当前位置:文档之家› gof与grasp模式学习

gof与grasp模式学习

gof 23种设计模式

创建型模式用来处理对象的创建过程,主要包含以下5种设计模式:
工厂方法模式(Factory Method Pattern)
抽象工厂模式(Abstract Factory Pattern)
建造者模式(Builder Pattern)
原型模式(Prototype Pattern)
单例模式(Singleton Pattern)


结构型模式用来处理类或者对象的组合,主要包含以下7种设计模式:
适配器模式(Adapter Pattern)
桥接模式(Bridge Pattern)
组合模式(Composite Pattern)
装饰者模式(Decorator Pattern)
外观模式(Facade Pattern)
享元模式(Flyweight Pattern)
代理模式(Proxy Pattern)


行为型模式用来对类或对象怎样交互和怎样分配职责进行描述,主要包含以下11种设计模式:
责任链模式(Chain of Responsibility Pattern)
命令模式(Command Pattern)
解释器模式(Interpreter Pattern)
迭代器模式(Iterator Pattern)
中介者模式(Mediator Pattern)
备忘录模式(Memento Pattern)
观察者模式(Observer Pattern)
状态模式(State Pattern)
策略模式(Strategy Pattern)
模板方法模式(Template Method Pattern)
访问者模式(Visitor Pattern)


创建型模式 Creational Pattern
创建型模式,就是创建对象的模式,抽象了实例化的过程。它帮助一个系统独立于如何创建、组合和表示它的那些对象。关注的是对象的创建,创建型模式将创建对象的过程进行了抽象,也可以理解为将创建对象的过程进行了封装,作为客户程序仅仅需要去使用对象,而不再关心创建对象过程中的逻辑

结构型模式 Structural Patterns
结构型模式是为解决怎样组装现有的类,设计他们的交互方式,从而达到实现一定的功能的目的。结构型模式包容了对很多问题的解决。例如:扩展性(外观、组成、代理、装饰)封装性(适配器,桥接)

行为型模式 Behavioral Pattern
行为型模式涉及到算法和对象间职责的分配,行为模式描述了对象和类的模式,以及它们之间的通信模式,行为型模式刻划了在程序运行时难以跟踪的复杂的控制流可分为行为类模式和行为对象模式1.行为模式使用继承机制在类间分派行为2.行为对象模式使用对象聚合来分配行为。一些行为对象模式描述了一组对等的对象怎样相互协作以完成其中任何一个对象都无法单独完成的任务。



/************************************************************************
抽象工厂模式(Abstract Factory):!!!1
意图:
提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。
适用性:
一个系统要独立于它的产品的创建、组合和表示时。
一个系统要由多个产品系列中的一个来配置时。
当你要强调一系列相关的产品对象的设计以便进行联合使用时。
当你提供一个产品类库,而只想显示它们的接口而不是实现时。


************************************************************************/

// 产品抽象类A
class CAbstractProductA
{
public:
CAbstractProductA()
{
theApp.Trace(_T("CAbstractProductA 构造"));
};
virtual ~CAbstractProductA()
{
theApp.Trace(_T("CAbstractProductA 析构"));
};

virtual void Operation() = 0;
};

// 产品抽象类B
class CAbstractProductB
{
public:
CAbstractProductB()
{
theApp.Trace(_T("CAbstractProductB 构造"));
};
virtual ~CAbstractProductB()
{
theApp.Trace(_T("CAbstractProductB 析构"));
};

virtual void Operation() = 0;
};

// 工厂抽象类
class CAbstractFactory
{
public:
CAbstractFactory()
{
theApp.Trace(_T("CAbstractFactory 构造"));
};
virtual ~CAbstractFactory()
{
theApp.Trace(_T("CAbstractFactory 析构"));
};

virtual CAbstractProductA* CreateProductA() = 0;
virtual CAbstractProductB* CreateProductB() = 0;
};

// 具体产品A1
class CProductA1 : public CAbstractProductA
{
public:
CProductA1()
{
theApp.Trace(_T("CProductA1 构造"));
};
virtual ~CProductA1()
{
theApp.Trace(_T("CProductA1 析构"));
};

virtual void Operation()
{
theApp.Trace(_T("CProductA1::Operation()"));
};
};

// 具体产品A2
class CProductA2 : public CAbstractProductA
{
public:
CProductA2()
{
theApp.Trace(_T("CProductA2 构造"));
};
virtual ~CProductA2()
{
theApp.Trace(_T("CProductA2 析构"));
};

virtual void Operation()
{
theApp.Trace(_T("CProductA2::Operation()"));
};
};

// 具体产品B1
class CProductB1 : public CAbstractProductB
{
public:
CProductB1()
{
theApp.Trace(_T("CProductB1 构造"));
};
virtual ~CProductB1()
{
theApp.Trace(_T("CProductB1 析构"));
};

virtual void Operation()
{
theApp.Trace(_T("CProductB1::Operation()"));
};
};

// 具体产品B2
class CProductB2 : public CAbstractProductB
{
public:
CProductB2()
{
theApp.Trace(_T("CProductB2 构造"));
};
virtual ~CProductB2()
{
theApp.Trace(_T("CProductB2 析构"));
};

virtual void Operation()
{
theApp.Trace(_T("CProductB2::Operation()"));
};
};

// 具体工厂1
class CConcreteFactory1 : public CAbstractFactory
{
public:
CConcreteFactory1()
{
theApp.Trace(_T("CConcreteFactory1 构造"));
};
virtual ~CConcreteFactory1()
{
theApp.Trace(_T("CConcreteFactory1 析构"));
};

virtual CAbstractProductA* CreateProductA()
{
theApp.Trace(_T("CConcreteFactory1::CreateProductA()"));
return new CProductA1;
};
virtual CAbstractProductB* CreateProductB()
{
theApp.Trace(_T("CConcreteFactory1::CreateProductB()"));
return new CProductB1;
};
};

// 具体工厂2
class CConcreteFactory2 : public CAbstractFactory
{
public:
CConcreteFactory2()
{
theApp.Trace(_T("CConcreteFactory2 构造"));
};
virtual ~CConcreteFactory2()
{
theApp.Trace(_T("CConcreteFactory2 析构"));
};

virtual CAbstractProduct

A* CreateProductA()
{
theApp.Trace(_T("CConcreteFactory2::CreateProductA()"));
return new CProductA2;
};
virtual CAbstractProductB* CreateProductB()
{
theApp.Trace(_T("CConcreteFactory2::CreateProductB()"));
return new CProductB2;
};
};


//运行代码
void CDesignPatternDlg::OnBtnAbstractFactory()
{
theApp.ClearTraceMessage();

// 创建一族对象
CAbstractProductA *pProductA = NULL;
CAbstractProductB *pProductB = NULL;

CConcreteFactory1 oFactory1;
pProductA = oFactory1.CreateProductA();
pProductB = oFactory1.CreateProductB();
ASSERT(NULL != pProductA && NULL != pProductB);
pProductA->Operation();
pProductB->Operation();
delete pProductA;
pProductA = NULL;
delete pProductB;
pProductB = NULL;

CConcreteFactory2 oFactory2;
pProductA = oFactory2.CreateProductA();
pProductB = oFactory2.CreateProductB();
ASSERT(NULL != pProductA && NULL != pProductB);
pProductA->Operation();
pProductB->Operation();
delete pProductA;
pProductA = NULL;
delete pProductB;
pProductB = NULL;
}

