引起的谐振过电压等。

变压器谐振过电压

由于变压器各段绕组的等值回路为电感、电容与电阻。这样的回路具有固定的自然谐振频率,从有关部门对7台多绕组与5台自耦降压变压器、9台升压变压器的测定数据可知,该频率范围很宽,约为数千赫兹至几百千赫兹;且其中60%以上都小于lOOkHz,回路的Q值最高约为30,衰减系数为0.7~0.9,很小。此时,在受到某一特殊的激发后,如电网由于操作或故障引起过电压,且满足以下情况,就有可能在其局部绕组发生谐振过电压,并造成变压器故障。

https://www.doczj.com/doc/c35519558.html,

(1)引起变压器谐振过电压的原因。

1)近区故障。

2)从短路容量大的母线处向短路线路一变压器组充电。

3)在断开带电抗器负荷的变压器时,断路器发生重燃。

4)切断变压器励磁涌流。

(2)防止变压器谐振过电压的措施。

1)研究在高电压、大容量变压器内采用氧化锌避雷器以限制谐振过电压。

2)尽量能改善保护变压器的避霄器性能,例如将带间隙的阀型避雷器改为氧化锌避雷器,并在满足选择避雷器的基本条件下,选用额定电压低一些的氧化锌避雷器。

3)对高电压、大容量变压器尽可能不使用分接头,必要时也仅用调整范围不大的无励磁调压变压器。

4)对单一的线路一变压器组的变电站,应特别加强变电站进线段的防雷保护。

5)向线路一变压器组送电时,如变压器高压侧有断路器,则先向线路充电,后由该断路器向变压器充电。

6)应避免操作仅带电抗器负荷的变压器,变压器三次绕组连接的电抗器应能自动投切。

7)设计选型及整定变压器保护时,应避免因变压器充电励磁涌流而误动作。

相关下载资料:https://www.doczj.com/doc/c35519558.html,/140/index.html

相关产品视频:https://www.doczj.com/doc/c35519558.html,/140/GPXZ-L-video.html

产品检定证书:https://www.doczj.com/doc/c35519558.html,/140/jdzs_140.rar

产品说明书:https://www.doczj.com/doc/c35519558.html,/140/GPXZ-L.rar

https://www.doczj.com/doc/c35519558.html,

串联谐振单相全桥逆变电路的设计

本次课程设计的主要目的是设计一个输出电压可调的串联谐振单向全桥逆变电路,然后可以用于对工件的感应加热、感应加热电源等方面。 本次设计的单相全桥逆变电路由四只晶闸管构成,将直流电压Ud 逆变为中频方波电压,并将它加到负载电路。负载电路是由感应线圈和补偿电容组成的串联振荡电路,对工件进行感应加热,通过电感的电流接近正弦波形。而晶闸管的导通,则由TCA785组成的触发电路产生的触发脉冲来触发其导通。通过移相方式来调节主电路输出电压脉冲的宽度。由于晶闸管逆变装置在逆变过程中会产生过电压、过电流,故又对单相交流调压电路设计了一套保护电路。 在进行主电路的设计时,根据主电路的输入、输出参数来确定各个电力电子器件的参数,并进行器件的选择,以使设计的主电路能够达到要求的技术指标,并完成相应的功能。 关键词:单相全桥逆变电路、晶闸管、触发电路、保护电路、电压累加

1引言 (1) 1.1问题的提出 (1) 1.2技术指标和设计要求 (1) 1.2.1 技术指标 (1) 1.2.2 设计要求 (1) 2串联谐振单相全桥逆变电路的设计 (1) 2.1主电路及其工作原理 (1) 2.2串联谐振逆变电路的电压累加 (3) 3主电路电力电子器件参数的计算 (6) 3.1主电路电阻、电容、电感的取值 (6) 3.2晶闸管额定值的计算 (7) 4触发电路的设计 (8) 5保护电路的设计 (10) 5.1过电压保护 (10) 5.1过电流保护 (10) 6总结 (11) 7心得体会 (11) 参考文献 (12)

1引言 1.1 问题的提出 随着工厂对工件加热设备的温度控制精度不断提高,普通的加热设备已经不能满足要求。因此,就需要对设备的加热原理进行改进。本次设计的串联谐振单相全桥逆变电路的负载电路是由感应线圈和补偿电容组成的串联振荡电路,对工件进行感应加热,其功能与一般的单相全桥逆变电路有所不同,而且它的触发电路与其他电路的触发电路相比起来,有更优良的性能,达到对晶闸管通断的更好控制。 1.2 技术指标和设计要求 1.2.1 技术指标 (1) 输入参数:三相交流电压A u 、B u 、C u (2) 输出参数:交流电压o u 1.2.2 设计要求 串联谐振单相全桥逆变电路的设计 晶闸管额定电压、电流表达式的推导 触发电路的设计 保护电路的设计 绘制主电路、触发电路和保护电路的电路图 2串联谐振单相全桥逆变电路的设计 2.1主电路及其工作原理 串联补偿逆变电路的结构如图1所示。 它由三相晶闸管全控整流桥、平波电感d L 、滤波电容d C 、单相全控桥式逆变电路、续流二极管、串联谐振逆变器负载构成。 三相晶闸管全控整流桥将正弦的工频交流电整流成脉动的直流电d U ,可通过调节直流电压d U 来调节负载电流。平波电感d L 在此起切断直流通路的作用。

