当前位置:文档之家› 高压单芯电力电缆交叉互联接地系统的缺陷和检测

高压单芯电力电缆交叉互联接地系统的缺陷和检测

高压单芯电力电缆交叉互联接地系统的缺陷和检测
高压单芯电力电缆交叉互联接地系统的缺陷和检测

高压单芯电力电缆交叉互联接地系统的缺陷和检测

发表时间:2018-12-12T16:54:15.120Z 来源:《基层建设》2018年第29期作者:李俊生1 张璐2 [导读] 摘要:文章结合高压单芯电力电缆护层交叉互联接地系统的几种典型错误接线方式,用矢量法分析了各种错误接线下电缆金属护套中的感应电压及危害,提出科学的检测方法,快捷有效地排除运行故障。

1.国网太原供电公司山西太原 030021;

2.国网山西省电力公司客户服务中心山西太原 030021

摘要:文章结合高压单芯电力电缆护层交叉互联接地系统的几种典型错误接线方式,用矢量法分析了各种错误接线下电缆金属护套中的感应电压及危害,提出科学的检测方法,快捷有效地排除运行故障。

关键词:交叉互联;不完全换位;感应电压;检测

随着城市电力系统的发展,高压单芯电缆在城市电网中的应用越来越广泛,但电缆施工中出现的各种问题也日益增多。其中,电缆护层交叉互联接地系统出现错误是较常见的问题。本文针对几种电缆护层交叉互联接地系统的错误连接方式进行讨论,提出科学的方法进行针对性检测,排除缺陷。

1概述

1.1电缆护层交叉互联接地系统

当电缆线路较长时,可采用电缆护层交叉互联接地方式。这种方法是将电缆分成若干大段,每大段分成长度相等的三小段,每小段之间装设绝缘接头,接头处护层三相之间用同轴电缆经交叉互联箱进行换位连接(称“交叉互联”),电缆线路每一大段的两端护层分别接地。

2.2电缆交叉互联接地系统的作用

电缆护层采用交叉互联的接地方式,各大段的电压值相等,相位相差120°,在理想状况下(不包括其他电缆的感应电场、运行环境、敷设间距差等因素),每一大段的三相护层总感应电压矢量和理论上为0,不产生环流。电缆上最高的护层电压可限制在50V内。 2电缆护层交叉互联接地系统分析

2.1正确的交叉互联接地系统

一般情况下,电缆护层的交叉互联方式有两种(以A相为例):Ⅰ段A相(A1)在#1交叉互联箱换位至Ⅱ段B相(B2)、在#2交叉互联箱换位至Ⅲ段C相(C3),即A1—B2—C3换位法。

2.2施工中常见的几种错误的电缆护层交叉互联接地系统

由于电缆线路较长,且敷设于电缆沟、电缆隧道内,通讯方式不通畅,加上安装人员施工时未详细核对相序,且验收人员在验收时缺少核对相序的检测仪器及方法,往往造成电缆运行一段时期后发现因护层换位错误而导致环流过大的情况。以下是针对护层交叉互联换位错误的总结,以及提出几种检测电缆护层有无正确换位的方法。

2.2.1典型错误接线一:#1与#2交叉互联换位方向相反

这种电缆护层换位不完全的情况较常见。因电缆属于隐蔽工程,在地下走向不一定是直线,往往造成施工人员在不同方向的交叉互联箱采用相同的连接方法。以A相为例:Ⅰ段A相(A1)在#1交叉互联箱换位至Ⅱ段B相(B2)、在#2交叉互联箱换位至Ⅲ段A相(A3),即A1—B2—A3换位法。另一种连接方式为A1—C2—A3。

2.2.2典型错误接线二:电缆护层同轴电缆内外芯朝向接反

电缆护层同轴电缆内外芯朝向一般不出错,但一旦同轴电缆某节点连接错误使护层换位不完全,护层中环流将显著增大并造成运行故障,且不易被发现。以A相为例:#1交叉互联箱,电缆护层的感应电压为单端护层感应电压的倍。

2.2.3典型错误接线三:电缆护层同轴电缆断线

当电缆护层连接处理不当或者交叉互联箱处连接板的螺栓未拧紧时,将出现电缆护层断线的情况。以A相为例:护层的同轴电缆A相外芯与B相内芯连接处理不当,造成A相外芯与B相内芯未形成电气连接。

3电缆护层交叉互联接地系统出现错误的危害

高压单芯电缆因金属护层换位不完全造成的缺陷主要有以下危害:

①造成电能的大量消耗。假设一条交联聚乙烯高压单芯电缆由于施工不慎导致护层换位不完全,若电缆的年平均载流量为120A,可以估算出电缆护层平均环流I≥30A,设接地系统的回路电阻为R=0.2Ω,则可以计算出每年因护层换位不完全导致消耗的电能为:P=3I2Rt=4.7304×103kW?h。由上可得结论:电缆护层因换位不完全造成的线损是惊人的。

②降低了电缆的载流量。由于电缆护层通过大环流而发热,导致电缆绝缘及表层聚集热量,不但加速了电缆主绝缘老化,而且电缆的载流量将会极大的下降。

③将会威胁运维人员的安全。若电缆护层出现上述的断线情况,将在断点处形成悬浮电位,感应电压将大于或等于30V,对运维人员的人身安全将造成隐患。

④降低了供电可靠性。电缆护层不完全换位,将导致电缆护层感应电压升高,一旦感应电压击穿电缆外护层绝缘,将造成单点或多点接地,严重的会引起火灾,对电网的供电可靠性造成严重的影响。

4检测方法

针对以上几种错误接线,本文提出几种针对护层有无正确换位的检测方法:

①对每个交叉互联箱进行逐个检测。即检测人员利用低压摇表对交叉互联箱进行电缆护层同轴电缆内外芯朝向测试,首先排除同轴电缆内外芯朝向接错的可能性,然后一一核对交叉互联箱的接线方式,确保每一大段的交叉互联段连接正确。这种方法比较基本,但耗费人力物力,且当电缆护层同轴电缆有断线情况时检测不出。

②竣工验收时利用低压摇表对电缆护层交叉互联每一大段进行检测。即在电缆护层已连接完成的情况下(以A相为例,假设连接为A1—B2—C3),将交叉互联大段的末端A、B相接地,C相悬空,然后用高压摇表在交叉互联大段的首端对A、B、C相进行电缆外护层绝缘试验。(因为是竣工验收,电缆外护层绝缘一般为良好)在电缆护层连接正确的情况下,测试A相时摇表将显示外护层绝缘的数值,测B、C 相时数值为0。若不是这个结果,则可以判断电缆护层交叉互联不完全换位。

高压电缆局放在线监测系统(亿森)