//运行结果
CAbstractFactory 构造
CConcreteFactory1 构造
CConcreteFactory1::CreateProductA()
CAbstractProductA 构造
CProductA1 构造
CConcreteFactory1::CreateProductB()
CAbstractProductB 构造
CProductB1 构造
CProductA1::Operation()
CProductB1::Operation()
CProductA1 析构
CAbstractProductA 析构
CProductB1 析构
CAbstractProductB 析构
CAbstractFactory 构造
CConcreteFactory2 构造
CConcreteFactory2::CreateProductA()
CAbstractProductA 构造
CProductA2 构造
CConcreteFactory2::CreateProductB()
CAbstractProductB 构造
CProductB2 构造
CProductA2::Operation()
CProductB2::Operation()
CProductA2 析构
CAbstractProductA 析构
CProductB2 析构
CAbstractProductB 析构
CConcreteFactory2 析构
CAbstractFactory 析构
CConcreteFactory1 析构
CAbstractFactory 析构

点评:

virtual CAbstractProductA* CreateProductA() = 0;
virtual CAbstractProductB* CreateProductB() = 0;

virtual CAbstractProductA* CreateProductA()
{
theApp.Trace(_T("CConcreteFactory2::CreateProductA()"));
return new CProductA2;
};
virtual CAbstractProductB* CreateProductB()
{
theApp.Trace(_T("CConcreteFactory2::CreateProductB()"));
return new CProductB2;
};

/************************************************************************
工厂方法模式(Factory Method):!!!2
意图:
定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method 使一个类的
实例化延迟到其子类。
适用性:
当一个类不知道它所必须创建的对象的类的时候。
当一个类希望由它的子类来指定它所创建的对象的时候。
当类将创建对象的职责委托给多个帮助子类中的某一个,并且你希望将哪一个帮助子类是
代理者这一信息局部化的时候。
************************************************************************/

// 产品抽象类
class CProduct


{
public:
CProduct()
{
theApp.Trace(_T("CProduct 构造"));
};
virtual ~CProduct()
{
theApp.Trace(_T("CProduct 析构"));
};

virtual void Operation() = 0;
};

// 创建者抽象类
class CCreator
{
public:
CCreator()
{
theApp.Trace(_T("CCreator 构造"));
};
virtual ~CCreator()
{
theApp.Trace(_T("CCreator 析构"));
};

virtual CProduct* FactoryMethod() = 0;
void Operation()
{
theApp.Trace(_T("CCreator::Operation()"));
CProduct *pProduct = FactoryMethod();
ASSERT(NULL != pProduct);
pProduct->Operation();
delete pProduct;
pProduct = NULL;
};
};

// 具体产品
class CConcreteProduct : public CProduct
{
public:
CConcreteProduct()
{
theApp.Trace(_T("CConcreteProduct 构造"));
};
virtual ~CConcreteProduct()
{
theApp.Trace(_T("CConcreteProduct 析构"));
};

virtual void Operation()
{
theApp.Trace(_T("CConcreteProduct::Operation()"));
};
};

// 具体创建者
class CConcreteCreator : public CCreator
{
public:
CConcreteCreator()
{
theApp.Trace(_T("CConcreteCreator 构造"));
};
virtual ~CConcreteCreator()
{
theApp.Trace(_T("CConcreteCreator 析构"));
};

virtual CProduct* FactoryMethod()
{
return new CConcreteProduct;
};
};
运行代码:
// 工厂方法模式(Factory Method)
void CDesignPatternDlg::OnBtnFactoryMethod()
{
theApp.ClearTraceMessage();

// 由子类创建对象
CConcreteCreator oCreator;
oCreator.Operation();
}
运行结果:
CCreator 构造
CConcreteCreator 构造
CCreator::Operation()
CProduct 构造
CConcreteProduct 构造
CConcreteProduct::Operation()
CConcreteProduct 析构
CProduct 析构
CConcreteCreator 析构
CCreator 析构

点评:
virtual CProduct* FactoryMethod() = 0;
void Operation()
{
theApp.Trace(_T("CCreator::Operation()"));
CProduct *pProduct = FactoryMethod();
ASSERT(NULL != pProduct);
pProduct->Operation();
delete pProduct;
pProduct = NULL;
};

/************************************************************************
生成器模式(Builder):!!!3
意图:
将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。
适用性:
当创建复杂对象的算法应该独立于该对象的组成部分以及它们的装配方式时。
当构造过程必须允许被构造的对象有不同的表示时。
************************************************************************/

// 生成器抽象类
class CBuilder
{
public:
CBuilder()
{
theApp.Trace(_T("CBuilder 构造"));
};
virtual ~CBuilder()
{
theApp.Trace(_T("CBuilder 析构"));
};

virtual void BuildPart1() = 0;
virtual void BuildPart2() = 0;
};

// 具体生成器类
class CConcreteBuilder : public CBuilder
{
public:
CConcreteBuilder()
{
theApp.Trace(_T("CConcreteBuilder 构造"));
};
virtual ~CConcreteBuilder()
{
theApp.Trace(_T("CConcreteBuilder 析构"));
};



virtual void BuildPart1()
{
theApp.Trace(_T("CBuilder::BuildPart1()"));
};
virtual void BuildPart2()
{
theApp.Trace(_T("CBuilder::BuildPart2()"));
};
};

// 控制器类
class CDirector
{
public:
CDirector()
{
theApp.Trace(_T("CDirector 构造"));
};
virtual ~CDirector()
{
theApp.Trace(_T("CDirector 析构"));
};

void Construct(CBuilder &oBuilder)
{
theApp.Trace(_T("CDirector::Construct()"));
oBuilder.BuildPart1();
oBuilder.BuildPart2();
};
};
运行代码:
// 生成器模式(Builder)
void CDesignPatternDlg::OnBtnBuilder()
{
theApp.ClearTraceMessage();

// 可以用于复杂对象的创建,所谓复杂是指步骤多、条件多等
CConcreteBuilder oBuilder;
CDirector oDirector;
oDirector.Construct(oBuilder);
}
运行结果:
CBuilder 构造
CConcreteBuilder 构造
CDirector 构造
CDirector::Construct()
CBuilder::BuildPart1()
CBuilder::BuildPart2()
CDirector 析构
CConcreteBuilder 析构
CBuilder 析构
点评:
生成器 控制器
virtual void BuildPart1() = 0;
virtual void BuildPart2() = 0;

/************************************************************************
原型模式(Prototype):!!!4
意图:
用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。
适用性:
当要实例化的类是在运行时刻指定时,例如,通过动态装载;或者为了避免创建一个与产
品类层次平行的工厂类层次时;或者当一个类的实例只能有几个不同状态组合中的一种时。
建立相应数目的原型并克隆它们可能比每次用合适的状态手工实例化该类更方便一些。
************************************************************************/

// 原型抽象类
class CPrototype
{
public:
CPrototype()
{
theApp.Trace(_T("CPrototype 构造"));
};
virtual ~CPrototype()
{
theApp.Trace(_T("CPrototype 析构"));
};

virtual CPrototype* Clone() = 0;
};

// 具体原型类1
class CConcretePrototype1 : public CPrototype
{
public:
CConcretePrototype1()
{
theApp.Trace(_T("CConcretePrototype1 构造"));
};
virtual ~CConcretePrototype1()
{
theApp.Trace(_T("CConcretePrototype1 析构"));
};

virtual CPrototype* Clone()
{
theApp.Trace(_T("CConcretePrototype1::Clone()"));
CConcretePrototype1 *pClone = new CConcretePrototype1;
*pClone = *this;
return pClone;
};
};

