当前位置:文档之家› 基于ProE的蜗轮蜗杆参数化建模及运动仿真分析毕业论文

基于ProE的蜗轮蜗杆参数化建模及运动仿真分析毕业论文

基于ProE的蜗轮蜗杆参数化建模及运动仿真分析毕业论文
基于ProE的蜗轮蜗杆参数化建模及运动仿真分析毕业论文

(

此文档为word 格式,下载后您可任意编辑修改!)

……………………. ………………. ………………

山东农业大学 毕 业 论 文 基于ProE 的蜗轮蜗杆参数化建模及运动仿真分析 院 部 机械与电子工程学院 专业班级 机械电子工程专业 届 次 2013届 学生姓名 冯海明 指导教师 张开兴 老师

二O 一三 年 六 月 十 日

线 ……………….……. …………. …………. …

目录

摘要 (3)

1绪论 (5)

1.1课题研究意义 (5)

1.2课题研究CAD发展概述 (5)

1.2.1CAD技术发展历程 (5)

1.2.2CAD的发展趋势 (6)

1.3本课题研究的内容 (7)

2蜗轮蜗杆参数化设计基础 (7)

2.1蜗杆传动机构简介及类型 (7)

2.2圆柱蜗杆传动的主要参数和几何尺寸 (8)

2.3参数化特征造型技术简介 (9)

3 基于PROE的蜗轮参数化建模 (10)

3.1P RO E的参数化建模简介 (10)

3.2蜗杆的参数化建模 (12)

3.2.1零件分析 (12)

3.2.2创建蜗杆 (13)

3.3蜗轮的参数化建模 (19)

3.3.1零件分析 (19)

3.3.2蜗轮的参数化建模 (20)

4蜗轮传动机构的运动仿真 (29)

4.1P RO E运动仿真简介 (29)

4.2P RO E平台机构运动仿真的步骤 (30)

4.3蜗轮蜗杆机构运动仿真的具体步骤 (30)

4.3.1蜗轮蜗杆机构的虚拟装配 (30)

4.3.2蜗轮蜗杆机构的运动仿真 (31)

5总结 (32)

参考文献 (33)

致谢 (33)

Contents

(4)

(5)

1.1The significance of this research (5)

1.2Development of research on CAD project (5)

1.2.1 CAD technology development (5)

1.2.2 The development trend of CAD (6)

1.3The contents of this research project (7)

2 Basic worm gear parametric design (7)

2.1Introduction and type of worm gear (7)

2.2The main parameters and geometric dimensions of a cylindrical worm drive (8)

2.3The parametric feature modeling technology (9)

3 Modeling of worm gear parameters based on PROE (10)

3.1 Parametric modeling of ProE (10)

3.2Parametric modeling of worm (12)

3.2.1 Part analysis (12)

3.2.2 Create a worm (13)

3.3Parametric modeling of worm gear (19)

3.3.1 Part analysis (19)

3.3.2 Parametric modeling of worm gear (20)

4 Motion simulation of worm gear transmission mechanism (29)

4.1 Introduction the ProE motion simulation (29)

4.2 Exercise ProE platform simulation steps (30)

4.3The specific steps of mechanism movement simulation of worm gear worm (30)

4.3.1 The virtual assembly of the worm gear (30)

4.3.2 Motion simulation of worm gear (31)

5 Summary (32)

Reference documentation (33)

Convey thanks (33)

基于ProE的蜗轮蜗杆参数化建模及运动仿真分析

冯海明

(山东农业大学机械与电子工程学院泰安 271018)

摘要:蜗杆传动是最重要的齿轮传动之一,它由蜗杆和蜗轮组成,主要用于传递交错轴之间的回转运动和动力,通常两轴交错角为90°。传动中一般蜗杆是主动件,蜗轮是从动件。由于蜗杆传动具有传动比大、结构紧凑、传动平稳和噪声较小等优点,广泛应用于各种机器和仪器中。但是蜗轮蜗杆的齿面属于复杂造型,利用ProE强大的参数化设计等功能可以保证齿形的精确性。同时通过机构的运动仿真,动态观看运动仿真的啮齿和运动情况,测试机构的有关运动性能的参数,有利于机构优化和提高设计效率。

关键词:ProE 蜗轮蜗杆参数化设计运动仿真

Based on ProE of the worm gear and worm of parameterized modeling and motion simulation analysis

Haiming Feng

(Mechanical & Electrical Engineering College of Shandong Agricultural University, Tai’an, Shandong 271018)

Abstract the worm drive is one of the most important gear transmission, It is made up of worm and worm gear,Mainly used for transfer between crisscross axis rotary motion and power, Usually two axial stagger Angle is 90 °. General worm is active in transmission, worm gear is a follower. Because of worm drive with large transmission ratio, compact structure, smooth transmission and less noise, etc, are widely used in various kinds of machines and equipment. But the worm and worm wheel tooth surface belongs to complex modeling, using ProE is a powerful function such as parametric design can guarantee accuracy of tooth profile. At the same time, through the mechanism motion simulation, dynamic watch movement simulation of rodents and movement, on sports performance parameters of the test facility, to optimize and improve the design efficiency.

Keywords: ProE ;worm gear and worm;parametric design;movement simulation

1绪论

1.1课题研究意义

蜗杆蜗轮传动中,蜗杆推动蜗轮实现减速、增扭的定速比传动。由于蜗杆外行曲面比较复杂,无法用机械制图的方法精确描述其曲面形状,因此在产品开发设计中,通常由设计人员根据经验确定。应用传统方法对其绘制时,不仅过程繁琐、效率低,而且在产品的开发设计中存在着一定的自由性,加工出的产品经常会存在各种缺陷,不能满足实际应用的要求。

随着CAD和优化设计技术的发展,应用先进的虚拟制造技术,可以达到精确的造型和可靠地质量。针对蜗杆类零件曲面形成的特点,若能利用计算机对蜗轮蜗杆机构进行辅助设计,对蜗轮蜗杆本体进行辅助制造,就成为当前蜗轮蜗杆机构研究的主要趋势,所以,采用CAD软件,优化蜗轮蜗杆的设计参数、并对其进行虚拟装配和运动仿真,不仅能更直观的描述产品,而且在产品设计阶段对产品的缺陷、相关零件的装配关系、空间干涉等情况进行分析与检验,从而有效提高设计的效率,缩短产品的设计周期。

本文正是针对蜗轮蜗杆零件进行参数化设计、虚拟装配和运动仿真的研究,希望可以为空间复杂构件的参数化设计、虚拟装配和运动仿真提供一般性的研究方法。

1.2课题研究CAD发展概述

CAD是计算机辅助设计(Computer Aided Design)的简称,是工程技术人员以计算机为工具,用自己的专业知识对产品或工程进行总体设计、绘图、分析和编写技术文档等设计活动的总称。它以提高产品设计质量、缩短产品开发周期、降低产品成本为主要目的。CAD技术是20世纪全球高科技领域杰出的工程技术之一,是跨世纪的国家关键技术。CAD技术的发展与应用水平已成为衡量一个国家工业现代化的重要标志。

1.2.1CAD技术发展历程

CAD技术起步于20世纪50年代,1950年美国麻省理工学院研制出可以显示简单图形的图形设备“旋风1号”,50年代末美国Gerber公司研制出平板绘图仪,Calcomp公司研制出滚筒式绘图仪,这些研究成果为CAD技术的发展提

供了最基本的物质基础,整个50年代CAD技术还刚刚萌芽,只是处于被动式的图形处理阶段。进入60年代,CAD技术开始蓬勃发展起来,1962年麻省理工学院的Sutherland发表的博士论文《SKETCHPAD—一种人机对话系统》,为CAD技术的发展和应用打下了理论基础,1966年出现了第一台实用的图形显示装置,同一时期还出现了许多商品化的CAD设备,如美国IBM公司推出的商品化计算机绘图设备等。从70年初期开始,CAD进入了早期实用阶段,1970年美国Applicon公司第一个推出完整的CAD系统,随着各种廉价的图形输入设备的相继问世,CAD逐步走进中小企业。从80年代至今,CAD技术的发展突飞猛进,一方面小型机及微型机的性能不断提高,价格不断下跌,诸如大型数字化仪、自动绘图机等计算机外围设备己经成为CAD的一般配置,为推动CAD 技术向更高水平发展提供了必要的条件,另一方面,基于小型机和微机的软件技术也迅速提高,大量成熟的商品化软件不断涌现,又促进了CAD技术的发展,CAD技术得到了越来越广泛的应用。