高压电缆局放在线监测系统 设计方案 福州亿森电力设备设备有限公司 2016年9月

摘要:在XLPE电缆投入运行后,由于绝缘的老化变质、过热、机械损伤等,使得电缆在运行中绝缘裂化,为了防止由于绝缘劣化造成电缆运行事故,需要对电缆的运行状态进行即时监测,监测系统控制着电缆及其附件的质量。局部放电是目前比较有效的在线监测方法,局部放电检测目前相应有电磁耦合法、超高频法和超声波法、光学测量法等,本文将着重论述这些方法各自的优势与不足,同时对目前发展起来的PD混沌监测方法进行讨论。 关键词:XLPE电缆;在线监测;局部放电;混沌法 0引言 随着电力系统的飞速发展以及旧城改造工程的进行,电力电缆在电力网络中的应用愈发广泛。电力电缆的基本结构包括线芯、绝缘层、屏蔽层和保护层四个部分。其中线芯即导体,是电力电缆中传输电能的部分,是电缆的主要结构。绝缘层将线芯与外界电气上隔离。屏蔽层包括导体屏蔽层和绝缘屏蔽层,一般存在于15kV及以上电缆中。保护层是用来防止外界的杂质和水分的渗入和外力的破坏[1]。 电力电缆按照电压等级分类有低压电缆(35kV及以下输配电线路)、中低压电缆(35kV及以下)、高压电缆(110kV及以上)、超高压电缆(275~800kV)、特高压电缆(1000kV及以上)。 按照绝缘材料电力电缆可以分为塑料绝缘电缆和橡皮绝缘电缆。其中油纸绝缘电缆应用历史最长。它安全可靠,使用寿命长,价格低廉。主要缺点是敷设受落差限制。塑料绝缘电缆主要用于低压电缆,常用的绝缘材料有聚氯乙烯、聚乙烯、交联聚乙烯。橡皮绝缘电缆弹性好,适合用于移动频繁弯曲半径小的敷设地点。 我国早期使用的多是油纸绝缘电缆,但自1970 年以来,交联聚乙烯(XLPE)电力电缆得以广泛应用,并逐渐取代了油纸绝缘电缆的地位。XLPE电缆电气性能优越,具有击穿电场强度高、介质损耗小、载流量大等优点因而得到了广泛的应用。 在线检测电缆故障的方法有很多,如直流分量法、损耗电流谐波分量法、局部放电法等,其中,局部放电法是目前用于现场比较有效的在线检测方法。XLPE电缆发生局部放电时一般会产生电流脉冲、电磁辐射、超声波等现象,根据检测物理量的不同,局部放电检测相应有电磁耦合法、超高频法和超声波法等,其中,电磁耦合法由于传感器灵敏度高、安装方便,且与电缆无电气连接,是目前应用最为广泛的一种方法。 本文主要论述了XLPE电缆局部放电在线监测的一些基本方法的优势与缺陷,并对电缆局部放电的混沌监测方法进行了讨论[2]。 1 PD在线监测的意义以及技术 难点 局部放电,是绝缘介质中的一种电气放电,这种放电仅限制在被测介质中一部分且只使导体间的绝缘局部桥接,这种放电可能发生或可能不发生于导体的邻近。电力设备绝缘中的某些薄弱部位在强电场的作用下发生局部放电是高压绝缘中普遍存在的问题。虽然局部放电

高压电缆设备终端的分类及其选型原则解析

卷第43第4期2007年8月 HighVoltageApparatus Vol.43 No.4 Aug.2007 收稿日期:2007-01-19; 修回日期:2007-05-23 作者简介:朱晓辉(1963-),男,副总工程师,高级工程师、硕士,主要从事高压试验、电力电缆等专业技术工作。 高压电缆设备终端的分类及其选型原则 朱晓辉1, 李 斌2, 梁瑞成1, 田明辉1

(1.TianjinElectricPowerResearchInsistute,Tianjin300040,China; 2TheScienceInstitute,AirForceEngineeringUniversity,Xi’an710051,China) ClassificationandTypeSelectionPrincipleofPowerCableApparatusTerminal (1.天津市电力科学研究院,天津300040;2.空军工程大学理学院数理系,陕西西安710051) ZHUXiao-hui1,LIBin2,LIANGRui-cheng1,TIANMing-hui1 文章编号:1001-1609(2007)04-0315-03 摘要:简述了高压电缆的设备终端类型,对各种型式电缆终端的特点和工艺性能进行了分析对比,提出了工程应用中的选型原则。通过分析近年来的现场应用效果,可知在新建工程中不应再选用湿式终端,而选用具有结构合理、技术性能及工艺性能优异的可重复使用的插拔式电缆终端。关键词:高压电缆;设备终端;分类;选型中图分类号:TM247 文献标志码:B Abstract:Theclassificationofpowercableapparatus terminalwasintroducedbriefly.Thecharacteristicsandprocessesofdifferenttypesofpowercableapparatusterminalwerecompared.Thetypeselectionprinciplewasputforward.Throughtheanalysisofth

高压电缆在线监测(技术标书)

高压电缆在线监测装置 1、主要采用标准 所有设备的设计、制造、检查、试验及特性除本规范书中规定的特别标准外,都应遵照使用的最新版IEC标准和中国国家标准(GB)及铁道行业标准(TB)以及国际单位制(SI)。 GB/T18901.1-2002 光纤传感器第一部分:总规范 GB/T 16529-1996 光纤光缆连接器 GB/T 12085-1989 光学和光学仪器环境试验方法 GJB 3931-2000 光纤光缆旋转接头总规范 GB/T 18311.40-2003 纤维光学互连器件和无源器件基本试验和测量程序 ANSI IEEE 488 可编程仪表数字接口 ANSI/NFPA 70 国家电气规程 ANSI NEMA 工业控制设备和系统外壳 ANSI IEEE 472 冲击电压承受能力导则 GB9385 计算机软件需求说明编制指南 GB9813-88 微型电子数字计算机通用技术条件 IEC1131-3 国际可编程控制组态语言标准主要技术规格和性能 2、主要技术要求 高压电缆在线监测装置主要由光纤光栅解调仪和光纤光栅传感器组成。通过多路光缆,将传感器连接起来构成电气设备温度监测网络,通过以太网连接设备将光栅解调仪、数据库服务器、上位机等构成温度监测预警管理系统,并可实现系统互联,温度数据实时共享的功能。监测装置的终端设在各牵引变电所、分区所高压电缆沿线、高压电缆头等需要监测的地方。 2.1 光纤光栅解调仪主要技术要求 2.1.1 光学指标 通道数 4 可扩展 每通道最大FBG传感器数量18

波长范围1525~1565nm 绝对精度±5pm 动态范围50dB 分辨率1pm 扫描频率可选频率320Hz,160Hz,80Hz,40Hz,20Hz 典型FBG间隔0.5nm FBG要求切趾边模>15dB 光学接头FC/PC 或FC/APC 2.1.2 电源及接口 电源220V AC 接口RJ-45或RS485C 光纤光栅解调仪与牵引变电所、分区所微机综合自动化系统能进行实时通信,通过通信接口对解调仪进行实时数据访问及数据传递。 具体的接口类型和通信协议待设计联络时确定 2.1.3 外形尺寸及外观 颜色、尺寸与综合自动化屏配套,具体待设计联络时确定 2.1.4 工作温度-10~60℃ 2.1.5 电磁辐射及兼容 对于电子设备应考虑防电磁干扰措施。并应解决电磁干扰/兼容的问题以及允许辐射电平和对电磁辐射灵敏性的问题。 2.1.6 系统要求 ·采用查询式工作方式,可通过软件控制硬件扫描,扫描频率可调,用户可根据不同需要自行选择扫描频率。 ·具有自启动功能,能避免由于突发情况引起的监测中断,能长期稳定监测。 ·能显示被监测点即时温度 ·保存、历史记录查询功能:能对历史数据做具体分析或图形分析 ·传感器状态显示功能:能体现被监测点的正常、报警、跃变和丢失四种状态