变压器的过电压保护

变压器是电网变换电压和传送电能的电气设备,是电网向用户供电的载体,变压器的安全可靠运行情系万家灯火。然而在电网运行中由于诸多原因会产生过电压,而变压器的绝缘水平相对比较薄弱,在变压器损坏的原因中,过电压造成损坏的概率最大。在电网运行中因某种原因产生过电压,必将导致变压器的损坏,其绝缘水平主要由雷电击耐受电压和工频耐受电压来决定。 过电压系指对绝缘有危险的突然电压升高,这种非正常的电压升高,其幅值可达设备额定电压的几倍以上,严重威胁变压器绝缘的安全,若过电压持续时间较长,必将造成变压器的损坏。为确保电网运行中变压器的安全,除选用优质的变压器外,还要对变压器设置合理有效的过电压保护措施。 一、电网过电压产生的机理 电力系统的过电压一般可分为暂时过电压(工频过电压、谐振过电压、弧光接地过电压)、操作过电压、雷电过电压等。暂时过电压主要由单相接地故障、谐振等引起的。谐振过电压是电网中电气设备发生故障,或频繁操作设备引起电网中电感和电容匹配而构成谐振回路,在一定条件激发下产生电能、磁能转换而引起的过电压,如是变压器的励磁电感和对地电容产生的铁磁谐振,其引起的过电压会更高。弧光接地过电压系因系统发生单相接地故障,在接地点因弧光放电而引起的过电压。 操作过电压系因电网状态的突变而引起电磁场能量的急剧变化,或投切大容量设备,或是对设备的操作失误等而引起能量快速释放时产生的过电压。主要表现在空载线路、变压器的开断和重合闸等。 雷电过电压是大气中带有大量正电荷雷云与带负电荷雷云相遇时,发生雷云放电而引起的过电压。雷电过电压可分为直击雷过电压和感应过电压。直接雷过电压是雷云直接对设备、构件等导体的放电产生的,而感应过电压则是电磁场的急剧变化而产生的。 二、电网过电压对变压器的危害 电网中产生的几种过电压,真正对变压器绝缘和保护装置产生影响的,主要取决于过电压的波形。幅值和持续时间。考核设备绝缘水平的电压波形有三种:短波前的雷电波、长波前的操作波和低频电压波。设备绝缘对雷电、操作或工频电压的耐受能力应由相应的波形电压来检验。 在过电压对变压器造成损坏的事故中,雷电过电压导致绝缘击穿损坏的机率最多。当电网遭受雷击时,在线路导线上会产生一种振幅很大,作用时间很短的非周期性脉冲电压波,它以光速沿线传输,先在线路避雷器放电,余波经变压器入地,当余波经变压器保护的避雷器时,将产生电压降(残压)而作用在变压器上。假如变压器与避雷器之间存在一定电气距离,残压在进入前会在这段距离的导线振荡而导致电压的升高,造成加在变压器上电压高于残压,从而对变压器绝缘安全造成威胁。所以在安装变压器的保护避雷器时,应尽量实现避雷器和变压器保持零距离。

中频串联谐振电源原理

中频串联谐振电源原理 串联谐振逆变器也称电压型逆变器,其中频串联谐振电源原理图如图2.2所示。串联谐振型逆变器的输出电压为近似方波,由于电路工作在谐振频率附近,使振荡电路对于基波具有最小阻抗,所以负载电流近似正弦波同时,为避免逆变器上、下桥臂间的直通,换流必须遵循先关断后导通的原则,在关断与导通间必须留有足够的死区时间。 图2.2 串联逆变器结构 图2.3负载输出波形 当串联谐振逆变器在低端失谐时(容性负载),它的波形见图2.3(a)。工作在容性负载状态时,输出电流的相位超前于电压相位,因此在负载电压仍为正时,电流先过零,上、下桥臂间的换流则从上(下)桥臂的二极管换至下(上)桥臂的

MOSFET。由于MOSFET寄生的反并联二极管具有慢的反向恢复特性,使得在换流时会产生较大的反向恢复电流,而使器件产生较大的开关损耗,而且在二极管反向恢复电流迅速下降至零时,会在与MOSFET串联的寄生电感中产生大的感生电势,而使MOSFET受到很高电压尖峰的冲击当串联谐振型逆变器在高端失谐状态时(感性负载),它的工作波形见图2.3(b)。工作在感性负载状态时,输出电流的相位滞后于电压相位,其换流过程是这样进行的,当上(下)桥臂的MOSFET关断后,负载电流换至下(上)桥臂的反并联的二极管中,在滞后一个死区时间后,下(上)桥臂的MOSFET加上开通脉冲等待电流自然过零后从二极管换至同桥臂的MOSFET.由与MOSFET中的电流是从零开始上升的,因而基本实现了零电流开通,其开关损耗很小。 另一方面,MOSFET关断时电流尚末过零,此时仍存在一定的关断损耗,但是由于MOSFET关断时间很短,预留的死区不长,并且因死区而必须的功率因数角并不大,所以适当地控制逆变器的工作频率,使之略高于负载电路的谐振频率,就可以使上(下)桥臂的MOSFET向下(上)桥臂的反并联的二极管换流其瞬间电流也是很小的,即MOSFET关断和反并联二极管开通是在小电流下发生的,这样也限制了器件的关断损耗。上述分析可知,串联谐振型逆变器在适当的工作方式下,开关损耗很小因而,可以工作在较高的工作频率下这也是串联谐振型逆变器在半导体高频感应加热电源中受到更多重视的主要原因. 中频串联谐振电源电路的功率调节原理 电源工作在开关频率大于谐振频率状态,负载呈感性,负载电流滞后于输出电压r角。所以在高频条件下输出功率表达式为:

浅析变压器的过电压现象及其保护措施

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 浅析变压器的过电压现象及其保护措施 论文导读:变压器运行时,如果电压超过它的最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。匝间电容相对于对地电容愈大时,则电压的起始分布愈均匀,电压梯度越小,因此增加匝间电容是有效的过电压保护措施。 关键词:变压器,过电压,保护措施 变压器运行时,如果电压超过它的最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。过电压分为内部过电压和大气过电压两种。输电线路直接遭雷击或雷云放电时,电磁场的剧烈变化所引起的过电压称为大气过电压(外部过电压);当变压器或线路上的开关合闸或拉闸时,因系统中电磁能量振荡和积聚而产生的过电压称为内部过电压。变压器的这两种过电压都是作用时间短促的瞬变过程。科技论文。内部过电压一般为额定电压的3.0-4.5倍,而大气过电压数值很高,可达额定电压的8-12倍,并且绕组中电压分布极不均匀,端头部分线匝受到的电压很高。因此,必须采取必要的措施,防止过电压的发生和进行有效的保护。 过电压在变压器中破坏绝缘有两种情况,一是将绕组与铁心(或油箱)之间的绝缘高压绕组与低压绕组之间的绝缘(这些绝缘称为主绝缘)击穿;另一种是在同一绕组内将匝与匝之间或一段绕组与另一段绕之间的绝缘(这些绝缘称为纵绝缘)击穿。由于过电压时间极短,电压从零上升到最大值再下降到零均在极短的时间内完成,因而具有高频振荡的特性,其频率可达100kHZ以上。在正常运行时,电网的频率是50HZ,变压器的容抗很大,而感扩ωL很小,因此可以忽略电容的影响,认为电流完全从绕组内部