目前,流行的CAD技术基础理论主要是以PROE为代表的参数化造型理论和以SDRC I-DEAS为代表的变量化造型理论两大流派,它们都属于基于约束的实体造型技术。

国内对CAD技术的研究,开始于20世纪70年代初期,研究工作主要集中在高等学校和科研院所,研究内容主要是计算机辅助几何设计和计算机辅助绘图进入80年代以后,我国的CAD技术的研究得到了较快的发展,在二维交互绘图系统、三维造型和几何设计、有限元分析、数控编程等方面都取得了很多成果,不少自主版权的软件己经在国内行业中得到推广应用。但从总体上来说,我国的CAD软件,无论是从产品开发水平方面,还是从商品化、市场化程度方面,都与发达国家存在着不小的差趾,主流的CAD软件基本上都是国外产品。

1.2.2CAD的发展趋势

随着CAD技术的不断研究、开发与广泛应用,对CAD技术提出越来越高的要求,因此CAD从本身技术的发展来看,其发展趋势是参数化、三维化、智能化、网络化、集成化和标准化日。具体表现为:

1.参数化

参数化既能为用户提供设计对象直观、准确的反馈,又能随时对设计对象加以修改,同时减少设计中的疏忽,从而在很大程度上提高机械设计的效率。参数化是实现机械设计自动化的前提和基础。

2.智能化

现有的计算机辅助设计系统智能化程度越来越高,原来繁琐的操作逐渐被计算机的智能化处理所替代。将人工智能引入CAD系统,使其具有专家的经验

和知识,具有学习、推理、联想和判断的能力,以及智能化的视觉、听觉和语言的处理能力,从而达到设计自动化的目的。

3.三维化

随着三维图形技术的发展,在计算机内部建立相应的三维实体模型能够更直观、更全面地反映设计意图,并且在三维模型的基础上可以方便地进行虚拟装配、干涉检查、有限元分析和运动分析等应用。

4.集成化

集成化就是向企业提供一体化的解决方案,其出发点是企业各个环节是不可分割的,必须统一考虑。计算机辅助设计所产生的三维模型将最大限度地被后续的分析、加工、工艺和仿真所利用。

5.网络化

网络化可以充分发挥系统的总体优势,共享昂贵的设备,节省投资。不同设计人员可以在网络上方便地交换设计数据。

6.标准化

随着CAD系统的集成化和网络化,指定各种产品设计、评测和数据交换标准势在必行,如建立符合STEP标准的全局产品数据模型等。

1.3课题研究的内容

课题主要包括以下研究内容:

(1)系统分析蜗轮蜗杆机构的结构。设计参数化特征造型技术、

(2)分析了ProE平台产品设计的基本思路,提出了蜗轮蜗杆的数学模型,通过基于ProE平台的蜗轮蜗杆零件三维建模过程,归纳出蜗轮蜗杆零件三维实体建模时的基本思路和方法

(3)利用所总结的蜗杆蜗轮零件三维实体建模的经验,以参数化设计思想作为指导,紧紧抓住蜗轮蜗杆零件三维建模这条主线,依托蜗轮蜗杆零件的数学方程式,运用条件语句将变参设计融入到零件整体建模过程中。

(4)设计初步条件,对设计完成的零件进行变参造型,进而进行虚拟装配和运动仿真,针对运动仿真中出现的干涉问题提出行之有效的解决方案。

2蜗轮蜗杆参数化设计基础

2.1蜗杆传动机构简介及类型

蜗轮蜗杆传动用于传递交错轴间的回转运动和动力,通常两轴交错角为

90°。蜗杆类似于螺杆,有左旋和右旋之分,除特殊要求外,均采用右旋蜗杆;蜗轮可以看成是一个具有凹形轮缘的斜齿轮,其齿面与蜗杆齿面相共轭。在蜗杆传动中,一般以蜗杆为主动件

按形状的不同,蜗杆可分为:圆柱蜗杆传动、环面蜗杆传动和锥蜗杆传动。

圆柱蜗杆又可分:

(1)普通圆柱蜗杆:阿基米德蜗杆(ZA蜗杆);渐开线蜗杆(ZI蜗杆);法向直廓蜗杆(ZN蜗杆);锥面包络蜗杆(ZK蜗杆)

(2)圆弧圆柱蜗杆(ZC蜗杆)

2.2圆柱蜗杆传动的主要参数和几何尺寸

中间平面:通过蜗杆轴线并与蜗轮轴线垂直的平面(蜗杆的轴面,蜗轮的端面)。

蜗杆、蜗轮的参数和尺寸大多在中间平面(主平面)内确定。

圆柱蜗杆传动的主要参数:

1.模数m和压力角α

通过蜗杆轴线并垂直于蜗轮轴线的平面,称为中间平面。由于蜗轮是用与蜗杆形状相仿的滚刀,按范成原理切制轮齿,所以ZA蜗杆传动中间平面内蜗轮与蜗杆的啮合就相当于渐开线齿轮与齿条的啮合。蜗杆传动的设计计算都以中间平面的参数和几何关系为准。它们正确啮合条件是:蜗杆轴向模数ma1和轴向压力角αa1应分别等于蜗轮端面模数mt2和端面压力角αt2[1]。

圆柱蜗杆传动的几何尺寸计算

设计蜗杆传动时,一般是先根据传动的功用和传动比的要求,选择蜗杆头数z1和蜗轮齿数z2,然后再按强度计算确定中心距a和模数m,上述参数确定后,即可根据表2-1计算出蜗杆、蜗轮的几何尺寸。

名称

计算公式

蜗杆蜗轮

d1=mq d2=mz2

da1=m(q+2)da2=m(z2+2)df1=m(q-2.4)df2=m(z2-2.4)

pa1=p12=px=πm

c=0.20m

蜗杆分度圆直径,蜗轮分度圆直径

齿顶高

齿根高

蜗杆齿顶圆直径,蜗轮喉圆直径

齿根圆直径

蜗杆轴向齿距,蜗轮端面齿距

径向间隙

中心距a=0.5(d1+d2)=0.5m(q+z2)

表2-1圆柱蜗杆传动的几何尺寸计算

2.3参数化特征造型技术简介

参数化设计(Parametric Design),也称为尺寸驱动(Dimension-Driven),是通过改动图形的某一部分或某几部分的尺寸,或者修改已经定义好的参数。自动完成对图形中相关部分的改动,从而实现对图形的驱动。

参数化设计是CAD技术在实际应用中提出的课题。机械设计是一个创造性的活动,是一个反复修改、不断完善的过程。同时,对很多企业,设计工作往往是变型或系列化设计,新的设计经常用到己有的设计结果。据不完全统计,零件的结构要素90%以上是通用或标准化的,零件有70%-80%是相似的。在参数化设计技术出现以前,传统的CAD使用的方法是先绘制精确图形,再从中抽象几何关系,设计只存储最后的结果,而不关心设计的过程。这种设计系统不支持初步设计过程,缺乏变参数设计功能,不能很好地自动处理对己有图形的修改,不能有效地支持变化、系列化设计,从而使得设计周期长、设计费用高、设计中存在大量重复劳动,严重影响了设计的效率,无法满足市场需求。在这种情况下参数化设计方法应运而生。

参数化设计以约束造型为核心、以尺一寸驱动为特征。在参数化设计中采用参数化模型,设计者可以通过调整参数来修改和控制几何形状,实现产品的精确造型,而不必在设计时专注主于产品的具体尺寸;参数化设计方法存储了设计的全过程,能设计出一系列而不是单一的产品模型;对己有设计的修改,只需变动相应的参数,而无需运行产品设计的全过程。与传统的自由约束的设计方