// 具体原型类2
class CConcretePrototype2 : public CPrototype
{
public:
CConcretePrototype2()
{
theApp.Trace(_T("CConcretePrototype2 构造"));
};
virtual ~CConcretePrototype2()
{
theApp.Trace(_T("CConcretePrototype2 析构"));
};

virtual CPrototype* Clone()
{
theApp.Trace(_T("CConcretePrototype2::Clone()"));
CConcretePrototype2 *pClone = new CConcretePrototype2;
*pClone = *this;
return pClone;
};
};

运行代码:
// 原型模式(Prototype)
void CDesignPatternDlg::OnBtnPrototype()
{

theApp.ClearTraceMessage();

// 通过拷贝创建新对象
CPrototype *pPrototype = new CConcretePrototype1;
CPrototype *pPrototypeClone = pPrototype->Clone();
delete pPrototype;
pPrototype = NULL;
delete pPrototypeClone;
pPrototypeClone = NULL;
CConcretePrototype2 oPrototype;
pPrototypeClone = oPrototype.Clone();
delete pPrototypeClone;
pPrototypeClone = NULL;
}
运行结果:
CPrototype 构造
CConcretePrototype1 构造
CConcretePrototype1::Clone()
CPrototype 构造
CConcretePrototype1 构造
CConcretePrototype1 析构
CPrototype 析构
CConcretePrototype1 析构
CPrototype 析构
CPrototype 构造
CConcretePrototype2 构造
CConcretePrototype2::Clone()
CPrototype 构造
CConcretePrototype2 构造
CConcretePrototype2 析构
CPrototype 析构
CConcretePrototype2 析构
CPrototype 析构

点评:
virtual CPrototype* Clone()
{
theApp.Trace(_T("CConcretePrototype1::Clone()"));
CConcretePrototype1 *pClone = new CConcretePrototype1;
*pClone = *this;
return pClone;
};

/************************************************************************
单件模式(Singleton):!!!5
意图:
保证一个类仅有一个实例,并提供一个访问它的全局访问点。
适用性:
当类只能有一个实例而且客户可以从一个众所周知的访问点访问它时。
当这个唯一实例应该是通过子类化可扩展的,并且客户应该无需更改代码就能使用一个扩
展的实例时。
************************************************************************/

// 单件类
class CSingleton
{
private:
CSingleton() // 私有构造,防止外部创建实例
{
theApp.Trace(_T("CSingleton 构造"));
};

public:
virtual ~CSingleton() {};

static CSingleton& GetInstance() // 全局访问点
{
theApp.Trace(_T("CSingleton::GetInstance()"));
static CSingleton s_oSingleton; // 静态对象,保证只有一个实例
return s_oSingleton;
};

void Operation()
{
theApp.Trace(_T("CSingleton::Operation()"));
};
};
// 方便外部调用
#define theSingleton (CSingleton::GetInstance())

运行代码:
// 单件模式(Singleton)
void CDesignPatternDlg::OnBtnSingleton()
{
theApp.ClearTraceMessage();

// 可以取代全局变量,用到的时候才创建对象
theSingleton.Operation();
theSingleton.Operation();
}
运行结果:
CSingleton::GetInstance()
CSingleton::Operation()
CSingleton::GetInstance()
CSingleton::Operation()
点评:
static CSingleton& GetInstance() // 全局访问点
{
theApp.Trace(_T("CSingleton::GetInstance()"));
static CSingleton s_oSingleton; // 静态对象,保证只有一个实例
return s_oSingleton;
};



/************************************************************************
适配器模式(Adapter):!!!6
意图:
将一个类的接口转换成客户希望的另外一个接口。Adapter 模式使得原本由于接口不兼容
而不能一起工作的那

些类可以一起工作。
适用性:
你想使用一个已经存在的类,而它的接口不符合你的需求。
你想创建一个可以复用的类,该类可以与其他不相关的类或不可预见的类(即那些接口可
能不一定兼容的类)协同工作。
(仅适用于对象Adapter)你想使用一些已经存在的子类,但是不可能对每一个都进行子类
化以匹配它们的接口。对象适配器可以适配它的父类接口。
************************************************************************/

// 目标接口抽象类
class CTarget
{
public:
CTarget()
{
theApp.Trace(_T("CTarget 构造"));
};
virtual ~CTarget()
{
theApp.Trace(_T("CTarget 析构"));
};

virtual void Request() = 0;
};

// 被适配者
class CAdaptee
{
public:
CAdaptee()
{
theApp.Trace(_T("CAdaptee 构造"));
};
virtual ~CAdaptee()
{
theApp.Trace(_T("CAdaptee 析构"));
};

void SpecificRequest()
{
theApp.Trace(_T("CAdaptee::SpecificRequest()"));
};
};

// 对象适配器
class CObjectAdapter : public CTarget
{
public:
CObjectAdapter()
{
theApp.Trace(_T("CObjectAdapter 构造"));
m_pAdaptee = NULL;
};
virtual ~CObjectAdapter()
{
theApp.Trace(_T("CObjectAdapter 析构"));
};

void SetAdaptee(CAdaptee &oAdaptee)
{
theApp.Trace(_T("CObjectAdapter::SetAdaptee(CAdaptee &oAdaptee = %p)"), &oAdaptee);
m_pAdaptee = &oAdaptee;
};
virtual void Request()
{
theApp.Trace(_T("CObjectAdapter::Request()"));
if (NULL != m_pAdaptee)
{
m_pAdaptee->SpecificRequest();
}
};

private:
CAdaptee *m_pAdaptee;
};

// 类适配器
class CClassAdapter : public CTarget, public CAdaptee
{
public:
CClassAdapter()
{
theApp.Trace(_T("CClassAdapter 构造"));
};
virtual ~CClassAdapter()
{
theApp.Trace(_T("CClassAdapter 析构"));
};

virtual void Request()
{
theApp.Trace(_T("CClassAdapter::Request()"));
SpecificRequest();
};
};

运行代码:
// 适配器模式(Adapter)
void CDesignPatternDlg::OnBtnAdapter()
{
theApp.ClearTraceMessage();

// 改变接口成为另一个接口,当然两个接口是有类似特性的

// 对象适配器
CAdaptee oAdaptee;
CObjectAdapter oObjectAdapter;
oObjectAdapter.SetAdaptee(oAdaptee);
CTarget *pTarget = &oObjectAdapter;
ASSERT(NULL != pTarget);
pTarget->Request();

// 类适配器
CClassAdapter oClassAdapter;
pTarget = &oClassAdapter;
ASSERT(NULL != pTarget);
pTarget->Request();
}

运行结果:
CAdaptee 构造
CTarget 构造
CObjectAdapter 构造
CObjectAdapter::SetAdaptee(CAdaptee &oAdaptee = 0012F484)
CObjectAdapter::Request()
CAdaptee::SpecificRequest()
CTarget 构造
CAdaptee 构造
CClassAdapter 构造
CClassAdapter::Request()
CAdaptee::SpecificRequest()
CClassAdapter 析构
CAdaptee 析构
CTarget 析构
CObjectAdapter 析构
CTarget 析构
CAdaptee 析构
点评:
对象适配
void SetAdaptee(CAdaptee &oA

daptee)
{
theApp.Trace(_T("CObjectAdapter::SetAdaptee(CAdaptee &oAdaptee = %p)"), &oAdaptee);
m_pAdaptee = &oAdaptee;
};
virtual void Request()
{
theApp.Trace(_T("CObjectAdapter::Request()"));
if (NULL != m_pAdaptee)
{
m_pAdaptee->SpecificRequest();
}
};

private:
CAdaptee *m_pAdaptee;
类适配
class CClassAdapter : public CTarget, public CAdaptee
{
public:
virtual void Request()
{
theApp.Trace(_T("CClassAdapter::Request()"));
SpecificRequest();
};
};