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算 1 2 3 4 5 侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足 0.1

I n 为变压器的二次额定电流, K rel 为可靠系数,K rel =1.3—1.5; f i(n)为电流互感器在额定电流下的比值误差。f i(n)=±0.03(10P ),f i(n)=±0.01(5P ) ΔU 为变压器分接头调节引起的误差(相对额定电压); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3) I res.0(4) a I Δm 2=0.05; b 、 式中的符号与三圈变压器一样。 最大制动系数为: K res.max =res unb.max rel I I K Ires 为差动的制动电流,它与差动保护原理、制动回路的接线方式有关,对对于两圈变压器I res = I s.max 。 比率制动系数:

K= res.max res.0res.max op.0res.max /I I -1/I I -K 一般取K=0.5。 (5)、灵敏度的计算 在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流I s.min ,同时计算相应的制动电流I res ;在动作特性曲线上查出相应的动作电流I op ;则灵敏系数K sen 为: K sen = op I I 要求K sen ≥(6)(7 式中:I K I e (81、低电压的整定和灵敏度系数校验 躲过电动机自起动时的电压整定: 当低电压继电器由变压器低压侧电压互感器供电时, U op=(0.5~0.6)U n 当低电压继电器由变压器高压侧电压互感器供电时, U op=0.7U n 灵敏系数校验

串联谐振系统讲解

在电阻、电感及电容所组成的串联电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的电压U与电流I的相位相同,电路呈现纯电阻性,这种现象叫串联谐振。当电路发生串联谐振时电路的阻抗Z=√R^2 +(XC-XL)^2=R,电路中总阻抗最小,电流将达到最大值。 串联谐振的三大应用 高压大电容量设备进行交流耐压试验时,试验变压器容量要求非常大,试验设备笨重,而 应用串联谐振原理可以利用电压及容量小得多的设备产生所需的试验电压,满足试验要求。下面三新电力给大家介绍一下串联谐振试验装置在各个领域的应用。 1.在电缆试验中的应用 城乡电网中电缆的大量使用,其故障时有发生。为保证交联电缆的安全运行,国家电网公司对电缆交接和预防性试验做出了新的规定,用交流耐压试验替代原来的直流耐压试验,以 避免直流试验的累积效应对电缆造成损伤。

国际大电网会议(CIGRE)21.09工作组的建议导则提出高压挤包绝缘电缆的现场试验采用DAXZ串联谐振试验系统,频率范围为30~300Hz。并在1997年发表的题为“高压橡塑电缆系统敷设后的试验”的总结报告中明确指出以下3条。 ①由于直流电场强度按电阻率分布,而电阻率受温度等影响较大,同时耐压试验过程中,终端头的外部闪络引起的行波可能造成绝缘损坏。 ②直流耐压试验在很高电压下,难以检出相间的绝缘缺陷。 ③直流电压本身容易在电缆内部集起空间电荷,引起电缆附件沿绝缘闪络,因波过程还会产生过电压,这些现象迭加在一起,使局部电场增强,容易形成绝缘弱点,在试验过程中可能导致绝缘击穿,并可能在运行中引起事故。 很多电缆在交接试验中按GB50150-2006标准进行直流耐压试验顺利进行,但投运不久就发生绝缘击穿事故,正常运行的电缆被直流耐压试验损坏的情况也时有发生。交流耐压试验因其电场分布符合运行实际情况,故对电缆的试验最为有效。 通常交流电力电缆的电容量较大,试验电流也很大,调感式设备的体积将非常巨大并且电感调节也很困难,而调频式装置则灵活性更强,更易于实现。因此,电缆现场交流耐压试验多利用变频谐振试验设备。三新可根据客户需求制造10KV、35KV、110KV、220KV、500KV 电压等级的串联谐振试验装置。 2.在GIS设备中的应用 气体绝缘开关设备在工厂整体组装完成以后或分单元进行调整试验,试验合格后以分单元运输的方式运往现场安装。运输过程中的振动、撞击等可能导致GIS元件或组装件内坚固件松动或移位;安装过程中,在联结、密封等工艺处理方面可能失误,导致电极表面刮伤或安装错位引起电极表面缺陷;安装现场可能从空气中进入悬浮尘埃。导电微粒杂质等,这些在安装现场通过常规试验将难以检查出来,对GIS的安全运行将是极大的威胁。 由于试验设备和条件所限,早期的GIS产品多数未进行严格的现场耐压试验。事故统计表明没有进行现场耐压试验的GIS大都发生了事故。因此,GIS必须进行现场耐压试验。 GIS的现场耐压主要包括交流电压、振荡操作冲击电压和振荡雷电冲击电压等3种试验方法。其中交流耐压试验是GIS现场耐压试验最常见的方法,它能够有效地检查异常的电场结构(如电极损坏)。 目前,由于试验设备和条件所限,现场一般只做交流耐压试验。IEC517和GB7674认定对SF6气体绝缘试验电压频率在10~300Hz范围内与工频电压试验基本等效。国内外大多采用调频式串联谐振耐压试验装置进行GIS现场交流耐压试验。