法相比,参数化设计更符合工程设计的习惯,因此极大地提高了设计效率,缩短了设计周期,减少了设计过程中信息的存储量,降低了设计费用,从而增强了产品的市场竞争力。

参数化技术经过十多年来的发展,己经成为CAD技术的重要分支,也成为CAD技术研究和产品开发的热点,参数化技术正处于不断发展之中。现代主流CAD软件,如PROE, solid works, UG等都实现了参数化。

蜗轮及蜗杆机构常被用于两轴交错、传动比大、传动功率不大或间歇工作的场合。蜗轮蜗杆的机构特点:

1.可以得到很大的传动比,比交错轴斜齿轮机构紧凑。

2.两轮啮合齿面间为线接触,其承载能力大大高于交错轴斜齿轮机构。

3.蜗杆传动相当于螺旋传动,为多齿啮合传动,故传动平稳、噪音很小。

4.具有自锁性。当蜗杆的导程角小于啮合轮齿间的当量摩擦角时,机构具有自锁性,可实现反向自锁,即只能由蜗杆带动蜗轮,而不能由蜗轮带动蜗杆。如在起重机械中使用的自锁蜗杆机构,其反向自锁性可起安全保护作用。

5.传动效率较低,磨损较严重。蜗轮蜗杆啮合传动时,啮合轮齿间的相对滑动速度大,故摩擦损耗大、效率低。另一方面,相对滑动速度大使齿面磨损严重、发热严重,为了散热和减小磨损,常采用价格较为昂贵的减摩性与抗磨性较好的材料及良好的润滑装置,因而成本较高。

6.蜗杆轴向力较大。

为了保证蜗轮齿面的精确性,以ProE为平台对蜗轮蜗杆进行参数化建模设计及运动仿真分析。

3 基于ProE的蜗轮蜗杆参数化建模

3.1 ProE的参数化建模简介

参数化设计方法使设计者构造模型时可以集中于概念设计和整体设计,充分发挥创造性,提高设计效率。其主要思路如图3-1所示,通过对产品建模特征的解析,从特征中抽象出特征参数,再对特征参数进行分析,得到参数模型。根据模型信息建立参数间关联与约束,并确定某些参数为设计变量,进而建立由设计变量驱动的零件族。

图3-1建模流程图

参数化设计是ProE重点强调的设计理念。参数是参数化设计的核心概念,在一个模型中,参数是通过“尺寸”的形式来体现的。参数化设计的突出特点在

于可以通过变更参数的方法来方便的修改设计意图,从而修改设计意图。关系式是参数化设计中的另外一项重要内容,它体现了参数之间相互制约的“父子”关系。所以,首先要了解proe中参数和关系的相关理论[2]。

一、参数的含义

参数有两个含义:

一是提供设计对象的附加信息,是参数化设计的重要要素之一。参数和模型一起存储,参数可以标明不同模型的属性。例如在一个“族表”中创建参数“成本”后,对于该族表的不同实例可以设置不同的值,以示区别;二是配合关系的使用来创建参数化模型,通过变更参数的数值来变更模型的形状和大小。

二、参数的设置

在零件模式下,单击菜单“工具”——参数,即可打开参数对话框,使用该对话框可添加或编辑一些参数。

1.参数的组成

(1)名称:参数的名称和标识,用于区分不同的参数,是引用参数的依据。注意:用于关系的参数必须以字母开头,不区分大小写,参数名不能包含如下非法字符:!、”、@和#等。

(2)类型:指定参数的类型

a)整数:整型数据

b)实数:实数型数据

c)字符型:字符型数据

d)是否:布尔型数据。

(3)数值:为参数设置一个初始值,该值可以在随后的设计中修改

(4)指定:选中该复选框可以使参数在PDM(Product Data Management,产品数据管理)系统中可见

(5)访问:为参数设置访问权限。

a)完全:无限制的访问权,用户可以随意访问参数

b)限制:具有限制权限的参数

c)锁定:锁定的参数,这些参数不能随意更改,通常由关系式确定。

(6)源:指定参数的来源

a)用户定义的:用户定义的参数,其值可以随意修改

b)关系:由关系式驱动的参数,其值不能随意修改。

(7)说明:关于参数含义和用途的注释文字

(8)受限制的:创建其值受限制的参数。创建受限制参数后,它们的定义存在于模型中而与参数文件无关。

(9)单位:为参数指定单位,可以从其下的下拉列表框中选择。

2.增删参数的属性项目

可以根据实际需要增加或删除以上9项中除了“名称”之外的其他属性项目

三、关系的概念

关系是参数化设计的另一个重要因素。关系是使用者自定义的尺寸符号和参数之间的等式。关系捕获特征之间、参数之间或组件之间的设计关系。可以这样来理解,参数化模型建立好之后,参数的意义可以确定一系列的产品,通过更改参数即可生成不同尺寸的零件,而关系是确保在更改参数的过程中,该零件能满足基本的形状要求。如参数化齿轮,可以更改模数、齿数从而生成同系列、不同尺寸的多个模型,而关系则满足在更改参数的过程中齿轮不会变成其他的零件。

四、关系式的组成

关系式的组成主要有:尺寸符号、数字、参数、保留字、注释等。

符号类型

系统会给每一个尺寸数值创建一个独立的尺寸编号,在不同的模式下,被给定的编号也不同。

3.2蜗杆的参数化建模

3.2.1零件分析

蜗杆是和蜗轮配合使用的一种重要传动件,该传动机构可以实现大的减速比,本例将以上面蜗轮的参数化设计过程为基础,分析蜗杆的建模过程。蜗杆由轮齿、蜗杆主体特征等基本结构特征组成。

蜗杆零件进行三维实体参数化设计的基本思路是:拟定可变参数,根据出设条件进行相关的几何参数的计算,初步确定参数值;在编辑器中设定各参数并加入部分关系式,在利用“方程式”生成螺旋体中加入变参;通过进一步添加关系式实现导程参数化;通过添加条件语句实现选项参数化;通过添加关系式在生成蜗杆实体中加入变参。最后,对设计好的蜗杆三维实体进行特征参数的修改。如果蜗杆能按照既定的条件变参的话,说明设计成功;否则,说明设计有问题,要认真查找原因,直至设计成功。

蜗杆建模的具体操作步骤如下:

(1)蜗杆参数化设计的计算及创建新零件文件

(2)参数的输入

(3)螺旋体的生成

(4)导程参数化

(5)实现多头蜗杆

(6)创建蜗杆轴实体

(7)蜗杆的变参

3.2.2蜗杆的参数化建模

1.蜗杆参数化设计的计算及创建新零件文件:本设计拟对蜗杆模数、蜗杆头数、蜗轮齿数、蜗杆分度圆直径、蜗杆旋向等参数实施变参设计,初定m=

2.5,z1=1,z2=30,d1=28。

文件新建→【输入零件名称:wogan,取消使用缺省的选中记号,然后单击确定按钮】→【选择公制单位mmns_part_solid后单击确定按钮】→【基准坐标系PRT_CSYS_DEF及基准面RIGHT、TOP、FRONT显示在画面上】2.参数的输入

→【打开记事本,在工具程序下的INPUT和END INPUT 之间以及RELATION 和END RELATION 之间添加输入参数如下,然后存盘,并退出记事本】如图3-2

INPUT

M NUMBER ;模数

Z1 NUMBER ;蜗杆头数

Z2 NUMBER ;蜗轮齿数

DIA1 NUMBER ;蜗杆分度圆直径(标准系列值)

LEFT YES_NO ;旋向,YES表示左旋,否则为右旋

END INPUT

RELATIONS

DIA2=M*Z2 ;蜗轮分度圆直径

L=(11+0.06*Z2)*M ;蜗杆有效螺旋线长度

END RELATIONS

图3-2程序记事本对话框

在根据信息窗口提示,各参数赋初值如下

M = 2.5;Z1 = 1;Z2 = 30;DIA1 = 28

旋向暂不输入,后期处理。各参数的建立和赋值结束。如图3-3消息输入对话框

3-3消息输入对话框

3.生成螺旋体[3]

在螺旋扫描对话框进行螺旋扫描特性的设置,完成之后,在轮廓创建画面绘制轮廓直线。在工具关系对话框中输入sd3=L;sd4=L2;sd1=DIA12。随后转入导程设定,在导程设定窗口输入M*PI*Z1。在进入截面绘制画面中绘制截面图形。在工具关系对话框中输入sd16=1.20*M;sd14=M;sd15=M*PI2-2*M*TAN(20),完成螺旋体的创建,创建后的螺旋体如图3-4所示。