两种电缆护层交叉互联换位箱的比较和应用

两种电缆护层交叉互联换位箱的比较和应用 发表时间:2019-07-09T14:00:05.217Z 来源:《电力设备》2019年第6期作者:沈烨 [导读] 摘要:电缆护层交叉互联换位箱是220/110千伏等高压单芯电缆的重要组成部分,其中立柜式和地埋式换位箱得到了较为广泛的应用。 (腾幸(上海)电力设计有限公司上海 200040) 摘要:电缆护层交叉互联换位箱是220/110千伏等高压单芯电缆的重要组成部分,其中立柜式和地埋式换位箱得到了较为广泛的应用。本文重点介绍了电缆金属层的接地方式以及两种换位箱在实际工程中的比较和应用。 关键词:电缆护层交叉互联;立柜式;地埋式;换位箱 引言:近年来,在上海城区内由于电力走廊资源紧张,新建架空输配电线路工程越来越少,而220千伏和110千伏钢管杆和铁塔施工难度大,杆身占地面积较大且影响市容,政府也将城区内架空线入地作为近几年的主要工作之一,因此,电力电缆将不可避免地广泛应用于城区电力工程中,其中220千伏和110千伏电力电缆工程中的主要配件-电缆护层交叉互联保护换位/接地箱也将大量出现在城区的众多道路旁的人行道及绿化带内。 1.电缆金属护套层的接地方式 一般来说,35千伏以下电缆采用三芯电缆(35千伏电缆也有使用单芯电缆,但普及程度不高),由于电流流过三个线芯之和等于0,在金属屏蔽层上不会有磁链产生,因此采用两端接地方式后流过金属屏蔽层的感应电流也为0。35千伏以上电缆多为单芯电缆,当采用的电缆为单芯电缆,电流通过单芯电缆的线芯时,金属屏蔽层上就会产生磁链,使其两端产生感应电压,电缆长度越长,金属屏蔽层上的感应电压就越大。当感应电压达到一定程度时,还可能击穿护套及绝缘层。如果采用两端接地,会在金属屏蔽层上产生极大环流,降低电缆载流量,严重时还会损坏电缆护套,因此,单芯电缆一般不采用两端接地方式。 如果金属屏蔽层采用单点接地方式(即一端接地,另一端不接地),当系统发生短路或者有雷电流通过电缆线芯时,金属屏蔽层的不接地端会产生很高的感应电压,过高的感应电压会击穿电缆绝缘护层,当电缆绝缘被破坏,将会使电缆的金属护层出现多点接地并在电缆上形成环流。所以,当采用单端接地方式时,需安装电压护层限制器来限制护层上的过电压,防止电缆护层绝缘被击穿。当线路不长时(一般小于600米),应当采取线路一端或者中央部位单点直接接地方式(常用于两端电缆登杆中间的一段跨越电缆或交叉互联无法满足分为三段后留下的一段电缆)。当线路较长时(一般大于600米),应设置绝缘接头,将电缆的金属套和绝缘屏蔽尽可能均匀地分成三段或三的倍数段(一般每小段约在300至600米),实现交叉互联接地方式。根据上海的运行习惯,每个单元内最长电缆段与最短电缆段的差不得超过最短电缆段的30%。采用何种接地方式可根据规程的附录F-交流系统单芯电缆金属层正常感应电势算式中的计算结果进行判定。因此,可以看出,单芯电缆的接地方式主要有单点直接接地、中点接地以及交叉互联接地。单芯电缆及其附件的外护层绝缘等部位应设置过电压保护,采用单点直接接地的电缆线路,一端直接接地,另一端采用设置护层电压限制器接地;采用中点接地方式的电缆线路,中点直接接地,两端采用设置护层电压限制器接地;采用交叉互联接地的电缆线路,每个绝缘接头均应设置护层电压限制器。 2.电缆护层交叉互联换位箱 在电缆线路较长的工程中,一般采用交叉互联的接地方式,具体方法是:将A相左侧的金属护层与C相右侧的金属护层相连,将B相左侧的金属护层与A相右侧的金属护层相连,将C相左侧的金属护层与B相右侧的金属护层相连,每大段电缆分为三个小段电缆(一般每小段约在300至600m),使用交叉互联接地,形成“换位-换位-接地”的连接方式。 在电缆护层交叉互联换位箱中主要部件有同轴电缆、接地线和电缆护层电压限制器(也称电缆护层保护器)。 同轴电缆:是电缆护层限制器与电缆金属护套之间的连接线,长度尽可能短,上海运行习惯一般不超过15米,绝缘水平不低于电缆外护套的绝缘水平,并且截面应满足单相短路电流通过时的热稳定要求,上海目前运行要求为220千伏电缆和1000mm2以上截面的110千伏电缆均需采用240mm2的同轴电缆。 接地线:上海的运行要求与同轴电缆一致,并且110千伏及220千伏高压电缆接地扁铁面积不小于240mm2截面。 电缆护层电压限制器:串接在金属屏蔽(金属护套)和大地之间,用来限制在系统暂态过程中金属屏蔽(金属护套)电压的装置,常用于单点接地方式的非直接接地端或者交叉互联接地方式中。 3.立柜式和地埋式换位箱 在上海的220千伏和110千伏电缆工程中,一般会使用两种换位箱:立柜式换位箱和地埋式换位箱。其中立柜式换位箱较为常见,为一个高约1.4米,宽约0.6米由复合材料制成的柜子。根据电缆回路数的不同,可分为单开门和双开门两种,单开门换位箱用于该处工井内有3个绝缘接头(一回电缆),双开门换位箱用于该处工井内有6个绝缘接头(两回电缆),换位箱放置于有绝缘接头的工井附近的人行道或者绿化带内,在工井侧壁或从井内端墙上的直埋孔位接一根MPP管或者碳素螺纹管至换位箱底座下,将同轴电缆分别从三个绝缘接头引出,连同一根接地线一起穿在管内敷设至换位箱内采用交叉互联方式连接,接地线与工井内与接地扁铁相连的镀锌支架接通实现接地。 地埋式换位箱则相对比较少见,由于需要在地下建造一个用于放置换位箱的小坑,造成开挖人行道、绿化带或者车道,造成额外工程量,所以一般较少采用。但是由于上海城区内有许多景点,在一些比较繁华的地段(比如衡山路徐家汇公园门口)不允许在人行道或绿化带内放置立柜式换位箱,在这种情况下就必须考虑采用地埋式换位箱。如图1所示,地埋式换位箱需在放置接头的电力工井 图1 换位箱工井的建造 上建造一个长0.96米、宽0.92米、深0.42米、壁厚0.25米的方形小坑(即换位箱工井)用于安放换位箱,工井上覆盖井盖。换位箱工井需采用钢筋混凝土浇筑,确保其结构强度需达到与普通电力工井结构强度一致。和立柜式换位箱不同的是,地埋式换位箱无法设置双开