谐振型逆变器原理分析

谐振型逆变器原理分析 【摘要】本文以固态高频感应加热电源中的谐振型逆变器为主要研究对象,分析了经典H桥型串联谐振逆变电路和并联逆变电路的结构特点及工作状态。 【关键词】功率MOSFET;串联谐振;并联谐振 所谓“逆变”是相对整流而言的,把直流电能转变为所需频率的交流电能,就是逆变。逆变器的电路型式繁多,分类方法不一。如按照输出相数,可分为单相、三相和多相;按电路结构,可分为全桥、半桥和非桥式等。 下面将具体介绍串联谐振式电压型逆变器和并联谐振式电流型逆变器的拓扑结构、工作原理、谐振槽路等特征。 1.串联谐振式电压型逆变器结构 1.1串联谐振式电压型逆变器的拓扑 串联谐振式电压型逆变器的基本电路如图1-1所示,以负载线圈(L和R)和功率因数补偿电容器C串联后作为逆变桥的负载,这种利用负载电路串联谐振的原理工作的逆变器,称为串联谐振式电压型逆变器。此种逆变器负载电流波形为近似正弦波。 1.2串联谐振式电压型逆变器的工作原理 串联谐振逆变器的负载为串联谐振负载,通常需电压源供电。交替开通和关断逆变器上的全控器件就可以在逆变器的输出端获得交变的方波电压,其电压幅值取决于逆变器的输入端电压值,频率取决于器件的开关频率。 逆变桥包括由4个功率MOSFET和与其反并联的快速二极管组成的四个桥臂,其工作时,轮流触发V1,3和V2,4,使负载得到高频电流。 1.3串联谐振式电压型逆变器的谐振槽路分析 串联逆变器的负载电路即为串联谐振电路,它由电容器C、电感L和电阻R 串联组成。谐振时,串联电路各参数关系如下: 谐振频率f= 谐振时等效阻抗R=Z=R 串联电路电流I=I= 电感L上电压U=jωLI=jωL=jQU 电容器C上电压U=×=-jQU 特征阻抗X=X=X=ωL=L=或X=QR 负载有效功率P=I R= 电容器的无功功率Q=IU=Q=QP<br>电感的无功功率Q=IU=QP<br>1.4串联谐振式电压型逆变器的特征 串联谐振式电压型逆变器具有如下特征: ①容易投入负载电力。它的这一特性表明,采用低压开关器件并联,就可构成这种系统,因而实用性强。 ②负载匹配容易。在设计时,只要把匹配变压器的漏感简单地加进负载电感就可达到目的,设计的自由度大。 2.并联谐振式电流型逆变器 2.1并联谐振式电流型逆变器的拓扑结构 并联谐振式电流型逆变器的拓扑结构如下图2-1所示,把功率因数补偿电

变压器的过电压现象及其保护措施

变压器的过电压现象及其保护措施 1 问题提出 变压器运行时,如果电压超过其最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。过电压分为操作过电压和大气过电压两种。输电线路直接遭雷击或雷云放电时,电磁场的剧烈变化所引起的过电压称为大气过电压;当变压器或线路上的开关合闸或拉闸操作时,因系统中电磁能量振荡和积聚而产生的过电压称为操作过电压。变压器的这两种过电压都是作用时间短促的瞬变过程。 操作过电压一般为额定电压的3.0~4.5倍,而大气过电压数值很高,可达额定电压的8~12倍,并且绕组中电压分布极不均匀,进线端头部分线匝承受的电压很高。因此,必须采取必要的措施,防止过电压的发生和进行有效的保护。 过电压在变压器中破坏绝缘有两种情况,一是将绕组与铁心(或油箱)之间的绝缘、高压绕组与低压绕组之间的绝缘(这些绝缘称为主绝缘)击穿;另一种是在同一绕组内将匝与匝之间或一段绕组与另一段绕组之间的绝缘击穿。 由于过电压时间极短,电压从零上升到最大值再下降到零均在极短的时间内完成,因而具有高频振荡的特性,其频率可达100kHz以上。在正常运行时,电网的频率是50Hz,变压器的容抗很大,而感抗ωL很小,因此可以忽略电容的影响,电流完全从绕组内部流过。 2 原因分析

以下简单说明两种不同类型过电压产生的原因: (1)操作过电压 在一般的电网中,使用的绝大多数是降压变压器,下面以降压变压器空载拉闸操作为例说明操作过电压产生的原因。 根据变压器参数的折算法可知,把二次侧(低压侧)电容折算到一次侧(高压侧)时,电容折算值很小,因此二次侧电容的影响可以略去不计。这就是说,空载时可以忽略二次侧的影响。就一次绕组来说,由于每单位长度上的对地电容CFe''是并联的,故对地总电容值为: CFe=ΣCFe'' 由于一次侧单位长度上的匝间电容Ct''是串联的,故其匝间总电容值为: Ct=1/(Σ1/Ct'') 在电力变压器中,通常CFe>>Ct,所以定性分析时,匝间电容的影响也可略去不计。 空载变压器从电网上拉闸时,如果空载电流的瞬时值不等于零而是某一数值Ia,这时相应的外施电压瞬时值为Ua。于是在拉闸操作瞬间,一次侧电感L1中储藏的磁场能量为1/2(L1Ia2),电容CFe上储藏的电场能量为1/2(CFeUa2)。由于这时变压器的电路是由电感L1和电容CFe并联的电路,故在拉闸操作瞬间,回路内将发生电磁振荡过程。在振荡过程中,当某一瞬间电流等于零时,此时磁场能量全部转化为电场能量,由电容吸收,电容上的电压便升高到最大值Ucmax。 当拉闸操作电流和电容上的电压一定时,绕组的电感愈大,对地

零序电流保护的整定计算-精选.

零序电流保护的整定计算 一、变压器的零序电抗 1、Y/△联接变压器 当变压器Y侧有零序电压时,由于三相端子是等电位,同时中性点又不接地,因此变压器绕组中没有零序电流,相当于零序网络在变压器Y侧断开(如图1所示)。 图1:Y/△联接变压器Y侧接地短路时的零序网络 2、Y0/△联接变压器 当Y0侧有零序电压时,虽然改侧三相端子是等电位,但中性点是接地的,因此零序电流可以经过中性点接地回路和变压器绕组。

每相零序电压包括两部分:一部分是变压器Y0侧绕组漏抗上的零序电压降I0XⅠ,另一部分是变压器Y0侧的零序感应电势I lc0X lc0(I lc0为零序励磁电流,X lc0为零序励磁电抗)。由于变压器铁芯中有零序磁通,因此△侧绕组产生零序感应电势,在△侧绕组内有零序电流。由于各相零序电流大小相等,相位相同,在△侧三相绕组内自成回路,因此△侧引出线上没有零序电流,相当于变压器的零序电路与△侧外电路之间是断开的。所以△侧零序感应电势等于△侧绕组漏抗上的零序电压降I0’XⅡ。 Y0/△联接变压器的零序等值电路如图2所示。由于零序励磁电抗较绕组漏抗大很多倍,因此零序等值电路又可简化,如图3所示。在没有实测变压器零序电抗的情况下,这时变压器的零序电抗等于0.8~1.0倍正序电抗。即:X0=(0.8~1.0)(XⅠ+XⅡ)= (0.8~1.0)X1。 本网主变零序电抗一般取0.8 X1。