图3-4生成的螺旋体

4.导程参数化

上述造型过程中,各参数除导程外均已实现参数化,下面对导程实施参数化。→【打开记事本,找到记录扫描螺旋实体的如下段落:

伸出项:螺旋扫描

主阵列尺寸::

其中d33=7.85PITCH为描述导程的参数】

→【在RELATION和END RELATION 之间添加:d33=M*PI*Z1→存盘退出在信息窗口输入z1为2进行变参,变参结果如图3-5所示。

图3-5变参后的螺旋体

5.实现多头蜗杆

首先创建回转轴线,然后实施阵列结果如图3-6所示。

图3-6阵列后的螺旋体

在阵列完成后,在工具关系对话框中输入p18=z1,然后打开记事本,找到记录螺旋体阵列的如下段落:

其中d32=90描述的是阵列角度,在END

ADD在RELATION和ENGRELATION之间添加d32=360z1,保存文件并退出。

6.创建蜗杆轴实体

点击拉伸图标→【在弹出的工具面板上点击图标,以设置减材料创建实体方式→放置→定义】→【弹出草图对话框,选择绘图平面:RIGHT平面,参照平面:TOP,方向:LEFT→Sketch】→【绘制如图3-7所示的圆】

图3-7绘制草图

→【工具关系→上述尺寸值将变为参数符号,弹出关系对话框,对照图,参数符号sd0对应直径,输入sd0= DIA1-1.25*2*M→OK】→【点击图标→设定深度为:表示双向对称→填入尺寸100→点击图标,完成的的特征如图所示】→【工具关系→尺寸值100将变为参数符号→输入d21=L+40→OK→点击图标→结果如图3-8所示】

图3-8生成的蜗杆

(7)蜗杆的变参

如图3-9所示的对话框中对创建的蜗杆进行变参,其结果如图3-10和3-11所示

图3-9变参对话框

M=3.5;Z1=1;Z2=40;DIAI=35.5;LEFT=Y

图3-10变参蜗杆

M=6.3;Z1=2;Z2=40;DIAI=40;LEFT=N

图3-11变参蜗杆

3.3蜗轮的参数化建模

3.3.1零件分析

蜗轮蜗杆机构常用来传递两90。轴之间的运动和动力。蜗轮与蜗杆在其中间平面内相当于齿轮与齿条,蜗杆又与螺杆形状相似。蜗轮蜗杆机可以得到很大的传动比,比交错轴斜齿轮机构紧凑,两轮啮合齿面间为线接触,其承载能力大大高于交错轴斜齿轮机构,蜗杆传动相当于螺旋传动,为多齿啮合传动,故传动平稳、噪音很小、具有自锁性。当蜗杆的导程角小于啮合轮齿间的当量摩擦角时,机构具有自锁性,可实现反向自锁。

因此将以上面齿轮的参数化设计过程为基础,分析蜗轮的建模过程。蜗轮外形如图3-12所示,由轮齿、蜗轮主体特征等基本结构特征组成。

图3-12蜗轮模型

蜗轮零件进行三维实体参数化设计的基本思路是:拟定可变参数,根据初设条件进行相关几何参数的计算,在编辑器中设定各参数并加入部分关系式,在生成蜗轮毛坯中加入变参,利用“方程式”生成轮齿中加入变参。最后,对设计好的蜗轮三维实体设定条件进行变参。如果蜗轮能按照既定的条件变参的话,说明设计成功;反之,说明设计有问题,要认真查找原因,直至设计成功。

蜗轮建模的具体操作步骤如下:

(1)创建新的零件文件及相关参数的设定

(2)蜗轮轮坯的创建

(3)创建单个轮齿

(4)形成所有齿轮

(5)蜗轮的变参

ProE齿轮参数化建模画法教程

ProE齿轮参数化建模画法作者:lm2000i (一) 参数定义

(二)在Top面上做从小到大的4个圆(圆心点位于默认坐标系原点),直径为任意值。生成后修改各圆直径尺寸名为(从小到大)Df、DB、D、Da,加入关系: Alpha_t=atan(tan(Alpha_n)/cos(Beta)) Ha=(Ha_n+X_n)*M_n Hf=(Ha_n+C_n-X_n)*M_n

D=Z*M_n/cos(Beta) Db=D*cos(Alpha_t) Da=D+2*Ha Df=D-2*Hf 注:当然这里也可不改名,而在关系式中采用系统默认标注名称(如d1、d2...),将关系式中的“Df、DB、D、Da”用“d1、d2…”代替。改名的方法为:退出草绘----点选草图----编缉----点选标注----右键属性----尺寸文本----名称栏填新名称 (三)以默认坐标系为参考,偏移类型为“圆柱”,建立用户坐标系原点CS0。此步的目的在于后面优化(步5)时,能够旋转步4所做的渐开线齿形,使DTM2能与FRONT重合。

选坐标系CS0,用笛卡尔坐标,作齿形线(渐开线):Rb=Db/2 theta=t*45 x= Rb*cos(theta)+ Rb*sin(theta)*theta*pi/180 y=0 z= Rb*sin(theta)- Rb*cos(theta)*theta*pi/180

注:笛卡尔坐标系渐开线方式程式为 其中:theta为渐开线在K点的滚动角。因此,上面关系式theta=t*45中的45是可以改的,其实就是控制上图中AB的弧长。 (四)过Front/Right,作基准轴A_1;以渐开线与分度圆交点,作基准点PNT0;过轴A_1与PNT0做基准面DTM1。

proe三十则设计技巧

pro/e数据共享方法详解 pro/e数据共享方法详解:proe Top-Down设计方法系列教程(一) 概述: 在真正的产品设计过程中,不同零件或装配之见的数据共享是不可避免的,如何有效地管理这些数据的参考和传递是一个产品设计在软件层面上的关键所在,本教程详细讲解了在WildFire3.0(野火3.0)中不同零件和装配间的数据传递方法,通过分析它们之间的不同和各自的优缺点帮助新手理解它们之间的不用用途从而在实际的工作中正确地使用它们,同时也为我们将来使用Top Down自顶而下设计方法打下良好的基础 Top_down设计方法严格来说只是一个概念,在不同的软件上有不同的实现方式,只要能实现数据从顶部模型传递到底部模型的参数化过程都可以称之为Top Down设计方法,从这点来说实现的方法也可以多种多样。不过从数据管理和条理性上来衡量,对于某一特定类型都有一个相对合适的方法,当产品结构的装配关系很简单时这点不太明显,当产品的结构很复杂或数据很大时数据的管理就很重要了。下面我们就WildFire来讨论一下一般的Top Down的实现过程。不过在讨论之前我们有必要先弄清楚WildFire中各种数据共享方法,因为top down的过程其实就是一个数据传递和管理的过程。弄清楚不同的几何传递方法才能根据不同的情况使用不同的数据共享方法 在WildFire中,数据的共享方法有下面几种: λFrom File...(来自文件….) Copy Geometry…(复制几何…)λ Shrinkwrap…(收缩几何..)λ Merge…(合并)λ Cutout…(切除)λ Publish Geometry…(发布几何…)λ Inheritance…(继承…)λ Copy Geometry from other Model…(自外部零件复制几何…)λ Shrinkwrap from Other Model…(自外部零件收缩几何..)λ Merge from Other Model…(自外部模型合并…)λ Cutout from Other Model..(自外部模型切除…)λ Inheritance from Other Model…(自外部模型继承…)λ From File…(来自文件…) 实际就是输入外部数据。Wildfire可以支持输入一般常见的图形格式,包括igs,step,parasolid,catia,dwg,dxf,asc等等,自己试试就可以看到支持的文件类型列表。在同一个文件内你可以任意输入各种不同的格式文件。输入的数据的对齐方式是用坐标对齐的方法,所以你要指定一个坐标系统。当然你也可以直接用缺省的座标系。 使用共享数据(Shared Data)的方法有两种: 第一种就是在装配图内通过激活(activate)相应的模型然后进行共享数据的操作。也是在进行结构设计时常用的共享方法,这种方法用于要进行数据共享的两个零件之间有显式的装配关系的时候采用。这种共享方法的复制几何不受原来的默认坐标系的影响,完全依照不同的零件在装配中的定位或装配位置而定,具有更大的灵活性。