/************************************************************************
桥接模式(Bridge):!!!7
意图:
将抽象部分与它的实现部分分离,使它们都可以独立地变化。
适用性:
你不希望在抽象和它的实现部分之间有一个固定的绑定关系。例如这种情况可能是因为,
在程序运行时刻实现部分应可以被选择或者切换。
类的抽象以及它的实现都应该可以通过生成子类的方法加以扩充。这时 Bridge 模式使你
可以对不同的抽象接口和实现部分进行组合,并分别对它们进行扩充。
对一个抽象的实现部分的修改应对客户不产生影响,即客户的代码不必重新编译。
(C++)你想对客户完全隐藏抽象的实现部分。在 C++ 中,类的表示在类接口中是可见的。
有许多类要生成。这样一种类层次结构说明你必须将一个对象分解成两个部分。Rumbaugh
称这种类层次结构为“嵌套的普化”(nested generalizations)。
你想在多个对象间共享实现(可能使用引用计数),但同时要求客户并不知道这一点。一
个简单的例子便是 Coplien 的 String 类 [Cop92],在这个类中多个对象可以共享同一个
字符串表示(StringRep)。
************************************************************************/

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

// 实现抽象基类
class CImplementor
{
public:
CImplementor()
{
theApp.Trace(_T("CImplementor 构造"));
};
virtual ~CImplementor()
{
theApp.Trace(_T("CImplementor 析构"));
};

virtual void OperationImp() = 0;
};

// 抽象接口抽象基类
class CAbstraction
{
public:
CAbstraction()
{
theApp.Trace(_T("CAbstraction 构造"));
m_pImplementor = NULL;
};
virtual ~CAbstraction()
{
theApp.Trace(_T("CAbstraction 析构"));
};

void SetImplementor(CImplementor &oImplementor)
{
theApp.Trace(_T("CAbstraction::SetImplementor(CImplementor &oImplementor = %p)"), &oImplementor);
m_pImplementor = &oImplementor;
}
void Operation()
{
theApp.Trace(_T("CAbstraction::Operation()"));
if (NULL != m_pImplementor)
{
m_pImplementor->OperationImp();
}
};

private:
class CImplementor *m_pImplementor;
};

// 抽象接口扩展类
class CRefinedAbstraction : public CAbstraction
{
public:
CRefinedAbstraction()
{
theApp.Trace(_T("CRefinedAbstraction 构造"));
};
virtual

~CRefinedAbstraction()
{
theApp.Trace(_T("CRefinedAbstraction 析构"));
};

void RefinedOperation()
{
theApp.Trace(_T("CRefinedAbstraction::RefinedOperation()"));
Operation();
Operation();
};
};

// 具体实现类A
class CConcreteImplementorA : public CImplementor
{
public:
CConcreteImplementorA()
{
theApp.Trace(_T("CConcreteImplementorA 构造"));
};
virtual ~CConcreteImplementorA()
{
theApp.Trace(_T("CConcreteImplementorA 析构"));
};

virtual void OperationImp()
{
theApp.Trace(_T("CConcreteImplementorA::OperationImp()"));
};
};

// 具体实现类B
class CConcreteImplementorB : public CImplementor
{
public:
CConcreteImplementorB()
{
theApp.Trace(_T("CConcreteImplementorB 构造"));
};
virtual ~CConcreteImplementorB()
{
theApp.Trace(_T("CConcreteImplementorB 析构"));
};

virtual void OperationImp()
{
theApp.Trace(_T("CConcreteImplementorB::OperationImp()"));
};
};
运行代码:
// 桥接模式(Bridge)
void CDesignPatternDlg::OnBtnBridge()
{
theApp.ClearTraceMessage();
// 接口和实现可以分别扩展而不相互影响,当然中间关联的接口部分是不能变的,扩
// 展也必须基于中间关联的接口部分
CRefinedAbstraction oRefinedAbstraction;
CConcreteImplementorA oImplementorA;
CConcreteImplementorB oImplementorB;
oRefinedAbstraction.SetImplementor(oImplementorA);
oRefinedAbstraction.Operation();
oRefinedAbstraction.RefinedOperation();
oRefinedAbstraction.SetImplementor(oImplementorB);
oRefinedAbstraction.Operation();
oRefinedAbstraction.RefinedOperation();
}

运行代码:
CAbstraction 构造
CRefinedAbstraction 构造
CImplementor 构造
CConcreteImplementorA 构造
CImplementor 构造
CConcreteImplementorB 构造
CAbstraction::SetImplementor(CImplementor &oImplementor = 0012F474)
CAbstraction::Operation()
CConcreteImplementorA::OperationImp()
CRefinedAbstraction::RefinedOperation()
CAbstraction::Operation()
CConcreteImplementorA::OperationImp()
CAbstraction::Operation()
CConcreteImplementorA::OperationImp()
CAbstraction::SetImplementor(CImplementor &oImplementor = 0012F468)
CAbstraction::Operation()
CConcreteImplementorB::OperationImp()
CRefinedAbstraction::RefinedOperation()
CAbstraction::Operation()
CConcreteImplementorB::OperationImp()
CAbstraction::Operation()
CConcreteImplementorB::OperationImp()
CConcreteImplementorB 析构
CImplementor 析构
CConcreteImplementorA 析构
CImplementor 析构
CRefinedAbstraction 析构
CAbstraction 析构
点评
bridge,observer和mediator模式的中心都是“解耦”
bridge:把(一个对象)抽象部分和具体的实现分开,使抽象和实现能够互相不影响的自由变动。


/************************************************************************
组合模式(Composite):!!!8
意图:
将对象组合成树形结构以表示“部分-整体”的层次结构。Composite 使得用户对单个

对象
和组合对象的使用具有一致性。
适用性:
你想表示对象的部分-整体层次结构。
你希望用户忽略组合对象与单个对象的不同,用户将统一地使用组合结构中的所有对象。
************************************************************************/

// 组件抽象类
// 在装饰者模式(Decorator)中已经有实现,所以这里只需引用。
class CComponent;
class CComposite;

// 迭代器抽象类
class CIterator
{
public:
CIterator()
{
theApp.Trace(_T("CIterator 构造"));
};
virtual ~CIterator()
{
theApp.Trace(_T("CIterator 析构"));
};

virtual BOOL HasNext() = 0;
virtual void* Next() = 0;
};
// 组件迭代器,实现子项的外部遍历方法
class CComponentIterator : public CIterator
{
public:
CComponentIterator(CComposite *pComposite)
{
theApp.Trace(_T("CComponentIterator 构造"));
m_pComposite = pComposite;
m_nIndex = 0;
};
virtual ~CComponentIterator()
{
theApp.Trace(_T("CComponentIterator 析构"));
};

virtual BOOL HasNext();
virtual void* Next();

private:
CComposite *m_pComposite;
int m_nIndex;
};