图2:Y0/△联接变压器Y0侧接地短路时的零序网络 图3:Y0/△联接变压器Y0侧接地短路时的零序网络简化 二、零序电流保护中的不平衡电流 实际上电流互感器,由于有励磁电流,总是有误差的。当发生三相短路时,不平衡电流可按下式近似地计算: I bp.js=K fzq×f wc×ID(3)max 式中K fzq——考虑短路过程非周期分量影响的系数,当保护动作时间在0.1S以下时取为2;当保护动作时间在0.3S~0.1S时取为1.5;动作时间再长即大于0.3S时取为1; f wc——电流互感器的10%误差系数,取为0.1; I D(3)max——外部三相短路时的最大短路电流。 最新文件仅供参考已改成word文本。方便更改

串联谐振在工作中的几个特点

串联谐振在工作中的几个特点 串联谐振顾名思义就是在电阻、电感和电容的串联电路中,出现电路的端电压和电路总电流同相位的现象,叫做串联谐振。串联谐振的特点是指电路呈纯电阻性,端电压和总电流同相,此时阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称电压谐振。在电力工程上,由于串联谐振会出现过电压、大电流,以致损坏电气设备,所以要避免串联谐振。在电感线圈与电容器并联的电路中,出现并联电路的端电压与电路总电流同相位的现象,叫做并联谐振。并联谐振电路总阻抗最大,因而电路总电流变得最小,但对每一支路而言,其电流都可能比总电流大得多,因此电流谐振又称电流谐振。并联谐振不会产生危及设备安全的谐振过电压,但每一支路会产生过电流。 串联谐振在工作中的五大特点是什么? 特点一:电稳定性、可靠性高。系统采用进口功率元件作为功率变换的核心,电压输出和频率输出稳定,电磁兼容设计合理,保护功能完善,经过多次高压直接对地短路的测试,系统仍然保持完好,同时系统也有很强的过载能力。 特点二:自动调谐功能强大。系统自动调谐时,从30Hz到300Hz自动扫频,显示扫频曲线,用户能直观地看到系统调谐过程;扫频完成后,系统根据扫频初步找到的谐振频点,在其±5Hz范围内以0.01Hz为分辨率进行频率细扫,最后精确锁定谐振频率

特点三:支持多种试验模式。系统支持"自动调谐+手动调压","自动调谐+自动调压","手动调谐+手动调压"等试验模式,推荐使用"自动调谐+手动调压"模式,既能快速找到谐振点,又能通过手动调压控制试验过程,安全性更高。 特点四:系统人机交互界面友好。试验参数设置、试验控制、试验结果等同屏显示,直观清晰,并具有自动计时及操作提示功能。全触摸屏操作及显示,具备试验数据保存和查询功能 特点五:保护功能完善。具备零位保护(电压输出控制旋钮不在零位时,禁止系统启动),过压保护,过流保护,闪络保护等功能,保证了系统的可靠性。 电气装置试验安全措施 电气设备的预防性试验是判断设备能否继续投入运行,预防设备损坏及保证安全运行的重要措施。凡电气的设备,应根据本规程的要求进行预防性试验。本文主要介绍电气装置试验安全措施。 1)电气试验人员应充分了解被试验设备及所用仪器的性能。试验前应对设备及接线进行检查,电流互感器二次回路严防开路,电压互感器二次回路严防短路。 2)高压试验设备的外壳必须可靠接地,未接地前不得进行试验。 3)在现场进行高压试验时,工作区域应设临时遮拦,挂警告牌,并设专人警戒,禁止有人接近被试物体。 4)高压试验设备的操作人员应戴绝缘手套,穿绝缘靴或站在绝缘台上。高压试验时,应有监护人监视操作,无监护人员时,不得进行操作。

主变压器中性点过电压保护配置原则

由于电力系统运行的需要,110~220 k V有效接地系统的变压器中性点大部分采用不接地运行方式,变压器一般采用分级绝缘结构,绝缘水平相对较低,所以不接地运行的变压器中性点需要考虑对雷电过电压、操作过电压和暂时过电压的保护。 根据DL/T620—1997《交流电气装置的过电压保护和绝缘配合》的有关规定,提出以下保护配置意见: a)对110 kV和220 k V有效接地系统中可能偶然形成的局部不接地系统(如接地变压器误跳开关等原因引起)、低压侧有电源的变压器不接地中性点应装设间隙保护。 b)经验算,如断路器因操作机构故障出现非全相和严重不同期产生的铁磁谐振过电压可能危及中性点为标准分级绝缘、运行时中性点不接地的110 kV和220 k V变压器的中性点绝缘,宜在中性点装设间隙。 c)变压器中性点间隙值的确定应综合考虑 ———间隙的标准雷电波动作值小于主变压器中性点的标准雷电波耐受值;———因接地故障形成局部不接地系统时间隙应动作; ———系统以有效接地方式运行、发生单相接地故障时,间隙不应动作。 2变压器中性点保护配置方式的分析 根据以上配置原则,参照广东省电力试验研究所的试验数据,直径16 mm、水平布置、半球头圆钢的棒-棒间隙放电电压与间隙距离的关系见图1,在Ucp(1±σ)和U50%(1±σ)区间内放电的概率为 99.7%[1]。 2.1变压器中性点绝缘水平的选取 根据GB

311.7-1998《高压输变电设备的绝缘配合使用导则》,对3~220 k V油纸绝缘设备,耐受操作冲击电压的能力为耐受雷电冲击的 0.83倍,其值远超过预期操作过电压水平,所以绝缘水平主要由雷电过电压决定,不需考虑操作过电压的影响。 取中性点绝缘老化累计安全系数为 0.85,参考G B311.1—1997《高压输变电设备的绝缘配合》,取雷电冲击安全系数为0.714,工频电压安全系数为 1.0,则中性点综合耐受雷电冲击裕度系数为 0.6,综合耐受工频裕度系数为 0.85。 主变压器中性点可能出现的最大暂时过电压见表1。 2.2中性点保护的配置方式 我国变压器中性点保护方式一般有: 单独间隙、单独避雷器、间隙与避雷器并联。下面结合常用中性点避雷器型号,对各种绝缘等级的变压器中性点保护方式(见表2)进行讨论。 2.2.135 kV绝缘等级 35 kV中性点绝缘水平为雷电冲击耐受电压185 k V,工频耐受电压85 k V;考虑安全系数后,绝缘水平为雷电冲击耐受电压111 kV,1 min工频耐受电压73 k V。 单独采用110 mm间隙时,间隙雷电冲击放电电压为93~112 k V,工频放电电压为47~57 k V。雷电冲击放电电压和工频放电电压均小于中性点绝缘水平,中性点有效接地系统最大暂时工频过电压下间隙不动作,中性点不接地系