PROE-蜗轮蜗杆的参数化建模

PROE-蜗轮蜗杆的参数化建模

蜗轮蜗杆的创建 蜗杆的创建:在PRO/E 中使用参数化创建蜗杆,具体操作步骤如下:1.创建新的零件文件: File/New →【输入零件名称:wogan,取消Use default template 的选中记号,然后单击OK按钮】→【选择公制单位mmns_part_solid后单击OK按钮】→【基准坐标系PRT_CSYS_DEF及基准面RIGHT、TOP、FRONT显示在画面上】 2.参数的输入 Tools/Program…/Edit Design →【打开记事本,在INPUT和END INPUT 之间以及RELATION和END RELATION 之间添加输入参数如下,然后存盘,并退出记事本】INPUT M NUMBER ;模数 Z1 NUMBER ;蜗杆头数 Z2

NUMBER ;蜗轮齿数 DIA1 NUMBER ;蜗杆分度圆直径(标准系列值) LEFT YES_NO ;旋向,YES表示左旋,否则为右旋 END INPUT RELATIONS DIA2=M*Z2 ;蜗轮分度圆直径 L=(11+0.06*Z2)*M ;蜗杆有效螺旋线长度 END RELATIONS

→【信息窗口出现“Do you want to incorporate your changes into the model:【YES】”,选择 YES,以便输入参数值】 →【Enter→Select All,根据信息窗口提示,各参数赋初值如下】

M = 2.5 Z1 = 1

Z2 = 30 DIA1 = 28 旋向暂不输入,后期处理。各参数的建立和赋值结束。 3.生成螺旋体 Insert/Helical Swee.Protrusion… →【出现“螺旋扫描”对话框,接受属性子菜单中各默认选项,包括Constant(等导程)、Thru

Proe参数化建模

实验报告锥齿轮轴的Pro/E参数化造型设计 一、实验目的: 1、熟悉Pro/E软件菜单、窗口等环境,以及基本的建模方法; 2、了解Pro/E软件参数化设计的一般方法和步骤; 3、能利用Pro/E软件进行一般零件的参数化设计。 二、实验设备: 微机,Pro/E软件。 三、实验内容及要求: 使用参数化建模方法,创建如图所示的齿轮轴 四、实验步骤: 锥齿轮轴参数化设计的具体步骤如下: 1、创建新的零件文件 (1)启动Pro/e界面,单击文件/新建, (2)输入零件名称:zhuichilunzhou,取消“缺省”的选中记号,然后单击“确定”按钮,

(3)选择公制单位mmms_part_solid后单击“确定”按钮,操作步骤见图1 图1 新建零件文件 2、参数输入 (1)在Pro/e菜单栏中依次单击工具/参数,将弹出参数对话框,添加以下参数:圆锥角c=30度,模数m=2,齿数z=20,齿宽w=20,压力角a=20,齿顶高系数为hax=1,齿底隙系数为cx=0.2,变位系数x=0,最后点击确定将其关闭;如图2所示 图2 参数输入 (2)在Pro/e菜单栏中依次单击工具/关系,将弹出关系对话框,添加以下关系式(如图3所示): d=m*z db=d*cos(a)

da=d+2*m*cos(c/2) df=d-2*1.2*m*cos(c/2) dx=d-2*w*tan(c/2) dxb=dx*cos(a) dxa=dx+2*m*cos(c/2) dxf=dx-2*1.2*m*cos(c/2) 其中,D为大端分度圆直径。(圆锥直齿轮的基本几何尺寸按大端计算) 其中,A为压力角,DX系列为另一套节圆,基圆,齿顶圆,齿根圆的代号,DX

ProE蜗轮的参数化建模

3.5 蜗轮的参数化建模 3.5.1 零件分析 蜗轮蜗杆机构常用来传递两90。轴之间的运动和动力。蜗轮与蜗杆在其中间平面内相当于齿轮与齿条,蜗杆又与螺杆形状相似。蜗轮蜗杆机可以得到很大的传动比,比交错轴斜齿轮机构紧凑,两轮啮合齿面间为线接触,其承载能力大大高于交错轴斜齿轮机构,蜗杆传动相当于螺旋传动,为多齿啮合传动,故传动平稳、噪音很小、具有自锁性。当蜗杆的导程角小于啮合轮齿间的当量摩擦角时,机构具有自锁性,可实现反向自锁。 本例将以上面齿轮的参数化设计过程为基础,分析蜗轮的建模过程。蜗轮外形如图3-158所示,由轮齿、蜗轮主体特征等基本结构特征组成。 轮齿 键槽 主体 图3-158 蜗轮参数化模型 蜗轮建模的具体操作步骤如下: (1)添加蜗轮设计参数。 (2)添加蜗轮关系式。 (3)创建基准特征。 (4)创建蜗轮渐开线。 (5)创建扫描混合特征。 (6)创建复制阵列特征。 3.5.2 创建蜗轮 (1)新建文件。单击工具栏(新建)工具,或单击菜单“文件”→“新建”。名称”栏中输入wolun,选择公制模板mmns-part-solid。 (2)添加蜗轮参数关系。 1)添加过程同斜齿轮。选择菜单栏“工具/参数”命令,单击(添加)按钮,依次

2)添加过程同斜齿轮,选择餐单栏“工具”→“关系”命令,添加蜗轮的关系式,上步创建的未知参数,可根据本步创建的关系得以运算。完毕单击“确定”如图3-160所示。最后在工具栏单击 (3)创建蜗轮基准特征。 1)创建基准平面。单击工具栏的 (基准平面)工具,或选择“插入”→“模型基准” →“平面”创建基平面。在工作区选择基准平面,“偏距”输入初始值12.5,单击“确定”,创建基准平面DTM1。完毕注意添加关系式,选择菜单栏“工具/关系”命令,添加蜗轮的关系式,平移距离等于“=M*Q/2”,如图3-161所示。 图3-160 “关系”对话框 关系式

proe圆锥齿轮参数化画法

3.3锥齿轮的创建 锥齿轮在机械工业中有着广泛的应用,它用来实现两相交轴之间的传动,两轴的相交角一般采用90度。锥齿轮的轮齿排列在截圆锥体上,轮齿由齿轮的大端到小端逐渐收缩变小,本节将介绍参数化设计锥齿轮的过程。 3.3.1锥齿轮的建模分析 与本章先前介绍的齿轮的建模过程相比较,锥齿轮的建模更为复杂。参数化设计锥齿轮的过程中应用了大量的参数与关系式。 锥齿轮建模分析(如图3-122所示): (1)输入关系式、绘制创建锥齿轮所需的基本曲线 (2)创建渐开线 (3)创建齿根圆锥 (4)创建第一个轮齿 (5)阵列轮齿 图3-122锥齿轮建模分析 3.3.2锥齿轮的建模过程 1.输入基本参数和关系式

(1)单击,在新建对话框中输入文件名conic_gear,然后单击; (2)在主菜单上单击“工具”→“参数”,系统弹出“参数”对话框,如图3-123所示; 图3-123 “参数”对话框 (3)在“参数”对话框单击按钮,可以看到“参数”对话框增加了一行,依次输入新参数的名称、值、和说明等。需要输入的参数如表3-3所示; 名称值说明名称值说明 M 2.5 模数DELTA ___ 分锥角 Z 24 齿数DELTA_A ___ 顶锥角 Z_D 45 大齿轮齿数DELTA_B ___ 基锥角 ALPHA 20 压力角DELTA_F ___ 根锥角 B 20 齿宽HB ___ 齿基高 HAX 1 齿顶高系数RX ___ 锥距 CX 0.25 顶隙系数THETA_A ___ 齿顶角 HA ___ 齿顶高THETA_B ___ 齿基角 HF ___ 齿根高THETA_F ___ 齿根角 H ___ 全齿高BA ___ 齿顶宽 D ___ 分度圆直径BB ___ 齿基宽 DB ___ 基圆直径BF ___ 齿根宽 DA ___ 齿顶圆直径X 0 变位系数