// 组合迭代器,实现组合递归结构的外部遍历方法
class CCompositeIterator : public CIterator
{
public:
CCompositeIterator(CComposite *pComposite)
{
theApp.Trace(_T("CCompositeIterator 构造"));
CIterator *pIterator = new CComponentIterator(pComposite);
ASSERT(NULL != pIterator);
// 压栈
m_stackIterator.AddTail(pIterator);
};
virtual ~CCompositeIterator()
{
theApp.Trace(_T("CCompositeIterator 析构"));
};

virtual BOOL HasNext()
{
theApp.Trace(_T("CCompositeIterator::HasNext()"));
if (m_stackIterator.IsEmpty())
{
return FALSE;
}
CIterator *pIterator = m_stackIterator.GetTail();
ASSERT(NULL != pIterator);
if (pIterator->HasNext())
{
return TRUE;
}
else
{
// 出栈
pIterator = m_stackIterator.RemoveTail();
ASSERT(NULL != pIterator);
delete pIterator;
pIterator = NULL;
return HasNext();
}
};
virtual void* Next()
{
theApp.Trace(_T("CCompositeIterator::Next()"));
if (HasNext())
{
CIterator *pIterator = m_stackIterator.GetTail();
ASSERT(NULL != pIterator);
CComponent *pComponent = (CComponent*)pIterator->Next();
ASSERT(NULL != pComponent);
pIterator = pComponent->CreateIterator();
ASSERT(NULL != pIterator);
// 压栈
m_stackIterator.AddTail(pIterator);
return pComponent;
}
return NULL;
};

private:
// 通过堆栈维护组合递归结构的位置
CList m_stackIterator;
};
// 组件抽象类
class CComponent
{
public:
CComponent()
{
theApp.Trace(_T("CComponent 构造"));
};
virtual ~CComponent()
{
theApp.Trace(_T("CComponent 析构"));
};
virtual void Add(CComponent &oComponent)
{
theApp.Trace(_T("CComponent::Add(CComponent &oComponent = %p)"), &oComponent);

};
virtual void Remove(CComponent &oComponent)
{
theApp.Trace(_T("CComponent::Remove(CComponent &oComponent = %p)"), &oComponent);
};
virtual CComponent* GetChild(int nIndex)
{
theApp.Trace(_T("CComponent::GetChild(int nIndex = %d)"), nIndex);
return NULL;
};
virtual CIterator* CreateIterator()
{
theApp.Trace(_T("CComponent::CreateIterator()"));
return NULL;
};

virtual void Operation() = 0;
};
// 组合节点类
class CComposite : public CComponent
{
public:
CComposite()
{
theApp.Trace(_T("CComposite 构造"));
};
virtual ~CComposite()
{
theApp.Trace(_T("CComposite 析构"));
};

virtual void Add(CComponent &oComponent)
{
theApp.Trace(_T("CComposite::Add(CComponent &oComponent = %p)"), &oComponent);
m_lstChild.AddTail(&oComponent);
};
virtual void Remove(CComponent &oComponent)
{
theApp.Trace(_T("CComposite::Remove(CComponent &oComponent = %p)"), &oComponent);
m_lstChild.RemoveAt(m_lstChild.Find(&oComponent));
};
virtual CComponent* GetChild(int nIndex)
{
theApp.Trace(_T("CComposite::GetChild(int nIndex = %d)"), nIndex);
return m_lstChild.GetAt(m_lstChild.FindIndex(nIndex));
};
int GetCount()
{
theApp.Trace(_T("CComposite::GetCount()"));
return m_lstChild.GetCount();
};
virtual CIterator* CreateIterator()
{
theApp.Trace(_T("CComposite::CreateIterator()"));
return new CCompositeIterator(this);
};

virtual void Operation()
{
theApp.Trace(_T("CComposite::Operation()"));
theApp.Trace(_T("this = %p"), this);
// 遍历子节点,下面的代码是内部遍历方法
// CComponent *pComponent;
// for (POSITION pos = m_lstChild.GetHeadPosition(); NULL != pos;)
// {
// pComponent = m_lstChild.GetNext(pos);
// ASSERT(NULL != pComponent);
// pComponent->Operation();
// }
};

private:
CList m_lstChild;
};

// 叶节点类
class CLeaf : public CComponent
{
public:
CLeaf()
{
theApp.Trace(_T("CLeaf 构造"));
};
virtual ~CLeaf()
{
theApp.Trace(_T("CLeaf 析构"));
};

virtual CIterator* CreateIterator()
{
theApp.Trace(_T("CLeaf::CreateIterator()"));
return new CCompositeIterator(NULL); // 叶节点返回空迭代器
};

virtual void Operation()
{
theApp.Trace(_T("CLeaf::Operation()"));
theApp.Trace(_T("this = %p"), this);
};
};
运行代码:
// 组合模式(Composite)
void CDesignPatternDlg::OnBtnComposite()
{
theApp.ClearTraceMessage();

// 可以以统一的方式处理树结构
CComposite oRoot;
CComposite oComposite1, oComposite2, oComposite3;
CLeaf oLeaf1, oLeaf2, oLeaf3;
oRoot.Add(oComposite1);
oRoot.Add(oComposite2);
oComposite2.Add(oComposite3);
oComposite1.Add(oLeaf1);
oComposite1.Add(oLeaf2);
oComposite2.Add(oLeaf3);
oRoot.Operation();
CIterator *pIterator = oRoot.CreateIterator();
ASSERT(NULL != pIterator);
CComponent *pComponent;
while (pIterator->HasNext())
{
pComp

onent = (CComponent*)pIterator->Next();
ASSERT(NULL != pComponent);
pComponent->Operation();
}
delete pIterator;
pIterator = NULL;
}

运行结果:
CComponent 构造
CComposite 构造
CComponent 构造
CComposite 构造
CComponent 构造
CComposite 构造
CComponent 构造
CComposite 构造
CComponent 构造
CLeaf 构造
CComponent 构造
CLeaf 构造
CComponent 构造
CLeaf 构造
CComposite::Add(CComponent &oComponent = 0012F440)
CComposite::Add(CComponent &oComponent = 0012F418)
CComposite::Add(CComponent &oComponent = 0012F3F0)
CComposite::Add(CComponent &oComponent = 0012F3E4)
CComposite::Add(CComponent &oComponent = 0012F3D8)
CComposite::Add(CComponent &oComponent = 0012F3CC)
CComposite::Operation()
this = 0012F468
CComposite::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构造
CComponentIterator 构造
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CCompositeIterator::Next()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator::HasNext()
CComposite::GetChild(int nIndex = 0)
CComposite::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构造
CComponentIterator 构造
CComposite::Operation()
this = 0012F440
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CCompositeIterator::Next()
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CCompositeIterator::Next()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator::HasNext()
CComposite::GetChild(int nIndex = 0)
CLeaf::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构造
CComponentIterator 构造
CLeaf::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构造
CComponentIterator 构造
CLeaf::Operation()
this = 0012F3E4
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CCompositeIterator::Next()
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CCompositeIterator::Next()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator::HasNext()
CComposite::GetChild(int nIndex = 1)
CLeaf::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构造
CCompon

entIterator 构造
CLeaf::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构造
CComponentIterator 构造
CLeaf::Operation()
this = 0012F3D8
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CCompositeIterator::Next()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator::HasNext()
CComposite::GetChild(int nIndex = 1)
CComposite::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构造
CComponentIterator 构造
CComposite::Operation()
this = 0012F418
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CCompositeIterator::Next()
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CCompositeIterator::Next()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator::HasNext()
CComposite::GetChild(int nIndex = 0)
CComposite::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构造
CComponentIterator 构造
CComposite::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构造
CComponentIterator 构造
CComposite::Operation()
this = 0012F3F0
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CCompositeIterator::Next()
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CCompositeIterator::Next()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator::HasNext()
CComposite::GetChild(int nIndex = 1)
CLeaf::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构


CComponentIterator 构造
CLeaf::CreateIterator()
CIterator 构造
CCompositeIterator 构造
CIterator 构造
CComponentIterator 构造
CLeaf::Operation()
this = 0012F3CC
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CComponentIterator::HasNext()
CComposite::GetCount()
CComponentIterator 析构
CIterator 析构
CCompositeIterator::HasNext()
CCompositeIterator 析构
CIterator 析构
CLeaf 析构
CComponent 析构
CLeaf 析构
CComponent 析构
CLeaf 析构
CComponent 析构
CComposite 析构
CComponent 析构
CComposite 析构
CComponent 析构
CComposite 析构
CComponent 析构
CComposite 析构
CComponent 析构
###组合模式

点评:
一定要自己手工代码一下.