交流高压电缆局部放电的在线监测概述

交流高压电缆局部放电的在线监测 陈敬德,1140319060;指导老师:李旭光 (上海交通大学电气工程系,上海,200240) 摘要:在XLPE电缆投入运行后,由于绝缘的老化变质、过热、机械损伤等,使得电缆在运行中绝缘裂化,为了防止由于绝缘劣化造成电缆运行事故,需要对电缆的运行状态进行即时监测,监测系统控制着电缆及其附件的质量。局部放电是目前比较有效的在线监测方法,局部放电检测目前相应有电磁耦合法、超高频法和超声波法、光学测量法等,本文将着重论述这些方法各自的优势与不足,同时对目前发展起来的PD混沌监测方法进行讨论。 关键词:XLPE电缆;在线监测;局部放电;混沌法 0引言 随着电力系统的飞速发展以及旧城改造工程的进行,电力电缆在电力网络中的应用愈发广泛。电力电缆的基本结构包括线芯、绝缘层、屏蔽层和保护层四个部分。其中线芯即导体,是电力电缆中传输电能的部分,是电缆的主要结构。绝缘层将线芯与外界电气上隔离。屏蔽层包括导体屏蔽层和绝缘屏蔽层,一般存在于15kV及以上电缆中。保护层是用来防止外界的杂质和水分的渗入和外力的破坏 [1]。 电力电缆按照电压等级分类有低压电缆(35kV 及以下输配电线路)、中低压电缆(35kV及以下)、高压电缆(110kV及以上)、超高压电缆(275~800kV)、特高压电缆(1000kV及以上)。按照绝缘材料电力电缆可以分为塑料绝缘电缆和橡皮绝缘电缆。其中油纸绝缘电缆应用历史最长。它安全可靠,使用寿命长,价格低廉。主要缺点是敷设受落差限制。塑料绝缘电缆主要用于低压电缆,常用的绝缘材料有聚氯乙烯、聚乙烯、交联聚乙烯。橡皮绝缘电缆弹性好,适合用于移动频繁弯曲半径小的敷设地点。 我国早期使用的多是油纸绝缘电缆,但自1970 年以来,交联聚乙烯(XLPE)电力电缆得以广泛应用,并逐渐取代了油纸绝缘电缆的地位。XLPE电缆电气性能优越,具有击穿电场强度高、介质损耗小、载流量大等优点因而得到了广泛的应用。 在线检测电缆故障的方法有很多,如直流分量法、损耗电流谐波分量法、局部放电法等,其中,局部放电法是目前用于现场比较有效的在线检测方法。XLPE电缆发生局部放电时一般会产生电流脉冲、电磁辐射、超声波等现象,根据检测物理量的不同,局部放电检测相应有电磁耦合法、超高频法和超声波法等,其中,电磁耦合法由于传感器灵敏度高、安装方便,且与电缆无电气连接,是目前应用最为广泛的一种方法。 本文主要论述了XLPE电缆局部放电在线监测的一些基本方法的优势与缺陷,并对电缆局部放电的混沌监测方法进行了讨论[2]。 1 PD在线监测的意义以及技术 难点 局部放电,是绝缘介质中的一种电气放电,这种放电仅限制在被测介质中一部分且只使导体间的绝缘局部桥接,这种放电可能发生或可能不发生于导体的邻近。电力设备绝缘中的某些薄弱部位在强电场的作用下发生局部放电是高压绝缘中普遍存在的问题。虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导

高压电缆头制作施工方案精编版

高压电缆头制作施工方 案 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

迪那2油气处理厂电缆终端头制作安装 施 工 方 案 编制:郝明荣 审核: 批准: 编制单位:中国石油天然气管道通信电力工程总公司

巴州分公司 编制日期2014年6月20日 1、编制依据 电气装置安装工程电缆线路施工及验收规范(GB50168—2006) 电气装置安装工程电气设备交接试验标准(GB50150—2009) 电力建设安全工作规程(线路部分) 2、编制目的: 为了确保电缆终端制作的质量,保证施工工期,保证施工过程中人员及设备的安全,特此制定此措施。 3、工程概况及特点 本工程共分为土建和电缆头制作两部分,其中土建部分为迪那油气处理厂空氮站1#变压器室内电缆沟施工,电缆头制作部分为迪那油气处理厂空氮站 1#、2#变压器室,循环水1#、2#压器室。以上工作地点均位于防火等级为三级的油气处理厂内,对防火防爆要求较高,施工人员应接受相关方培训方可进行施工,施工中应听从属地主管指挥,遵守劳动纪律。 4、主要工作量 土建部分:在空氮站1#变压器室内开挖长6米,宽米,高米的电缆沟,电缆沟采用砖砌结构表面磨水泥砂浆处理,电缆沟上覆盖钢板和绝缘胶皮,电缆沟沟内敷设ZRA-YJV-3*50mm2/10kv高压电缆10米。 电缆头制作部分:空氮站1#变压器室3个,2#变压器室1个。循环水1#变压器室3个、2#压器室3个共计10个电缆头。 5、施工准备 1 施工人员配备及职责 施工班长:吴国彬 职责:负责本班的全面工作。根据工地的安排,组织编制本班工作计划,并 组织领导全班人员共同完成;负责施工前的各项准备工作;负责对相关各方 的协调工作;对本班施工质量、安全、文明施工负责;做好施工记录,健全

高压电力电缆绝缘在线监测及故障定位研究

高压电力电缆绝缘在线监测及故障定位研究 首先分析了高压电力电缆的故障类型,并基于双CT法绝缘tanδ在线监测和双端同步电缆故障定位的浅析,介绍了在线状态检测技术系统的应用,为实际的高压电力电缆维护提供理论依据,并提出高压电力电缆在实际运行中的维护建议。 标签:电力电缆;绝缘在线监测;故障定位 doi:10.19311/https://www.doczj.com/doc/c511058754.html,ki.1672-3198.2017.19.094 0 引言 电力电缆是电缆的一种,用于输送和分配大功率电能。电力电缆作为地下输电线路,是电网输送和分配电能的主要方式之一,具有架空线路所不具备的优点,例如地下敷设不占用空间,减少占地,不在地面架设杆塔和导线,不受外界环境影响,可以提高供电可靠性,减少运维工作量等,特别适用于输电线路密集、位于市区的变电站以及重要线路和重要负荷用户。 随着电网建设的加快,电力电缆的使用越来越多,保證电缆线路的安全运行也成为非常关键的问题。电力电缆是出现绝缘故障率最高的设备,可引起线路短路、单相接地等重大事故,而且电缆一般敷设在电缆沟或电缆隧道里,环境复杂,故障信息和定位困难,因此,对电缆的在线状态监测和故障定位就成为当前的研究重点,也对电缆线路实际的维护具有积极意义。 目前电网使用的电力电缆大部分是交联聚乙烯电缆,有些线路使用充油。某抽蓄公司动力电缆运行已近二十年,电缆在长期发热状态下普遍出现了电缆绝缘性能降低或过热的现象。有资料表明,绝缘老化在电缆故障比例中所占比率较高,因此电力电缆的绝缘在线监测是迫切需要解决的问题。 1 电力电缆故障分类和原因分析 1.1 电力电缆故障分类 电力电缆故障可能是一种也可能是复合多种,大致分为以下两种: (1)低阻接地或短路故障:包括电缆一相或多相接地故障、绝缘电阻值较小。 (2)高阻或短路故障:接地或绝缘阻值较大。 (3)导体故障(开路故障)。主要是线芯导体和金属屏蔽层故障,包括断线和似断非断故障。