PROE参数化教程

第10章创建参数化模型 本章将介绍Pro/E Wildfire中文版中参数化模型的概念,以及如何在Pro/E Wildfire 中设置用户参数,如何使用关系式实现用户参数和模型尺寸参数之间的关联等内容。 10.1 参数 参数是参数化建模的重要元素之一,它可以提供对于设计对象的附加信息,用以表明模型的属性。参数和关系式一起使用可用于创建参数化模型。参数化模型的创建可以使设计者方便地通过改变模型中参数的值来改变模型的形状和尺寸大小,从而方便地实现设计意图的变更。 10.1.1 参数概述 Pro/E最典型的特点是参数化。参数化不仅体现在使用尺寸作为参数控制模型,还体现在可以在尺寸间建立数学关系式,使它们保持相对的大小、位置或约束条件。 参数是Pro/E系统中用于控制模型形态而建立的一系列通过关系相互联系在一起的符号。Pro/E系统中主要包含以下几类参数: 1. 局部参数 当前模型中创建的参数。可在模型中编辑局部参数。例如,在Pro/E系统中定义的尺寸参数。 2. 外部参数 在当前模型外面创建的并用于控制模型某些方面的参数。不能在模型中修改外部参数。例如,可在“布局”模式下添加参数以定义某个零件的尺寸。打开该零件时,这些零件尺寸受“布局”模式控制且在零件中是只读的。同样,可在PDM系统内创建参数并将其应用到零件中。 3. 用户定义参数 可连接几何的其它信息。可将用户定义的参数添加到组件、零件、特征或图元。例如,可为组件中的每个零件创建“COST”参数。然后,可将“COST”参数包括在“材料清单”中以计算组件的总成本。 ●系统参数:由系统定义的参数,例如,“质量属性”参数。这些参数通常是只读 的。可在关系中使用它们,但不能控制它们的值。 ●注释元素参数:为“注释元素”定义的参数。 在创建零件模型的过程中,系统为模型中的每一个尺寸定义一个赋值的尺寸符号。用户可以通过关系式使自己定义的用户参数和这个局部参数关联起来,从而达到控制该局部参数的目的。

PROE-蜗轮蜗杆的参数化建模

蜗轮蜗杆的创建 蜗杆的创建:在PRO/E 中使用参数化创建蜗杆,具体操作步骤如下: 1.创建新的零件文件: →【输入零件名称:wogan,取消Use default template 的选中记号,然后单击OK按钮】→【选择公制单位mmns_part_solid后单击OK按钮】→【基准坐标系PRT_CSYS_DEF及基准面RIGHT、TOP、FRONT显示在画面上】 2.参数的输入 Tools/Program…/Edit Design →【打开记事本,在INPUT和END INPUT 之间以及RELATION和END RELATION 之间添加输入参数如下,然后存盘,并退出记事本】 INPUT M NUMBER ;模数 Z1 NUMBER ;蜗杆头数 Z2 NUMBER ;蜗轮齿数 DIA1 NUMBER ;蜗杆分度圆直径(标准系列值)LEFT YES_NO ;旋向,YES表示左旋,否则为右旋END INPUT RELATIONS DIA2=M*Z2 ;蜗轮分度圆直径 L=(11+0.06*Z2)*M ;蜗杆有效螺旋线长度 END RELATIONS →【信息窗口出现“Do you want to incorporate your changes into the model:【YES】”,选择

YES,以便输入参数值】 →【Enter→Select All,根据信息窗口提示,各参数赋初值如下】 M = 2.5 Z1 = 1 Z2 = 30 DIA1 = 28 旋向暂不输入,后期处理。各参数的建立和赋值结束。 3.生成螺旋体 Insert/Helical Swee.Protrusion… →【出现“螺旋扫描”对话框,接受属性子菜单中各默认选项,包括Constant(等导程)、Thru

ProE的参数化特征造型在零件设计中的应用

[研究?设计] 收稿日期:2005208229作者简介:屠 立(1966-),男,陕西西安人,副教授,浙江机电职业技术学院机械系副主任,研究领域为制造业信息化,CAD CAM 。 基于P ro E 的参数化特征造型 在零件设计中的应用 屠 立,陈 峰 (浙江机电职业技术学院,浙江杭州310053) 摘 要:参数化设计就是用参数来描述零件尺寸。设计时通过修改数值来更改零件的外形,实现尺寸对图形的驱动。本文探讨了P ro E 软件的参数化特征造型的设计过程,并以齿轮设计为例分析其具体应用。关 键 词:参数化;特征造型;齿轮 中图分类号:T P 391.72 文献标志码:A 文章编号:100522895(2006)0320059203 0 前 言 参数化设计就是将零件尺寸的设计用参数来描述,并在设计修改时通过修改的数值来更改零件的外形,从而实现尺寸对图形的驱动。其中进行驱动所需的几何信息和拓扑信息由计算机自动提取。P ro E 中的参数不只代表设计对象的外观相关尺寸,而且具有实质上的物理意义。造型过程可以运用体积、表面积、重心等系统参数或密度、厚度等用户自定义参数加入设计构思中,从而来表达设计思想。P ro E 的实体造型是3D 的,而3D 实体模型除了可以将用户的设计思想以最真实的模型在计算机上表现出来之外,借助于系统参数及用户自定义参数可以计算出产品体积、面积、重心、重量、惯性矩大小等,以利于强度分析、应力分析等各类性能分析[1-2]。 1 零件结构参数化设计步骤 (1)零件结构拆分及特征尺寸确定零件特征造型过程中,应按其本身的功能和建模的特点,将零件拆分为相应各个结构,并分别找出建立其实体模型的基本特征。为使所建立的模型尽量反映零件的基本特征,一些不重要的或不具有普遍性的细节,如倒角等可省略,以免加大参数化的工作量。 (2)创建实体模型 零件上的特征主要通过参数和几何约束关系来相互关联,尺寸之间的关系分为2种:一种是自定义的各种外部参数和零件的被约束尺寸的关系;另一种是模型内部特征之间的内部约束关系,它是指零件的几何 元素之间约束关系,例如:平行、垂直、相切、同心等。在创建模型时,这些几何约束关系同时被创建,当模型被 修改时,这些关系可以自动保持设计者的意图不变。一个特征往往有多种创建方法,在设计时必须考虑好如何表达该特征与其它特征的关系。 (3)定义特征参数 建立模型后,所定义的所有零件尺寸由系统自动按照建立的先后顺序命名为相应的内部标识尺寸。在复杂模型上,则需要找出尺寸间的2种对应关系:即内部标识尺寸和外部模型上各个数值之间的对应关系;内部标识尺寸和将要命名的外部参数之间的关系。这2种关系综合在一起就体现了外部参数和零件上被约束尺寸的关系。命名参数时,参数名称要力求简单易懂,必要时可再加入简单注释。 (4)输入特征参数将已定义好的参数输入零件设计列表的“输入部分”,并在关系定义部分定义出与零件各部分尺寸之间的对应关系,同时还可在关系定义部分定义同一零件不同尺寸的相互约束关系。同一零件的各部分需要协同变化的,也需要在这里列出。 (5)修改特征参数 可用2种方法来修改参数:一是根据所附提示,选择每项参数的名称,并逐项修改;二是将所有需要修改的参数生成数据文件,通过读入文件的方式一次性全部修改。第一种方法速度较慢,可以在调试程序、输入变量的时候使用;第二种方法效率较高,当程序编制完   第24卷第3期2006年9月   轻工机械 L ight I ndustry M ach i nery   V o l .24,N o.3. Sep t .,2006

基于 proe的蜗轮蜗杆参数化设计

摘要 介绍了蜗杆涡轮形状的数学描述,实现蜗杆涡轮精确三维实体造型的方法。在Pro/E环境下,建立了蜗杆涡轮的数学模型。介绍了基于Mechanism的机构运动仿真的基本工作流程,对Pro/E进行二次开发,实现看蜗杆涡轮的参数化三维实体设计,通过机构的运动仿真,动态观看运动仿真的啮齿和运动情况,测试机构的有关运动性能的参数,有利于机构优化和提高设计效率,可以构成机构的虚拟设计、制造及仿真分析的平台。 关键字:Pro/E;蜗杆涡轮;参数化设计;运动仿