/************************************************************************
装饰者模式(Decorator):!!!9
意图:
动态地给一个对象添加一些额外的职责。就增加功能来说,Decorator 模式相比生成子类
更为灵活。
适用性:
在不影响其他对象的情况下,以动态、透明的方式给单个对象添加职责。
处理那些可以撤消的职责。
当不能采用生成子类的方法进行扩充时。一种情况是,可能有大量独立的扩展,为支持每
一种组合将产生大量的子类,使得子类数目呈爆炸性增长。另一种情况可能是因为类定义
被隐藏,或类定义不能用于生成子类。
************************************************************************/

// 迭代器抽象类
// 在迭代器模式(Iterator)中已经有实现,所以这里只需引用。
class CIterator;

// 组件抽象类
class CComponent
{
public:
CComponent()
{
theApp.Trace(_T("CComponent 构造"));
};
virtual ~CComponent()
{
theApp.Trace(_T("CComponent 析构"));
};
virtual void Add(CComponent &oComponent)
{
theApp.Trace(_T("CComponent::Add(CComponent &oComponent = %p)"), &oComponent);
};
virtual void Remove(CComponent &oComponent)
{
theApp.Trace(_T("CComponent::Remove(CComponent &oComponent = %p)"), &oComponent);
};
virtual CComponent* GetChild(int nIndex)
{
theApp.Trace(_T("CComponent::GetChild(int nIndex = %d)"), nIndex);
return NULL;
};
virtual CIterator* CreateIterator()
{
theApp.Trace(_T("CComponent::CreateIterator()"));
return NULL;
};

virtual void O

peration() = 0;
};

// 具体组件
class CConcreteComponent : public CComponent
{
public:
CConcreteComponent()
{
theApp.Trace(_T("CConcreteComponent 构造"));
};
virtual ~CConcreteComponent()
{
theApp.Trace(_T("CConcreteComponent 析构"));
};

virtual void Operation()
{
theApp.Trace(_T("CConcreteComponent::Operation()"));
};
};

// 装饰者基类
class CDecorator : public CComponent
{
public:
CDecorator()
{
theApp.Trace(_T("CDecorator 构造"));
m_pComponent = NULL;
};
virtual ~CDecorator()
{
theApp.Trace(_T("CDecorator 析构"));
};

void SetComponent(CComponent &oComponent)
{
theApp.Trace(_T("CDecorator::SetComponent(CComponent &oComponent = %p)"), &oComponent);
m_pComponent = &oComponent;
};

virtual void Operation()
{
theApp.Trace(_T("CDecorator::Operation()"));
if (NULL != m_pComponent)
{
m_pComponent->Operation(); // 调用被装饰者
}
};

private:
CComponent *m_pComponent;
};

// 装饰者A
class CConcreteDecoratorA : public CDecorator
{
public:
CConcreteDecoratorA()
{
theApp.Trace(_T("CConcreteDecoratorA 构造"));
};
virtual ~CConcreteDecoratorA()
{
theApp.Trace(_T("CConcreteDecoratorA 析构"));
};

virtual void Operation()
{
theApp.Trace(_T("CConcreteDecoratorA::Operation()"));
CDecorator::Operation(); // 调用被装饰者
};
};

// 装饰者B
class CConcreteDecoratorB : public CDecorator
{
public:
CConcreteDecoratorB()
{
theApp.Trace(_T("CConcreteDecoratorB 构造"));
};
virtual ~CConcreteDecoratorB()
{
theApp.Trace(_T("CConcreteDecoratorB 析构"));
};

virtual void Operation()
{
theApp.Trace(_T("CConcreteDecoratorB::Operation()"));
CDecorator::Operation(); // 调用被装饰者
};
};

运行代码:
// 装饰者模式(Decorator)
void CDesignPatternDlg::OnBtnDecorator()
{
theApp.ClearTraceMessage();

// 类似派生,为被装饰者增加额外的处理
CConcreteComponent oComponent;
CConcreteDecoratorA oDecorator1;
oDecorator1.SetComponent(oComponent);
oDecorator1.Operation();
CConcreteDecoratorB oDecorator2;
oDecorator2.SetComponent(oDecorator1);
oDecorator2.Operation();
}

运行结果:
CComponent 构造
CConcreteComponent 构造
CComponent 构造
CDecorator 构造
CConcreteDecoratorA 构造
CDecorator::SetComponent(CComponent &oComponent = 0012F484)
CConcreteDecoratorA::Operation()
CDecorator::Operation()
CConcreteComponent::Operation()
CComponent 构造
CDecorator 构造
CConcreteDecoratorB 构造
CDecorator::SetComponent(CComponent &oComponent = 0012F474)
CConcreteDecoratorB::Operation()
CDecorator::Operation()
CConcreteDecoratorA::Operation()
CDecorator::Operation()
CConcreteComponent::Operation()
CConcreteDecoratorB 析构
CDecorator 析构
CComponent 析构
CConcreteDecoratorA 析构
CDecorator 析构
CComponent 析构
CConcreteComponent 析构
CComponent 析构
###装饰者与桥


/************************************************************************

外观模式(Facade):!!!10
意图:
为子系统中的一组接口提供一个一致的界面,Facade 模式定义了一个高层接口,这个接口
使得这一子系统更加容易使用。
适用性:
当你要为一个复杂子系统提供一个简单接口时。子系统往往因为不断演化而变得越来越复
杂。大多数模式使用时都会产生更多更小的类。这使得子系统更具可重用性,也更容易对
子系统进行定制,但这也给那些不需要定制子系统的用户带来一些使用上的困难。Facade
可以提供一个简单的缺省视图,这一视图对大多数用户来说已经足够,而那些需要更多的
可定制性的用户可以越过 Facade 层。
客户程序与抽象类的实现部分之间存在着很大的依赖性。引入 Facade 将这个子系统与客
户以及其他的子系统分离,可以提高子系统的独立性和可移植性。
当你需要构建一个层次结构的子系统时,使用 Facade 模式定义子系统中每层的入口点。
如果子系统之间是相互依赖的,你可以让它们仅通过 Facade 进行通讯,从而简化了它们
之间的依赖关系。

************************************************************************/

// 子系统类1
class CSubSystemClass1
{
public:
CSubSystemClass1()
{
theApp.Trace(_T("CSubSystemClass1 构造"));
};
virtual ~CSubSystemClass1()
{
theApp.Trace(_T("CSubSystemClass1 析构"));
};

void Operation1()
{
theApp.Trace(_T("CSubSystemClass1::Operation1()"));
};
};