GDAY-200A电缆交叉互联试验装置

GDAY-200A电缆交叉互联试验装置 一、概述 使所有互联箱连接片处于正常工作位置,在电缆导体中通以大约200A 的试验电流。在保持试验电流不变的情况下,测量最靠近交叉互联箱处的金属套电流和对地电压。测量赛后将试验电流降至零,切断电源。然后将最靠近的交叉互联箱内的连接片重新连接成模拟错误连接的情况,再次将试验电流升至200A,并再测量该交叉互联箱处的金属套电流和对地电压。测量完后将试验电压降至零,切断电源,将该交叉互联箱中的连接片复原至正确的连接位置。最后交试验电流升200A,测量电缆线路上所有其他交叉互联箱处的金属套电流和对地电压。 二、主要技术参数: 1、GD-ZK-8U系列多路温度测试仪技术参数: a、测温范围:-100℃~1000℃;(标配传感器温度范围:-50-300℃) b、测量精度: 0~1000℃:±(读数值×0.5%+1)℃, -100~0℃:±(读数值×0.5%+2)℃; c、具有抗高频干扰功能。 d、温度信号输入通道数:最多可配置8组,每组8路;(按机型) e、传感器:镍铬-镍硅,热电偶(T型,J型可特制)。 2、GDSL-82-200A/10V/10A/10V升流器技术参数

输入电压:单相220V 输出电流:200A、10A、10A 输出电压: 6V 10V 10V 其中200A为单独的一路输出 10A为并联的两路电流输出 三、产品结构 本产品由多路温度测试仪和大电流发生器组合而成,具有结构合理、外形美观、重量轻且移动方便等特点。 图1 操作面板 1.200A电流电源开关 2.200A调节旋钮 3.10A调节旋钮 4.10A电流电源开关 5.200A信号指示 6.200A控制按钮

高压电缆终端头绝缘放电原因及处置措施浅析

高压电缆终端头绝缘放电原因及处置措施浅析 发表时间:2018-04-13T16:41:10.470Z 来源:《电力设备》2017年第31期作者:巫里尔沙 [导读] 摘要:本文根据五一桥水电站35kV电缆终端头放电实际情况为例,介绍了三芯交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆构造及其作用,结合电缆终端头制作工艺流程,着重分析造成电缆终端头放电的原因,提出了处置措施及相关注意事项。 (四川小金川水电开发有限公司四川小金 624200) 摘要:本文根据五一桥水电站35kV电缆终端头放电实际情况为例,介绍了三芯交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆构造及其作用,结合电缆终端头制作工艺流程,着重分析造成电缆终端头放电的原因,提出了处置措施及相关注意事项。 关键词:电缆终端头;放电;原因分析;处置措施 1、概述 位于甘孜州九龙县境内的五一桥电站4F、5F机组出线为6.3kV,通过5B主变压器升压至35kVⅠ段、Ⅱ段母线,再经过4B、3B主变压器分别升压为110kV和220kV后,最终并入五一桥电站220kV母线。 自2012年以来,值班人员在巡检中发现,在该站35kVⅠ段、Ⅱ段母线开关柜内及35kV厂用变等电缆连接位置,多次发生35kV电缆终端头不同程度对柜内电缆支架、相间放电电晕现象(见图一),甚至发生过电缆终端头绝缘被击穿,造成开关柜内二次电缆被引燃的紧急事件。一时间,电缆终端头放电现象此起彼伏,据统计,仅2013年,五一桥电站35kV不同电缆终端头共发生了5处放电现象。电缆终端头频繁发生同类问题,不仅加大了维护工作量,停电处置造成电站电量损失,更严重的是对电站安全生产构成了较大安全隐患。 为利于芯线外半导体断口处电场应力分散,电缆制作时要求应力管覆盖铜屏蔽层20mm,若覆盖短了会使应力管的接触面不足,应力管上的电力线会传导不足,覆盖长了会使电场分散区减小(因为应力管长度是一定的),电场分散不足。 经电站运维人员核实,现场大部分放电电缆终端外半导体层断口均未按要求处理,断口掺差不齐,毛刺较多,更严重的是部分终端头应力管的安装位置未按要求覆盖铜屏蔽20mm,部分芯线外半导层断口与应力管位置对齐,甚至没有接触到。这样的电缆终端制作工艺,也诠释了电缆头放电位置大部分在外半导体层断口处的原因。 3.3电缆线芯绝缘层严重损伤 交联聚乙烯绝缘层是电缆的主要绝缘层,工作人员检查发现,所有放电电缆芯线的绝缘层都有不同程度的损伤,明显是在电缆终端头制作时人为割伤。另外,在绝缘层外表表面还遗留了外半导体残渣,往往这些芯线外部半导体残渣,是绝缘层发生电晕和放电的诱因之一。这些绝缘层上的伤痕和半导体残渣,是在电缆终端头制作时施工人员未使用专用电缆剥皮钳,而是用刀具、玻璃片等工具不规范施工残留的。 4、处置措施及注意事项 4.1、处置措施 针对电缆终端头不同部位的轻微放电、电晕现象,可采用以下几种简易方法暂时处理: 1)电缆终端头预留长,外半导体剥离段较长,导致气隙放电的电缆终端头,可用干净棉纱与无水酒精清洗原电缆终端头,在与线芯端子保证安全距离的位置(35kV电压等级约0.75米)处,用卷好的软铜带均匀地缠绕至分支处,在分支处将三相铜皮一起缠绕至分支管底部,再与接地线重叠,用铜丝绑扎30~40mm。再用自粘胶带将已缠绕的软铜皮包扎好,套上热缩绝缘管,用喷灯火焰慢慢接近热缩管加