2三段式电流保护的整定及计算

2三段式电流保护的整定计算 1、瞬时电流速断保护 整定计算原则:躲开本条线路末端最大短路电流 整定计算公式: 式中: Iact——继电器动作电流 Kc——保护的接线系数 IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。 K1rel——可靠系数,一般取1.2~1.3。 I1op1——保护动作电流的一次侧数值。 nTA——保护安装处电流互感器的变比。 灵敏系数校验:

式中: X1— —线 路的 单位 阻抗, 一般 0.4Ω /KM; Xsmax ——系统最大短路阻抗。 要求最小保护范围不得低于15%~20%线路全长,才允许使用。 2、限时电流速断保护 整定计算原则: 不超出相邻下一元件的瞬时速断保护范围。所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。故: 式中: KⅡrel——限时速断保护可靠系数,一般取1.1~1.2; △t——时限级差,一般取0.5S; 灵敏度校验:

规程要求: 3、定时限过电流保护 定时限过电流保护一般是作为后备保护使用。要求作为本线路主保护的后备 以及相邻线路或元件的远后备。 动作电流按躲过最大负荷 电流整定。 式中: KⅢrel——可靠系数,一般 取1.15~1.25; Krel——电流继电器返回系数,一般取0.85~0.95; Kss——电动机自起动系数,一般取1.5~3.0; 动作时间按阶梯原则递推。 灵敏度分别按近后备和远后备进行计算。 式中: Ikmin——保护区末端短路时,流经保护的最小短路电流。即:最小运行方式下,两相相间短路电流。 要求:作近后备使用时,Ksen≥1.3~1.5 作远后备使用时,Ksen≥1.2

串联谐振试验常见问题及解决方法

https://www.doczj.com/doc/c35519558.html, 串联谐振试验常见问题及解决方法近年来,采用变频串联谐振原理进行交流耐压试验,是变电站高压设备绝缘检验最常 见的试验方法,这种试验装置(代表型号HZXZ 变频串联谐振耐压装置)得到广泛的应用。 本文希望通过总结串联谐振试验过程中遇到的常见问题,从而分析原因、得到常见问题的解 决方法。 串联谐振试验常见的问题有哪些呢? 1、变频源主机找不到谐振点。 2、变频源主机复位。 3、装置Q值偏低,即电压升不上去,或升不高。 4、供电电源跳闸。 串联谐振试验装置的构成及特点 HZXZ型串联谐振装置是运用串联谐振原理,使回路产生谐振电压加到试品上,串联 谐振装置目前分为变频式和调感式两大类。 HZXZ型串联谐振装置主要由变频源(变频式)、高压电抗器、可调式电抗器(调感 式)、电容分压器、激励变压器等几部分组成。广泛用于电力电缆、电力变压器、水力发电 机、GIS等大容量,高电压的电容性试品的交接和预防性试验! HZXZ型串联谐振装置具有需求电源容量小、设备重量体积小、改善输出波形、防止 短路电流烧伤、不会出现恢复过电压等优点。完全满足GB50150-2006以及 DL/T849.6-2004标准中各项指标的要求。

https://www.doczj.com/doc/c35519558.html, 图1、HZXZ串联谐振成套试验装置 工作中常见的解决方法 1.变频源主机找不到谐振点。 原因: 1)系统谐振点在主机的输出频率范围之外; 2)系统接线错误; 3)系统未可靠接地; 4)高压采样反馈信号开路或连接不可靠; 5)试品有故障。 排除方法: 1)检查接地装置可靠,接地连接线是否有断开点;

https://www.doczj.com/doc/c35519558.html, 2)检查励磁变压器的高低压线圈的通断; 3)检查每一只电抗器的通断; 4)检查分压器的信号线的通断; 5)检查分压器的高低压电容臂的通断; 6)装置自身升压时没有谐振点,还需要检查补偿电容器的通断; 2.主机复位 原因:主机供电电源波动;外界强磁场干扰;主机未可靠接地; 3.装置Q值偏低,即电压升不上去,或升不高。 现象: 1)调谐曲线是一条曲线,有较低的尖峰; 2)试验时一次电压较高,高压却较低,甚至在没有升到试验电压时,一次电压已经到达额定电压,回路自动降压; 原因: 1)电抗器与试品电容量不匹配,没有准确找到谐振点; 2)试品损耗较高,系统Q值太低; 3)励磁变压器高压输出电压较低; 4)高压连接线过长或没有采用高压放晕线。 图2、HAXZ型串联谐振木森电气研发生产制造中心 排除方法: 1)将补偿电容器并接入试验回路,加大回路电容量;