// 子系统类2
class CSubSystemClass2
{
public:
CSubSystemClass2()
{
theApp.Trace(_T("CSubSystemClass2 构造"));
};
virtual ~CSubSystemClass2()
{
theApp.Trace(_T("CSubSystemClass2 析构"));
};

void Operation2()
{
theApp.Trace(_T("CSubSystemClass2::Operation2()"));
};
};

// 子系统类3
class CSubSystemClass3
{
public:
CSubSystemClass3()
{
theApp.Trace(_T("CSubSystemClass3 构造"));
};
virtual ~CSubSystemClass3()
{
theApp.Trace(_T("CSubSystemClass3 析构"));
};

void Operation3()
{
theApp.Trace(_T("CSubSystemClass3::Operation3()"));
};
};

// 外观统一接口类
class CFacade
{
public:
CFacade(CSubSystemClass1 &oSubSystemClass1, CSubSystemClass2 &oSubSystemClass2, CSubSystemClass3 &oSubSystemClass3)
{
theApp.Trace(_T("CFacade 构造"));
m_pSubSystemClass1 = &oSubSystemClass1;
m_pSubSystemClass2 = &oSubSystemClass2;
m_pSubSystemClass3 = &oSubSystemClass3;
};
virtual ~CFacade()
{
theApp.Trace(_T("CFacade 析构"));
};

void Operation()
{
theApp.Trace(_T("CFacade::Operation()"));
m_pSubSystemClass1->Operation1();
m_pSubSystemClass2->Operation2();
m_pSubSystemClass3->Operation3();
};

private:
CSubSystemClass1 *m_pSubSystemClass1;
CSubSystemClass2 *m_pSubSystemClass2;
CSubSystemClass

3 *m_pSubSystemClass3;
};
运行代码:
// 外观模式(Facade)
void CDesignPatternDlg::OnBtnFacade()
{
theApp.ClearTraceMessage();

// 用一个接口代表一个系统,以简化访问
CSubSystemClass1 oSubSystemClass1;
CSubSystemClass2 oSubSystemClass2;
CSubSystemClass3 oSubSystemClass3;
CFacade oFacade(oSubSystemClass1, oSubSystemClass2, oSubSystemClass3);
oFacade.Operation();
}
运行结果:
CSubSystemClass1 构造
CSubSystemClass2 构造
CSubSystemClass3 构造
CFacade 构造
CFacade::Operation()
CSubSystemClass1::Operation1()
CSubSystemClass2::Operation2()
CSubSystemClass3::Operation3()
CFacade 析构
CSubSystemClass3 析构
CSubSystemClass2 析构
CSubSystemClass1 析构
点评:
void Operation()
{
theApp.Trace(_T("CFacade::Operation()"));
m_pSubSystemClass1->Operation1();
m_pSubSystemClass2->Operation2();
m_pSubSystemClass3->Operation3();
};
CSubSystemClass1 *m_pSubSystemClass1;
CSubSystemClass2 *m_pSubSystemClass2;
CSubSystemClass3 *m_pSubSystemClass3;

/************************************************************************

蝇量模式(Flyweight):!!!11
意图:
运用共享技术有效地支持大量细粒度的对象。
适用性:
一个应用程序使用了大量的对象。
完全由于使用大量的对象,造成很大的存储开销。
对象的大多数状态都可变为外部状态。
如果删除对象的外部状态,那么可以用相对较少的共享对象取代很多组对象。
应用程序不依赖于对象标识。由于 Flyweight 对象可以被共享,对于概念上明显有别的对
象,标识测试将返回真值。
************************************************************************/

// 对象抽象类
class CFlyweight
{
public:
CFlyweight()
{
theApp.Trace(_T("CFlyweight 构造"));
};
virtual ~CFlyweight()
{
theApp.Trace(_T("CFlyweight 析构"));
};

virtual void Operation(int nExtrinsicState) = 0;
};

// 共享具体对象类
class CConcreteFlyweight : public CFlyweight
{
public:
CConcreteFlyweight()
{
theApp.Trace(_T("CConcreteFlyweight 构造"));
};
virtual ~CConcreteFlyweight()
{
theApp.Trace(_T("CConcreteFlyweight 析构"));
};

virtual void Operation(int nExtrinsicState)
{
theApp.Trace(_T("CConcreteFlyweight::Operation(int nExtrinsicState = %d)"), nExtrinsicState);
};
};

// 非共享具体对象类
class CUnsharedConcreteFlyweight : public CFlyweight
{
public:
CUnsharedConcreteFlyweight()
{
theApp.Trace(_T("CUnsharedConcreteFlyweight 构造"));
};
virtual ~CUnsharedConcreteFlyweight()
{
theApp.Trace(_T("CUnsharedConcreteFlyweight 析构"));
};

virtual void Operation(int nExtrinsicState)
{
theApp.Trace(_T("CUnsharedConcreteFlyweight::Operation(int nExtrinsicState = %d)"), nExtrinsicState);
};
};

// 对象抽象类
class CFlyweightFactory
{
public:
CFlyweightFactory()
{
theApp.Trace(_T("CFlyweightFactory 构造"));


};
virtual ~CFlyweightFactory()
{
theApp.Trace(_T("CFlyweightFactory 析构"));
// 释放对象
for (CFlyweight *pFlyweight; m_lstFlyweight.GetCount() > 0;)
{
pFlyweight = m_lstFlyweight.RemoveHead();
delete pFlyweight;
pFlyweight = NULL;
}
};

CFlyweight* GetFlyweight(int nKey)
{
theApp.Trace(_T("CFlyweightFactory::GetFlyweight(int nKey = %d)"), nKey);
int nIndex = nKey % 2;
if (0 <= nIndex && nIndex < m_lstFlyweight.GetCount())
{// 存在对象,则返回对象
return m_lstFlyweight.GetAt(m_lstFlyweight.FindIndex(nIndex));
}
else
{// 不存在对象,则创建并返回对象
m_lstFlyweight.AddTail(new CConcreteFlyweight);
m_lstFlyweight.AddTail(new CUnsharedConcreteFlyweight);
return GetFlyweight(nKey);
}
};

private:
CList m_lstFlyweight;
};

运行代码:
// 蝇量模式(Flyweight)
void CDesignPatternDlg::OnBtnFlyweight()
{
theApp.ClearTraceMessage();

// 减少大量细粒度的对象以节省空间
CFlyweightFactory oFlyweightFactory;
int nExtrinsicState = 3;
CFlyweight *pFlyweight;
for (int i = 0; i < 8; i++)
{
pFlyweight = oFlyweightFactory.GetFlyweight(i + 1);
pFlyweight->Operation(nExtrinsicState);
}
}
运行结果:
CFlyweightFactory 构造
CFlyweightFactory::GetFlyweight(int nKey = 1)
CFlyweight 构造
CConcreteFlyweight 构造
CFlyweight 构造
CUnsharedConcreteFlyweight 构造
CFlyweightFactory::GetFlyweight(int nKey = 1)
CUnsharedConcreteFlyweight::Operation(int nExtrinsicState = 3)
CFlyweightFactory::GetFlyweight(int nKey = 2)
CConcreteFlyweight::Operation(int nExtrinsicState = 3)
CFlyweightFactory::GetFlyweight(int nKey = 3)
CUnsharedConcreteFlyweight::Operation(int nExtrinsicState = 3)
CFlyweightFactory::GetFlyweight(int nKey = 4)
CConcreteFlyweight::Operation(int nExtrinsicState = 3)
CFlyweightFactory::GetFlyweight(int nKey = 5)
CUnsharedConcreteFlyweight::Operation(int nExtrinsicState = 3)
CFlyweightFactory::GetFlyweight(int nKey = 6)
CConcreteFlyweight::Operation(int nExtrinsicState = 3)
CFlyweightFactory::GetFlyweight(int nKey = 7)
CUnsharedConcreteFlyweight::Operation(int nExtrinsicState = 3)
CFlyweightFactory::GetFlyweight(int nKey = 8)
CConcreteFlyweight::Operation(int nExtrinsicState = 3)
CFlyweightFactory 析构
CConcreteFlyweight 析构
CFlyweight 析构
CUnsharedConcreteFlyweight 析构
CFlyweight 析构
点评:
CList m_lstFlyweight;