高压电缆终端制做

高压电缆终端制做、安装原理及工艺 农云 一、电力电缆附件基本知识 1、什么是电缆附件? 电缆附件是指电缆线路里各种电缆接头和终端头的统称。 2、什么是电缆接头? 电缆接头是指电缆与电缆相互连接的装置,起着使电路畅通。保证相间或相地绝缘、密封和机械保护作用。 3、什么是电缆终端头? 电缆终端头是指装配到电缆线路的末端,用以保证与电网或其它用电设备的电气连接,并且提供作为电缆导电线芯绝缘引出的一种装置。 4、电缆头中间接头的种类: A、塞止接头; B、直通接头; C、分支接头; D、转换接头; E、过渡接头。 5、什么是户外电缆终端头? 户外电缆终端头是指电缆终端导体绝缘引出部分能承受大气影响的户外电缆终端装置,也就是说户外电缆终头要能够在各种大气条件(包括日期晒、雨淋、污秽、气温变化)下正常运行。 6、什么是户电缆终端头? 户电缆终端头与户外电缆终端头相比,不要求承受大气影响,运行环境比户外电缆终优越。 7、电缆附件的种类: A、主要有橡胶自粘带或塑料胶粘带绕包成型的绕包式电缆附件; B、采用弹性材料(如乙丙橡胶、硅橡胶等)将电缆接头和终端头的绝缘与外屏蔽层,在工厂注射或模压成一个整体,现场套装在处理过的电缆末端或接头处,这种电缆附件称之为预制式电缆附件; C、应用高分子材料具有“弹性记忆”的特点,将电缆附件各组成部分,分别在工厂做成管材、手套、雨罩等,再交联扩径,现场安装时加热收缩成型,这种电缆附件称之为热收缩式电缆附件; D、利用弹性材料(常为乙丙乙丙橡胶、硅橡胶等)将电缆附件绝缘和应力控制层在工厂成型并硫化,再扩径加以衬垫物,现场安装时抽出衬垫,而压紧在经过处理的电缆末端或接头处形成的电缆附件称之为冷收缩式电缆附件; 8、评价一个完整的电缆附件应从发下几个方面考虑: 1)、电气绝缘性能:包括所用绝缘材料的绝缘电阻,介质损耗(进中压级以上)介电常数,击穿场强,以及由材料与结构所确定的最大工作场强,对于终端头还应考虑外绝缘的结构因素,如干闪距离,湿闪距离。对有机材料作为外绝缘的还需要考虑抗漏电痕迹和抗电蚀性能。2)、热性:绝缘材料除了有电老化还有热老化问题,都要直接影响电缆附件的安全运行和使用寿命,电缆附件里的热源除了导体电阻,还有导体连接中的接触电阻,以及绝缘材料本身的介质损耗。影响电缆附件热性的因素除了发热的热源,还有绝缘材料热阻系数及附件是否

高压电缆交叉互联接地系统的耐压试验

高压电缆交叉互联接地系统的耐压试验 发表时间:2019-02-21T14:01:11.060Z 来源:《防护工程》2018年第32期作者:马永红聂江华 [导读] 高压电缆接地系统的绝缘状况对维持电缆系统的接地方式,保证电缆的正常运行起着至关重要的作用,本文较为全面地分析了交叉互联接地系统耐压试验中存在的问题,提出了全面的试验方法,能够有效地检出交叉互联接地系统的缺陷和问题,从而保证电缆系统的可靠运行。 马永红聂江华 北京电力工程有限公司北京市 100070 摘要:高压电缆接地系统的绝缘状况对维持电缆系统的接地方式,保证电缆的正常运行起着至关重要的作用,本文较为全面地分析了交叉互联接地系统耐压试验中存在的问题,提出了全面的试验方法,能够有效地检出交叉互联接地系统的缺陷和问题,从而保证电缆系统的可靠运行。 关键词:高压电缆;护套耐压;交叉互联;直流试验 引言 近年来,随着大量的高压电缆投入运行,电缆线路的长度不断增加,交叉互联的接地方式被大量采用。由于对交叉互联接地系统绝缘要求上认识的不足,在电缆线路竣工试验或年检试验中采用的耐压试验方法不够全面,会导致接地系统中的一些绝缘缺陷和薄弱点不能被有效检出。在线路运行过程中因老化、过电压等因素使薄弱点被击穿、缺陷暴露,原有的接地方式被破坏,继而会导致接地电流过大,影响电缆系统的正常运行,甚至造成事故的发生。 本文通过对交叉互联接地系统的分析,对现有的各种试验方法进行讨论,并提出了切实可行的较为全面的耐压试验方法。该方法可以有效的对交叉互联接地系统作耐压试验、接线正确性检查,防止系统带病运行并减少事故的发生。 1.交叉互联接地系统的原理和绝缘要求 1.1交叉互联接地的原理 为了保证电缆的正常运行,必须限制单芯电缆金属护套上的电位,需要将金属护套接地。如果在每个接头的位置金属护套都直接接地,护套上的感应电流就会很大,护套损耗就会限制电缆的载流量。如果只将电缆护套的单端接地,对于长的电缆线路另一端的护套感应电压会超过安全允许的水平。为降低护套损耗同时控制护套的感应电压,可以采用不同的接地方式,交叉互联方式因简单且经济而被广泛采用,见图表1。 图表 1 单芯电缆的交叉互联接地 图表 2 交叉互联接地的护套电压 按照这种接地方式,交叉互联区间内3段电缆的长度相等,各相护套的感应电压幅值相同而相位不同,其矢量和为零,交叉互联后护套上总电压接近于零,同时,护套上的感应电压限制在允许的水平上,见图表2。 1.2交叉互联接地的绝缘要求 交叉互联接地系统由绝缘接头、同轴电缆、交叉互联接地箱等构成。因此交叉互联接地系统的绝缘(如图3所示)包括:图片 3 绝缘部位示意图