目录 序言---------------------------------------------------------------错误!未定义书签。 第一章 ------------------------------------------------------------2 1.1了解蜗杆涡轮的传动特点------------------------------------ 2 1.2了解蜗杆涡轮相关参数的查取方法---------------------------- 2 1.3涡轮蜗杆的应用-------------------------------------------- 3 第二章 Pro/E的基本建模-------------------------------------------- 4 2.1 渐开线形成原理--------------------------------------------4 2.2渐开线的特征----------------------------------------------4 2.4蜗杆涡轮基本参数------------------------------------------4 2.4啮合蜗杆蜗轮的建模----------------------------------------4 2.5蜗杆的参数化过程------------------------------------------4 2.6涡轮的绘制------------------------------------------------5 第三章涡轮的创建------------------------------------------------ 6 3.1涡轮的建模分析------------------------------------------- 6 3.2 涡轮的建模过程------------------------------------------- 6 3.2.1创建参数---------------------------------------------6 3.2.2创建齿轮基本圆---------------------------------------7 3.2.3创建齿廓曲线-----------------------------------------8 3.2.4 创建扫引轨迹----------------------------------------11 3.2.5 创建圆柱--------------------------------------------12 3.2.6变截面扫描生成第一个轮齿---------------------------- 13 3.2.7阵列创建轮齿---------------------------------------- 14 第四章蜗杆的创建-------------------------------------------------16 蜗杆的建模-------------------------------------------------16 第五章结论--------------------------------------------------------22 第六章致谢词------------------------------------------------------23 参考文献-----------------------------------------------------------24

Proe 斜齿轮建模详细图文教程

参数化柱形斜齿轮的建模 建模分析: (1)输入参数、关系式,创建齿轮基本圆 (2)创建渐开线 (3)创建扫引轨迹 (4)创建扫描混合截面 (5)创建第一个轮齿 (6)阵列轮齿 斜齿轮的建模过程 1.输入基本参数和关系式 (1)单击,在新建对话框中输入文件名“hecial_gear”,然后单击。 (2)在主菜单上单击“工具”→“参数”,系统弹出“参数”对话框,如图1所示。 图1“参数”对话框 (3)在“参数”对话框内单击按钮,可以看到“参数”对话框增加了一行,依次输 入新参数的名称、值、和说明等。 需要输入的参数如表1所示。 表1齿轮参数设置 名称值说明名称值说明 Mn5模数HA0齿顶高 Z25齿数HF0齿根高ALPHA20压力角X0变位系数BETA16螺旋角D0分度圆直径B50齿轮宽度DB0基圆直径HAX1齿定高系数DA0齿顶圆直径CX0.25顶隙系数DF0齿根圆直径

注意:表1中未填的参数值(暂时写为0),表示是由系统通过关系式将自动生成的尺寸,用户无需指定。 完成后的参数对话框如图2所示。 图2完成后的“参数”对话框 (4)在主菜单上依次单击“工具”→“关系”,系统弹出“关系”对话框,如图3所示。 图3“关系”对话框 (5)在“关系”对话框内输入齿轮的分度圆直径关系、基圆直径关系、齿根圆直径关系和齿顶圆直径关系。由这些关系式,系统便会自动生成表1所示的未指定参数的值。输入的关系式如下:

ha=(hax+x)*mn hf=(hax+cx-x)*mn d=mn*z/cos(beta) da=d+2*ha db=d*cos(alpha) df=d-2*hf 完成后的“关系”对话框如图4所示。 图4完成后的“关系”对话框 点击“再生”按钮,再进入“参数”对话框后,发现数据已经更新,如图5所示。 图5更新后的“参数”对话框

参数化圆柱凸轮的proe做法

4.1 参数化设计原理 采用Pro/ENGINEER 进行参数化设计,所谓参数化设计就是用数学运算方式建立模型各尺寸参数间的关系式,使之成为可任意调整的参数。当改变某个尺寸参数值时,将自动改变所有与它相关的尺寸,实现了通过调整参数来修改和控制零件几何形状的功能。采用参数化造型的优点在于它彻底克服了自由建模的无约束状态,几何形状均以尺寸参数的形式被有效的控制,再需要修改零件形状的时候,只需要修改与该形状相关的尺寸参数值,零件的形状会根据尺寸的变化自动进行相应的改变 【17】 。参数化设计不同于传统的设计, 它储存了设计的整个过程,能设计出一族而非单一的形状和功能上具有相似性的产品模型。参数化为产品模型的可变性、可重用性、并行设计等提供了手段,使用户可以利用以前的模型方便地重建模型,并可以在遵循原设计意图的情况下方便地改动模型,生成系列产品 【18】 。 4.2 建立滚轮中心轨迹曲线方程 圆柱凸轮最小外径为: min 2m D r B =?+ (37) 由式(37)、(7)、(31)得:

4 1m in 4 1 4100095.161080003224tan cos 100095.1610800032tan cos 2000 95.1610380002tan cos m h Ft h D r B h Ft h h Ft h D D ρα α ραα α α ---????+ ? ??=?+=? + ????+ ? ??= + ????+ ? ??= + (38) 圆柱周长L 4 200095.1610380002tan cos h Ft h D D L D ππαα-??????+ ? ??? ?==+ ? ??? (39) 单个滚轮中心轨迹按周长展开,如图10所示: 图10 单个滚轮中心轨迹按周长展开

proe5.0直齿齿轮参数化建模

直齿轮的参数化造型设计 设计题目 已知标准圆柱齿轮的默认参数为齿数z=20,压力角α=20°,模数m=8mm 。 设计要求 利用Pro/E 提供的程序功能精确绘制直齿轮的实际渐开线齿廓曲线,并利用Pro/E 的参数化造型技术完成直齿轮的三维实体造型设计。要求经过Pro/E 的程序设计,当用户只要输入直齿轮新的设计参数后,系统即能够自动快速地创建出该齿轮的三维实体模型。 直齿轮几何尺寸的计算 1.节圆半径mm z m r 802/2082/=?=?= 2.基圆半径mm r r b 1754.75)9/cos(80cos =?=?=πα 3.周节mm m p 1327.258=?=?=ππ 4.分度圆齿厚mm p s 5664.122/== 5.齿顶圆半径mm m r r a 88=+= 6.齿根圆半径mm m r r f 7025.1=-= 7.齿轮的基圆齿厚mm r s r s b b 0494.14)180 tan 2(2=-+=απα 8.齿轮的基圆齿厚角度?=?=7079.10180π θb b r s 9.齿轮的基圆齿间角度?=-=2921.7/360θθz w 10.渐开线的展开角可由下式求得θμμ=-arctan 11.以极坐标形式表示的渐开线方程21μρ+=b r 输入齿轮基本参数 1.启动Pro/E 程序后,选择【文件】/【新建】命令,在弹出的【新建】对话框中的【类型】选项组中选取【零件】选项,在【子类型】选项组中选取【实体】选项,同时取消【使用默认模版】选项的选中状态,表示不采用系统的默认模版,最后在【名称】文本框中输入文件名spurgear ,单击按钮后,系统弹出【新文件选项】对话框,在【模版】选项组中选择mmns_part_solid 选项,最后单击该对话框中的按钮后进入Pro/E 系统的零件模块。

proe参数化设计实例

实验二 Proe参数化设计实验 一、程序参数化设计实验 1、实验步骤 (1)建立实验模型见图1,具体包括拉伸、打孔及阵列操作。 图1 (2)设置参数。在工具D=300、大圆高度H=100、边孔直径DL=50、阵列个数N=6、中孔直径DZ=100、中孔高度DH=100,见图2。