/************************************************************************
代理模式(Proxy):!!!12
意图:
为其他对象提供一种代理以控制对这个对象的访问。
适用性:
在需要用比较通用和复杂的对象指针代替简单的指针的时候,使用 Proxy 模式。下面是一
些可以使用 Proxy 模式常见情况:
1) 远程代理(Remote Proxy)为一个对象在不同的地址空间提供局部代表。
NEXTSTEP[Add94] 使用 NXProxy 类实现了这

一目的。Coplien[Cop92] 称这种代理为“大
使”(Ambassador)。
2) 虚代理(Virtual Proxy)根据需要创建开销很大的对象。在动机一节描述的 ImageProxy
就是这样一种代理的例子。
3) 保护代理(Protection Proxy)控制对原始对象的访问。保护代理用于对象应该有不同
的访问权限的时候。例如,在 Choices 操作系统 [CIRM93] 中 KemelProxies 为操作系统
对象提供 了访问保护。
4) 智能指引(Smart Reference)取代了简单的指针,它在访问对象时执行一些附加操作。
它的典型用途包括:
对指向实际对象的引用计数,这样当该对象没有引用时,可以自动释放它(也称为
SmartPointers[Ede92])。
当第一次引用一个持久对象时,将它装入内存。
在访问一个实际对象前,检查是否已经锁定了它,以确保其他对象不能改变它。
************************************************************************/

// 代理接口抽象类
class CProxySubject
{
public:
CProxySubject()
{
theApp.Trace(_T("CProxySubject 构造"));
};
virtual ~CProxySubject()
{
theApp.Trace(_T("CProxySubject 析构"));
};

virtual void Request() = 0;
};

// 被代理的对象类
class CRealSubject : public CProxySubject
{
public:
CRealSubject()
{
theApp.Trace(_T("CRealSubject 构造"));
};
virtual ~CRealSubject()
{
theApp.Trace(_T("CRealSubject 析构"));
};

virtual void Request()
{
theApp.Trace(_T("CRealSubject::Request()"));
};
};

// 代理类
class CProxy : public CProxySubject
{
public:
CProxy()
{
theApp.Trace(_T("CProxy 构造"));
m_pSubject = new CRealSubject;
};
virtual ~CProxy()
{
theApp.Trace(_T("CProxy 析构"));
delete m_pSubject;
m_pSubject = NULL;
};

virtual void Request()
{
theApp.Trace(_T("CProxy::Request()"));
if (NULL != m_pSubject)
{
m_pSubject->Request();
}
};

private:
CProxySubject *m_pSubject;
};

运行代码:
// 代理模式(Proxy)
void CDesignPatternDlg::OnBtnProxy()
{
theApp.ClearTraceMessage();

// 包装对象以控制访问
CProxy oProxy;
oProxy.Request();
}

运行结果:
CProxySubject 构造
CProxy 构造
CProxySubject 构造
CRealSubject 构造
CProxy::Request()
CRealSubject::Request()
CProxy 析构
CRealSubject 析构
CProxySubject 析构
CProxySubject 析构
点评:
CProxy()
{
theApp.Trace(_T("CProxy 构造"));
m_pSubject = new CRealSubject;
};



/************************************************************************
责任链模式(Chain of Responsibility):!!!13
意图:
使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这些
对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止。
适用性:
有多个的对象可以处理一个请求,哪个对象处理该请求运行时刻自动确定。
你想在

不明确指定接收者的情况下,向多个对象中的一个提交一个请求。
可处理一个请求的对象集合应被动态指定。
************************************************************************/

// 处理抽象类
class CHandler
{
public:
CHandler()
{
theApp.Trace(_T("CHandler 构造"));
m_pHandler = NULL;
};
virtual ~CHandler()
{
theApp.Trace(_T("CHandler 析构"));
};

void SetHandler(CHandler &oHandler)
{
theApp.Trace(_T("CHandler::SetHandler(CHandler &oHandler = %p)"), &oHandler);
m_pHandler = &oHandler;
};
virtual void HandleRequest(int nRequest) = 0;

protected:
CHandler *m_pHandler;
};

// 具体处理类1
class CConcreteHandler1 : public CHandler
{
public:
CConcreteHandler1()
{
theApp.Trace(_T("CConcreteHandler1 构造"));
};
virtual ~CConcreteHandler1()
{
theApp.Trace(_T("CConcreteHandler1 析构"));
};

virtual void HandleRequest(int nRequest)
{
theApp.Trace(_T("CConcreteHandler1::HandleRequest(int nRequest = %d)"), nRequest);
if (1 == nRequest)
{
theApp.Trace(_T("CConcreteHandler1 处理"));
}
else
{
if (NULL != m_pHandler)
{
m_pHandler->HandleRequest(nRequest);
}
}
};
};

// 具体处理类2
class CConcreteHandler2 : public CHandler
{
public:
CConcreteHandler2()
{
theApp.Trace(_T("CConcreteHandler2 构造"));
};
virtual ~CConcreteHandler2()
{
theApp.Trace(_T("CConcreteHandler2 析构"));
};

virtual void HandleRequest(int nRequest)
{
theApp.Trace(_T("CConcreteHandler2::HandleRequest(int nRequest = %d)"), nRequest);
if (2 == nRequest)
{
theApp.Trace(_T("CConcreteHandler2 处理"));
}
else
{
if (NULL != m_pHandler)
{
m_pHandler->HandleRequest(nRequest);
}
}
};
};
运行代码:
// 责任链模式(Chain of Responsibility)
void CDesignPatternDlg::OnBtnChainOfResponsibility()
{
theApp.ClearTraceMessage();

// 类似消息机制,请求在链中被处理
CConcreteHandler1 oHandler1;
CConcreteHandler2 oHandler2;
oHandler1.SetHandler(oHandler2);
oHandler1.HandleRequest(1);
oHandler1.HandleRequest(2);
oHandler1.HandleRequest(3);
}
运行结果:
CHandler 构造
CConcreteHandler1 构造
CHandler 构造
CConcreteHandler2 构造
CHandler::SetHandler(CHandler &oHandler = 0012F470)
CConcreteHandler1::HandleRequest(int nRequest = 1)
CConcreteHandler1 处理
CConcreteHandler1::HandleRequest(int nRequest = 2)
CConcreteHandler2::HandleRequest(int nRequest = 2)
CConcreteHandler2 处理
CConcreteHandler1::HandleRequest(int nRequest = 3)
CConcreteHandler2::HandleRequest(int nRequest = 3)
CConcreteHandler2 析构
CHandler 析构
CConcreteHandler1 析构
CHandler 析构
点评:
void SetHandler(CHandler &oHandler)
{
theApp.Trace(_T("CHandler::SetHandler(CHandler &oHandler = %p)"), &oHandler);
m_pHandler = &oHandler;
};
/*********************************************************************

相关主题
文本预览
相关文档 最新文档