高压电力电缆护层电流在线监测及故障诊断技术 李帅

高压电力电缆护层电流在线监测及故障诊断技术李帅 发表时间:2019-07-09T15:19:15.117Z 来源:《电力设备》2019年第6期作者:李帅[导读] 摘要:随着社会的发展,我国的电力工程的发展也日新月异。 (海南电网有限责任公司海口供电局海南海口 570000)摘要:随着社会的发展,我国的电力工程的发展也日新月异。经济的迅速发展大大增加了电能需求量,电能是人们生产生活中最必不可少的能源之一,因此必须要保证其稳定供应,确保人们的生产生活有序进行,而要想实现这一目标,则要不断的提高高压电力电缆的安全性和稳定性,采用先进的电力检测技术来对高压电力电缆护层电流进行在线监测,并及时发现护层电流故障,以便在第一时间对其进行 补救。不同的高压电力电缆所出现的故障不同,其原因也不同,这就需要采取不同的电流监测和故障诊断技术,只有这样,才能最大程度的确保电力系统的正常运行。 关键词:高压电力电缆护层电流;在线监测;故障诊断技术引言 我国城市化进程的进一步加快背景下,高压电力电缆的应用重要性也愈来愈突出,电力电缆的质量直接影响着高压电力的输送质量。在电缆的实际应用过程中,故障的出现可能是多种因素所致,这就需要加强故障的有效解决,保障高压电力的正常使用。通过从理论层面深化电缆保护层电流在线监测的研究分析,就能为解决实际的故障提供参考。 1 高压电力电缆产生故障的原因 高压电力电缆系统出现故障的原因有许多种,其中包络高压电缆在施工安装中不正确的操作方式,还有污水的进入,外界力量所造成的破坏性作用等。而电压过高,电流过高,都会造成对电缆的损害,再加上有些地方的高压电力电缆使用的年头长久,早已经造成了高压电缆的老旧和腐蚀。当高压电力电缆产生故障的时候,通常表现为电缆的金属性导体发生断路,或者是电缆中护层电流本身发生短路,由于电缆对地产生连接而发生短路,使得高压电力电缆的绝缘性电阻下降,引发高压电力电缆故障。 2 高压电力电缆电流在线监测诊断方法 进行高压电力电缆电流在线监测工作的实施,就可通过多种监测方法加以应用。如采用局部放电的监测方法,主要是通过电缆绝缘体上微孔实施信号放电,这一微孔信号放电能够为高压电缆监测诊断带来方便。在经过放电信号外绝缘介质以及频率的变化,进行检测故障。高频信号中高于300KHz,可使用电缆外屏蔽接地处高频电流互感器耦合。通过超声波传感器局部放电对电缆线监测,电缆的运作中声信号传输相对缓慢,外部电磁信号噪声小,局部放电的监测方式使用起来也比较的方便。高压电力电缆电流在线监测方法的实际应用中,脉冲检测的方法应用比较重要,这一检测技术也比较常用。其主要是通过采取脉冲发生器发出脉冲波,利用脉冲信号在电缆线路当中传播遇到波阻抗不匹配产生电磁波反射原理。示波器所测得的脉冲反射时间以及电缆波速来进行确定电缆故障点距离。电缆线路当中阻抗不匹配点除导体断开以及接地故障,电缆接头以及电缆穿过金属管道等也是阻抗不均匀的点,也比较容易产生波反射,在具体的操作测试的时候对此就要有充分的认识。高压电缆电流在线监测的方法应用过程中,温度监测的方法应用比较重要,这是除电缆物理操作外所常用的监测方法。温度监测能有效获得电缆绝缘的状况,在电缆还没有出现故障前就能计算线路负载,然后在分布式光纤温度检测对广泛环形高压地下电缆监视,根据光时域反射的原理以及拉曼散射原理可有效解决环境复杂因素影响,能够有效提供多点故障排查测量技术。高压电力电缆在线监测诊断方法中的电桥检测方法的应用能发挥积极作用,这一故障检测的技术应用主要是采用双臂电桥检测高压电力电缆线路电阻值的。结合电缆故障短路接地不同的电阻来进行确定电缆故障发生的位置。采用电桥检测的方法应用,对电缆单相接地以及相间短路和短路接地故障距离测试都能发挥积极作用。实际的技术应用中可选择高压电桥回线法以及低压电桥回线的方法,这是在电缆沿线均匀以及长度和电缆芯电阻呈现出正比特点上实施的,结合惠斯登电桥的相关原理,把电缆短路接地故障点侧环线电阻引到电桥回路当中来进行测量比值。 3 高压电力电缆护层电流在线监测故障诊断技术应用 3.1 交叉互联接线方式下的同轴电缆与接地箱 根据护层电流是感应电流和电容电流的和得知,在交叉互联电缆的接头处分别装有交叉互联接地箱设备以及同轴电缆,从而实现了三相高压电缆护层电流的交叉转换。所谓的同轴电缆是指两根具有共同轴心的而且有着互相绝缘性质的圆柱形的金属性导体,同轴电缆主要是作为交叉互联箱和高压电缆接头处的连接装置,通过同轴电缆可以有效地减少连接装置的波阻抗,通过降低电流的方式降低护层电流保护器连接处的电压,而且使用同轴电缆还能够为连接装置提供更好地防水性能。在交叉互联型接地箱中,两个相邻电缆的护层电流可以分别通过同轴电缆的进行连导,从而进入到交叉互联箱的内部,然后进一步通过金属导体实现交叉换位转换。 3.2 高压电力电缆护层电流在线监测原理 高压电力电缆护层电流的在线监测主要有几个重要的监测部分组成,传感器系统,计算机处理系统,温度控制监测系统。对高压电力电缆护层电流开展在线监测的时候,计算机处理系统的应用作用发挥比较关键,通过装换模块使得各处的电缆相互连接,然后把传感器设置在电缆的各个部位,对电缆运行的温度进行监测以及分析,把温度监测的数据传输到计算机处理系统当中,再用相应的软件来分析温度的正常与否,找到电缆的故障位置和类型,这样就能有效的检测到故障的发生原因,为解决实际的故障提供了有利技术支持,大大节约的故障解决的时间,提高了故障处理效率。实际进行在线监测过程中,就要先进行电流数据信息采集工作,数据信息采集系统是多护层电流传感器组成,运行中交叉互联接地箱当中连接装置装有钳子形状护层电流传感器,这一传感器的应用主要就是收集电流量数据的,处理系统能永久保存电流数据,计算机处理系统对数据报表分析功能也能得以发挥。结合电缆分段长度保持电缆距离统一,把所监测的数据和正常电流数据相比较,以此来找出故障所在和产生故障的原因。 3.3 交叉互连箱进水 由于我国南方大多数地区的夏季降雨量较多,再加之交叉互联箱长期置于露天之中,箱体表面经常会被损坏,因此箱体内部很容易会渗进污水,进而破坏护层电流的保护器,使整个电缆线路出现短路现象。不同的水质,其电阻也会有很大的差别,但由于污水的电阻较低,而且箱体内的水体与外界水体相连接,在这种情况下,污水的电阻几乎可以忽略不计。此时若是保护器被污水淹没,则会造成箱体内出现接地现象,进而造成感应电流的急速上升,引发电缆故障。 4 结语

10kV电缆终端头制作资质考核_伊法拉

10kV电缆终端头制作资质考核 理论复习题库 一、选择题: 1、将配电变电所至用户接户线之间的网络称为()。B (A)电力网(B)配电网(C)输电网 2、电力电缆绝缘层的作用是将()与大地以及不同相的线芯间的电气上彼此隔离。C (A)铠装层(B)屏蔽层(C)线芯 3、交流单相电力电缆的金属护层必须()接地。A (A)直接(B)经电阻(C)经电抗 4、电力电缆停电工作应填写()。B (A)任意工作票(B)第一种工作票(C)第二种工作票 5、10KV冷缩电缆终端安装的两大步骤是电缆预处理和()。A (A)安装冷缩终端(B)读懂安装图纸(C)准备好安装所需的工具6、切除电缆外半导电屏蔽层时,如不慎在主绝缘上留下刀痕,可以()。C (A)用刀片轻轻刮除(B)不用处理(C)用砂纸细细打磨掉。 7、()是电缆终端和接头中为改善金属护套末端电场分布、降低金属护套边缘处电场强 度的措施之一。A ( A ) 应力锥( B ) 梯步( C ) 反应力锥( D ) 铅笔头 8、交联电缆的热收缩型终端头制作中,用于改善电场分布的是()。C ( A ) 绝缘管( B ) 手套( C ) 应力控制管( D ) 密封胶 9、检查XLPE绝缘电缆导体应注意导体表面光泽、无油垢、无损伤屏蔽绝缘的毛刺、锐边、(),导体应采用绞合圆形紧压线芯。A ( A ) 无凸起或断裂的单线( B ) 无相色( C ) 满足所需的承载能力 ( D ) 导体应承载能力 10、10kV冷缩电缆终端安装的两大步骤是()和安装冷缩终端。A (A)电缆预处理(B)读懂安装图纸(C)准备好安装所需的工具。 11、冷缩电缆终端安装前的准备工作是:(a)检查电缆是否受潮进水;(b)防潮、防尘;(c) 确认附件的配置齐全,并与要安装的电缆匹配;(d)();(e)保证安装环境符合安装要求;(f ) 擦净校直被安装部分电缆。B (A)电缆预处理(B)读懂安装图纸(C)开线