主变压器中性点过电压保护配置原则

主变压器中性点过电压保护配置原则 由于电力系统运行的需要,110~220 k V有效接地系统的变压器中性点大部分采用不接地运行方式,变压器一般采用分级绝缘结构,绝缘水平相对较低,所以不接地运行的变压器中性点需要考虑对雷电过电压、操作过电压和暂时过电压的保护。 根据DL/T620—1997《交流电气装置的过电压保护和绝缘配合》的有关规定,提出以下保护配置意见: a)对110 kV和220 k V有效接地系统中可能偶然形成的局部不接地系统(如接地变压器误跳开关等原因引起)、低压侧有电源的变压器不接地中性点应装设间隙保护。 b)经验算,如断路器因操作机构故障出现非全相和严重不同期产生的铁磁谐振过电压可能危及中性点为标准分级绝缘、运行时中性点不接地的110 kV和220 k V变压器的中性点绝缘,宜在中性点装设间隙。 c)变压器中性点间隙值的确定应综合考虑 ———间隙的标准雷电波动作值小于主变压器中性点的标准雷电波耐受值; ———因接地故障形成局部不接地系统时间隙应动作; ———系统以有效接地方式运行、发生单相接地故障时,间隙不应动作。 2变压器中性点保护配置方式的分析 根据以上配置原则,参照广东省电力试验研究所的试验数据,直径16 mm、水平布置、半球头圆钢的棒-棒间隙放电电压与间隙距离的关系见图1,在Ucp(1±σ)和U50%(1±σ)区间内放电的概率为99.7%[1]。 2.1变压器中性点绝缘水平的选取 根据GB 311.7-1998《高压输变电设备的绝缘配合使用导则》,对3~220 k V油纸绝缘设备,耐受操作冲击电压的能力为耐受雷电冲击的0.83倍,其值远超过预期操作过电压水平,所以绝缘水平主要由雷电过电压决定,不需考虑操作过电压的影响。 取中性点绝缘老化累计安全系数为0.85,参考GB311.1—1997《高压输变电设备的绝缘配合》,取雷电冲击安全系数为0.714,工频电压安全系数为1.0,则中性点综合耐受雷电冲击裕度系数为0.6,综合耐受工频裕度系数为0.85。 主变压器中性点可能出现的最大暂时过电压见表1。 2.2中性点保护的配置方式 我国变压器中性点保护方式一般有:单独间隙、单独避雷器、间隙与避雷器并联。下面结合常用中性点避雷器型号,对各种绝缘等级的变压器中性点保护方式(见表2)进行讨论。 2.2.135 kV绝缘等级 35 kV中性点绝缘水平为雷电冲击耐受电压185 k V,工频耐受电压85 k V;考虑安全系数后,绝缘水平为雷电冲击耐受电压111 kV,1 min工频耐受电压73 k V。 单独采用110 mm间隙时,间隙雷电冲击放电电压为93~112 k V,工频放电电压为47~57 k V。雷电冲击放电电压和工频放电电压均小于中性点绝缘水平,中性点有效接地系统最大暂时工频过电压下间隙不动作,中性点不接地系统最大暂时工频过电压下间隙动作,满足保护中性点的要求。推荐采用此保护配置方式。 单独采用Y1.5 W-48/109型避雷器时,避雷器可以耐受中性点有效接地系统最大暂时工频过电压,但裕度较小。在中性点不接地系统最大暂时工频过电压下,避雷器可能损坏。 110 mm间隙与Y1.5 W-48/109型避雷器并联时,满足保护中性点要求。但Y1.5 W -48/109型避雷器非标准型号,在避雷器残压作用下,间隙可能同时动作;在中性点工频

MOSFET串联谐振逆变器控制电路的研究

石家庄铁道大学毕业设计 MOSFET串联谐振逆变器控制电路的研究 2014届继续教育学院 专业机械设计制造及其自动化 学号 学生姓名 指导教师 欲得本设计全部说明书请联系QQ229780692 完成日期2013年11月2 日

题目MOSFET串联谐振逆变器控制电路的研究机械设计制造 专业 班级09级学生姓名 及其自动化 导师 承担指导任务单位 导师职称高级工程师 姓名 一、毕业设计内容 1、MOSFET的使用性能和驱动要求。 2、串联谐振逆变器的结构及工作状态分析。 3、控制电路的分析。 4、控制电路的设计及改进。 二、基本要求 1、条理清楚,原理正确,计算准确。 2、术语要求准确、规范。 3、元件参数选则得当,要有计算依据; 4、原理要难度适当,能够被大部分人接受; 三、进度计划: 2013年9月1日:进行毕业设计指导,组织学员选择设计题目。 2013年9月2日—9日:审定学员毕业设计大纲,发放毕业设计任务书。 2013年9月10日—16日:审查学员毕业设计开题报告,开始撰写毕业设计。 2013年9月17日—10月5日:学员组织材料,撰写初稿。 2013年10月6日—13日:审查初稿,指导学员修改论文。 2013年10月14日—19日:进行二次论文修改指导、定稿。 2013年10月20日—10月24日:审订论文格式,告知打印一式两份。 2013年10月25日—11月2日:最终定稿,告知准备论文答辩。 教研组主任签字时间 2013 年 9 月 2 日

毕业设计开题报告 题目MOSFET串联谐振逆变器控制电路的研究 专业机械设计制造 及其自动化 班级09级学生姓名 一、研究目的和意义 1、MOSFET的使用性能和驱动要求。 2、串联谐振逆变器的结构及工作状态分析。 3、控制电路的分析。 4、控制电路的设计及改进。 谐振逆变器是固态感应加热电源中最重要的组成部分,它通过负载谐振槽路来创造功率器件的零开关(ZVS)或零电流开关(ZCS)条件,所以其开关损耗相对于脉宽调制(PWM)的硬开关模式要小得多,其开关频率可以得到更高的提升以满足被加热负载的需要。由于固态感应加热电源的晶闸管相控整流器的控制技术已经非常成熟,所以固态感应加热电源的控制目前主要集中在对其谐振逆变器的控制上[5]。因而对于控制电路的分析和研究也是非常具有理论意义和工程实用价值的。 二、研究的现状和内容 目前逆变锁相控制方法主要分为:定时控制和定角控制两种。对于电压型固态感应加热电源来说,功率器件的最佳开关时刻和功率器件吸收电容的大小、负载电压和电流的比值、死区时间等因素有关,并且它们之间的关系是非线性的。这种非线性的控制关系采用传统的模拟锁相电路是难以实现的,而需要采用数字化智能控制是逆变锁相控制的一种有效手段。 对于固态感应加热电源的功率调节方式来说,目前主要分为:整流器侧调功和逆变器侧调功两类。中小功率的固态感应加热电源一般采用逆变器侧调功以简化主电路,而对于中大功率的固态感应加热电源,主要采用整流器侧调功以使谐振逆变器获得最佳的工作性能[12]。 本文重点分析了其中的MOSFET串联谐振型逆变器控制电路的工作原理,对电压型谐振逆变器的换流过程及锁相控制原理进行了分析,并对一种能使开关损耗最小的零电压换流的谐振逆变器ZVS锁相控制方法进行了重点研究。 指导教师签字时间 2013 年 9月11日