XLPE高压电缆在线监测方法及设计

XLPE高压电缆在线监测方法及设计 【摘要】交联聚乙烯简称为XLPE,XLPE高压电缆具有优越的力学性能、电气性能与热血性能,敷设容易,运维也简单,在各等级电压输电线路与配电网等电力系统中获得了广泛的应用。 【关键词】XLPE;在线监测;高压电缆;设计 在生产、安装与运行等过程当中,电缆系统因人为操作不当或工艺不良等,均可能引入缺陷,而这些缺陷可能要多年之后才能逐步显现出来,为了及早发现故障隐患,避免运行事故出现,基于电缆的在线监测结果,分析电缆运行的状态,以确保电缆运行安全可靠性。 一、XLPE高压电缆的在线监测方法 1.局部放电的在线监测方法 局部放电所指的是利用电缆绝缘本体存在的微孔,产生局部放电的信号,对电缆给予监测与诊断,该放电信号音外界绝缘介质缘故,所表现出的频率大小是不相同的,通常产生的高频信号,频率要高于300KHz。因信号一般在电缆线路屏蔽层进行传播,可在电缆外层的屏蔽接地线上,利用高频电流的互感器对高频电流的信号进行耦合。也可运用超声波传感器对电缆局部的放电声信号进行监测,在电缆当中,声信号传输率不高,受到外部电磁噪声的影响比较小,还能对局部放电源给予定位,是一种较为理想可行的现场检测法。 2.接地电流的在线监测法 在电压等级为110kV以上的高压电缆多是单芯电缆,由于电缆金属护层和线芯的交流电流会出现磁力线的铰链,致使较高感应电压出现,因此,需要采用接地措施,一般0.5km以内的短线路电缆金属护层所采取的是:一端直接接地,而另一端通过保护电阻或者间隙来接地。电缆线路在1km以上的金属护层通常采取的措施是:三相分段且交叉互联两端的接地方法。对电缆接地电流进行监测,能获得电缆外护套完整的信息,而对接地电流当中的容性分量变化进行在线监测,则能获得电缆老化的相关信息,该方法较适合等级高于110kV的高压电缆线路。 3.温度监测法 在电缆运行中,对其温度进行监测,不仅能获得电缆绝缘工况,还能利用线路载流量的计算,对线路运行状况进行了解,当前,应用较广的温度监测法是分布式的光纤温度检测法,是根据拉曼散射与光时域反射等原理来设计的,利用单根光纤的多点故障温度测量,对电缆运行工况进行监测,其分布式的光纤测温系统如图1所示。光纤本身能当作传感器,受分布电流的影响较小,维护简单,不

高压单芯电力电缆交叉互联接地系统的缺陷和检测

高压单芯电力电缆交叉互联接地系统的缺陷和检测 摘要:文章结合高压单芯电力电缆护层交叉互联接地系统的几种典型错误接线 方式,用矢量法分析了各种错误接线下电缆金属护套中的感应电压及危害,提出 科学的检测方法,快捷有效地排除运行故障。 关键词:交叉互联;不完全换位;感应电压;检测 随着城市电力系统的发展,高压单芯电缆在城市电网中的应用越来越广泛, 但电缆施工中出现的各种问题也日益增多。其中,电缆护层交叉互联接地系统出 现错误是较常见的问题。本文针对几种电缆护层交叉互联接地系统的错误连接方 式进行讨论,提出科学的方法进行针对性检测,排除缺陷。 1概述 1.1电缆护层交叉互联接地系统 当电缆线路较长时,可采用电缆护层交叉互联接地方式。这种方法是将电缆 分成若干大段,每大段分成长度相等的三小段,每小段之间装设绝缘接头,接头 处护层三相之间用同轴电缆经交叉互联箱进行换位连接(称“交叉互联”),电缆 线路每一大段的两端护层分别接地。 2.2电缆交叉互联接地系统的作用 电缆护层采用交叉互联的接地方式,各大段的电压值相等,相位相差120°, 在理想状况下(不包括其他电缆的感应电场、运行环境、敷设间距差等因素), 每一大段的三相护层总感应电压矢量和理论上为0,不产生环流。电缆上最高的 护层电压可限制在50V内。 2电缆护层交叉互联接地系统分析 2.1正确的交叉互联接地系统 一般情况下,电缆护层的交叉互联方式有两种(以A相为例):Ⅰ段A相 (A1)在#1交叉互联箱换位至Ⅱ段B相(B2)、在#2交叉互联箱换位至Ⅲ段C 相(C3),即A1—B2—C3换位法。 2.2施工中常见的几种错误的电缆护层交叉互联接地系统 由于电缆线路较长,且敷设于电缆沟、电缆隧道内,通讯方式不通畅,加上 安装人员施工时未详细核对相序,且验收人员在验收时缺少核对相序的检测仪器 及方法,往往造成电缆运行一段时期后发现因护层换位错误而导致环流过大的情况。以下是针对护层交叉互联换位错误的总结,以及提出几种检测电缆护层有无 正确换位的方法。 2.2.1典型错误接线一:#1与#2交叉互联换位方向相反 这种电缆护层换位不完全的情况较常见。因电缆属于隐蔽工程,在地下走向 不一定是直线,往往造成施工人员在不同方向的交叉互联箱采用相同的连接方法。以A相为例:Ⅰ段A相(A1)在#1交叉互联箱换位至Ⅱ段B相(B2)、在#2交 叉互联箱换位至Ⅲ段A相(A3),即A1—B2—A3换位法。另一种连接方式为 A1—C2—A3。 2.2.2典型错误接线二:电缆护层同轴电缆内外芯朝向接反 电缆护层同轴电缆内外芯朝向一般不出错,但一旦同轴电缆某节点连接错误 使护层换位不完全,护层中环流将显著增大并造成运行故障,且不易被发现。以 A相为例:#1交叉互联箱,电缆护层的感应电压为单端护层感应电压的倍。 2.2.3典型错误接线三:电缆护层同轴电缆断线 当电缆护层连接处理不当或者交叉互联箱处连接板的螺栓未拧紧时,将出现

相关主题
文本预览
相关文档 最新文档