电力变压器保护设计规范说明

电力变压器保护设计规范说明 电力变压器保护设计规范(GB/T50062—2008) 4·0·1电压为3~110kV,容量为63MV·A及以下的电力变压器,对下列故障及异常运行方式,应装设相应的保护装置: 1,绕组及其引出线的相问短路和在中性点直接接地或经小电阻接地侧的单相接地短路。2,绕组的匝间短路。 3,外部相间短路引起的过电流。 4,中性点直接接地或经小电阻接地的电力网中外部接地短路引起的过电流及中性点过电压。5,过负荷。 6,油面降低。 7,变压器油温过高、绕组温度过高、油箱压力过高、产生瓦斯或冷却系统故障。 4.0.2容量为0.4MV·A及以上的车间内油浸式变压器、容量为0.8MV·A及以上的油浸式变压器,以及带负荷调压变压器的充油调压开关均应装设瓦斯保护,当壳内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器。 瓦斯保护应采取防止因震动、瓦斯继电器的引线故障等引起瓦斯保护误动作的措施。当变压器安装处电源侧无断路器或短路开关时,保护动作后应作用于信号并发出远跳命令,同时应断开线路对侧断路器。 4.0.3对变压器引出线、套管及内部的短路故障,应装设下列保护作为主保护,且应瞬时动作于断开变压器的各侧断路器,并应符合下列规定: 1,电压为10kV及以下、容量为10MV·A以下单独运行的变压器,应采用电流速断保护。 2,电压为10kV以上、容量为10MV·A及以上单独运行的变压器,以及容量为6.3MV·A及以上并列运行的变压器,应采用纵联差动保护。 3,容量为10MV·A以下单独运行的重要变压器,可装设纵联差动保护。 4,电压为10kV的重要变压器或容量为2MV·A及以上的变压器,当电流速断保护灵敏度不符合要求时,宜采用纵联差动保护。 5,容量为0.4MV·A及以上、一次电压为10kV及以下,且绕组为三角一星形连接的变压器,可采用两相三继电器式的电流速断保护。 4.0.4变压器的纵联差动保护应符合下列要求: 1,应能躲过励磁涌流和外部短路产生的不平衡电流。 2,应具有电流回路断线的判别功能,并应能选择报警或允许差动保护动作跳闸。 3,差动保护范围应包括变压器套管及其引出线,如不能包括引出线时,应采取快速切除故障的辅助措施。但在63kV或110kV电压等级的终端变电站和分支变电站,以及具有旁路母线的变电站在变压器断路器退出工作由旁路断路器代替时,纵联差动保护可短时利用变压器套管内的电流互感器,此时套管和引线故障可由后备保护动作切除;如电网安全稳定运行有要求时,应将纵联差动保护切至旁路断路器的电流互感器。 4.0.5对由外部相间短路引起的变压器过电流,应装设下列保护作为后备保护,并应带时限动作于断开相应的断路器,同时应符合下列规定: 1,过电流保护宜用于降压变压器。 2,复合电压启动的过电流保护或低电压闭锁的过电流保护,宜用于升压变压器、系统联络变压器和过电流保护不符合灵敏性要求的降压变压器。 4.0.6外部相间短路保护应符合下列规定:

串联谐振逆变器分析

https://www.doczj.com/doc/c35519558.html, 串联谐振逆变器分析 串联谐振逆变器如图2一1所示,补偿电感和负载等效参数和串联后作为逆变桥的负载,图中为补偿电感或变压器漏感,、为包含负载在内的负载等效电阻和电容。串联谐振逆变器通常由电压源供电,电压源由整流器加一个大电容构成。由于电容值较大,可以近似认为逆变器输入端电压固定不变。交替开通和关断逆变器上的可控器件就可以在逆变器的输出端得到交变的方波电压,其电压幅值取决于逆变器的输入端电压值,频率取决于器件的开关频率。 根据负载电压和电流的相位关系,串联逆变器可以工作在三种工作状态感性、容性和串联谐振。在串联逆变器中,为了避免开关器件因短路电流而损坏,在开关器件换流过程中,上下桥臂的开关管应留有死区时间,防止发生直通。 并联谐振逆变器分析 并联谐振逆变器如图2一2所示,补偿电感和负载等效参数和并联作为逆变器的负载,电路中串联的大电感场保证负载电流是恒定的,不受负载阻抗变化的影响。当负载功率因数不是时,负载的无功电压分量便会加在开关器件上,为了避免开关器件承受反向电压而损坏,必须串联快速二极管。根据负载电压和电流的相位关系,并联逆变器可能工作在三种工作状态感性、容性和谐振状态。

https://www.doczj.com/doc/c35519558.html, 串并联谐振逆变器比较 串联谐振逆变器和并联谐振逆变器的差别源于它们所用的振荡电路的不同,前者使用、、串联,后者是、和并联,由两种逆变器拓扑、电路特性及波形上分析,两种电路具有对偶的性质,相比于并联谐振逆变器,串联谐振逆变器具有以下特点和优点。 串联谐振逆变器的特点 直流侧为电压源,或并联大电容,相当于电压源。直流侧电压基本无脉动。由于直流电压源的钳位作用,交流侧输出电压为矩形波,并且与负载阻抗角无关而交流侧输出电流波形和相位因负载阻抗情况的不同而不同。对串联谐振负载而言,其输出电流波形为正弦波。 当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。 电压型逆变器与电流型逆变器比较,优点如下 电路结构简单,启动容易电压型逆变器可以采用移相控制,通过调节移相角的大小来调节输出电压,就可以达到调节输出功率的目的。由于电流型逆变器要保证滤波电感上的直流输入电流不能断流,如果采用移相调功,当负载输出电流为时,这个直流电流无法从逆变器流过,要外加电路来解决电流的续流问题。电压型逆变器是真正的电压源,不管逆变电路时开通还是关断,滤波电容两端都能够保持恒定的电压。因 此在逆变器的启动、工作以及关闭等各种状态下,都能始终提供稳定的直流输入电压。电流型逆变器不是真正的电流源,每次逆变电路关机后重新开机,直流输入电流都必须重新建立直流输入电流的过程中,整个系统的工作不稳定,容易导致电路失控,并且从逆变器开启到直流输入电流稳定所需时间也较长。

相关主题
文本预览
相关文档 最新文档