图2 (3)建立参数和图形尺寸的联系。在工具关系,建立如下关系:D1=D、D0=H、D10=DL、NUM=N、D3=DZ、D2=DH。其中NUM是图形中阵列个数的名称改变后得到的。 (4)建立程序设计。在工具程序,建立程序如下: INPUT DZ NUMBER "输入中孔直径值==" DH NUMBER "输入中孔高度值==" H NUMBER "输入大圆高度值==" D NUMBER "输入大圆直径值==" N NUMBER "输入阵列数目==" DL NUMBER "输入边孔直径值==" END INPUT 将此程序保存后,在提示栏中输入所定义的各个参数的值:大圆直径D=500、大圆高度H=20、边孔直径DL=20、阵列个数N=8、中孔直径DZ=150、中孔高度DH=200。 (5)最后生成新的图形见图3 图3 2、实验分析 本实验通过程序的参数化设计,改变了大圆直径、大圆高度、边孔直径、阵列个数、中孔直径、中孔高度的值,得到了我们预想要的结果。

二、族表的参数化设计 1、实验步骤 (1)建立半圆键模型。见图1 图1 (2)建立族表。通过工具族表,单击“在所选行处插入新实例”按钮,建立四个子零件名,再单击“添加/删除表列”按钮,建立所需要改变的尺寸(主要的标准尺寸h、b、d )。见图2 1 图2 (3)校验族的实例和字零件的生成。单击按钮“校验族的实例”,校验成功后,

TI蜗杆传动模型的参数化建模

∞河j艺理鼍大学学投(毒然科学版)第30卷为了保证弧蜗杆的正确啮合,所要满足的啮合方程如下 左侧ULcos("r一警1)一VLsin《彳一9)=WL 吼=~ . ‘ 右 侧 2 屹=妒l(芦一o"o—f)+屯 …。毗2plrb/i2t—al"b., 上述数学方程的建立参考文献[1]2参数化模型的建立UReos("t’÷警1)一Vnsin("r’一9)=WRU。=一,2 %=尹2l(弘一民一r’)+巧2秘 豫2pl%/毛l—arj 2.1蜗杆的参数化模型 2.1.I蜗杆齿瑟点的形成, 按照一定的蜗杆齿耐精度的要求,根据上面蜗杆的数学模型,使用Matlab语言进行编程,计算得到蜗杆齿蹶接触结上的一系列点的坐标僚:,把坐标值保存为Pro/e可以读取的文件.ibl。 2。l。2蜗秆齿面线的形成 在Pro/e中一次选择Insen—curve一‰mfile,选择坐标系输人生成的.ibl文件,生成一系列接触线如图l所示。保存文俘为.iges格式,以备ANSYS调用。 圈1蜗杆齿面接触线的模型 2.1。3娲轷齿霆豹形成 图2蜗杆齿丽的模型 在ANSYS中导入齿面曲线的.iges文件:在file菜单中选择.import,在选择格式为iges,就得到一系列曲线。通过ANKIN命令,把这些曲线连接起来就可以形成蜗杆的齿面,然后建立距全局坐标系原点为中心距鑫的局部坐标系,在局部坐标系中透过exted等念令建立蜗杆齿瑛潮面、齿掇魏瑟和蜗抒端面,在运用divide命令剪切已生成的蜗什齿面,就得到了所要求的蜗杆齿面,如图2所示。 2.1.4蜗杆端面及内外环面的形成‘ 运爰extend等命令建立蜗抒翡霾、蜗耔终环瑟,运爝lcomb、81等命令建立蜗杆内黪藏,至此就完成了构成蜗矸所需要的面。如网3所示 2.1.5蜗杆实体的形成 使用V8命令将已生成的匠构成实体。构成的实体如图4所永 2.1.6蜗杆齿根圆的形成 姐蜗杆的齿根圆是内蜗轮齿顶包络形成的。由于二者相对运动比较复杂,致使蜗杆齿根曲线的方程很难求得。本文简纯为瑟弧线。生成嚣弧落,使用divide命令对蜗拇进行势切,生痰蜗抒鳇造型魏蹋5所示2.2坐标变换 在全局坐标系下完成上述TI蜗杆的模型,然后利用三点确定坐标系的命令建立局部柱坐标系12和局部篱卡坐标系13,使用坐标变换搬麓蜗秆的模型移蓟褥部簦卡尔坐标系13,然后再全弱坐标系下建立激嚣 线斜齿轮的模型。

proe参数化建模简介(齿轮建模实例)

proe参数化建模简介(1) 本教程分两部分,第一部分主要介绍参数化建模的相关概念和方法,包括参数的概念、参数的设置、关系的概念、关系的类型、如何添加关系以及如何使用关系创建简单的参数化零件(以齿轮为例)。 第二部分介绍参数化建模的其他方法:如族表的应用、如何使用UDF(用户自定义特征)、如何使用Pro/Program创建参数化零件。(后一部分要等一段时间了,呵呵)参数化设计是proe重点强调的设计理念。参数是参数化设计的核心概念,在一个模型中,参数是通过“尺寸”的形式来体现的。参数化设计的突出有点在于可以通过变更参数的方法来方便的修改设计意图,从而修改设计意图。关系式是参数化设计中的另外一项重要内容,它体现了参数之间相互制约的“父子”关系。 所以,首先要了解proe中参数和关系的相关理论。 一、什么是参数? 参数有两个含义: ●一是提供设计对象的附加信息,是参数化设计的重要要素之一。参数和模型一起存储,参数可以标明不同模型的属性。例如在一个“族表”中创建参数“成本”后,对于该族表的不同实例可以设置不同的值,以示区别。 ●二是配合关系的使用来创建参数化模型,通过变更参数的数值来变更模型的形状和大小。 二、如何设置参数 在零件模式下,单击菜单“工具”——参数,即可打开参数对话框,使用该对话框可添加或编辑一些参数。

1.参数的组成 (1)名称:参数的名称和标识,用于区分不同的参数,是引用参数的依据。注意:用于关系的参数必须以字母开头,不区分大小写,参数名不能包含如下非法字符:!、”、@和#等。 (2)类型:指定参数的类型 ?a)整数:整型数据 ?b)实数:实数型数据 ?c)字符型:字符型数据 ?d)是否:布尔型数据。 (3)数值:为参数设置一个初始值,该值可以在随后的设计中修改 (4)指定:选中该复选框可以使参数在PDM(Product Data Management,产品数据管理)系统中可见 (5)访问:为参数设置访问权限。

proe参数化建模教程(最新)

proe参数化建模 本教程分两部分,第一部分主要介绍参数化建模的相关概念和方法,包括参数的概念、参数的设置、关系的概念、关系的类型、如何添加关系以及如何使用关系创建简单的参数化零件(以齿轮为例)。 第二部分介绍参数化建模的其他方法:如族表的应用、如何使用UDF(用户自定义特征)、如何使用Pro/Program创建参数化零件。(后一部分要等一段时间了,呵呵) 参数化设计是proe重点强调的设计理念。参数是参数化设计的核心概念,在一个模型中,参数是通过“尺寸”的形式来体现的。参数化设计的突出有点在于可以通过变更参数的方法来方便的修改设计意图,从而修改设计意图。关系式是参数化设计中的另外一项重要内容,它体现了参数之间相互制约的“父子”关系。 所以,首先要了解proe中参数和关系的相关理论。 一、什么是参数? 参数有两个含义: ●一是提供设计对象的附加信息,是参数化设计的重要要素之一。参数和模型一起存储,参数可以标明不同模型的属性。例如在一个“族表”中创建参数“成本”后,对于该族表的不同实例可以设置不同的值,以示区别。 ●二是配合关系的使用来创建参数化模型,通过变更参数的数值来变更模型的形状和大小。 二、如何设置参数 在零件模式下,单击菜单“工具”——参数,即可打开参数对话框,使用该对话框可添加或编辑一些参数。 1.参数的组成 (1)名称:参数的名称和标识,用于区分不同的参数,是引用参数的依据。注意:用于关系

的参数必须以字母开头,不区分大小写,参数名不能包含如下非法字符:!、”、@和#等。 (2)类型:指定参数的类型 ?a)整数:整型数据 ?b)实数:实数型数据 ?c)字符型:字符型数据 ?d)是否:布尔型数据。 (3)数值:为参数设置一个初始值,该值可以在随后的设计中修改 (4)指定:选中该复选框可以使参数在PDM(Product Data Management,产品数据管理)系统中可见 (5)访问:为参数设置访问权限。 ?a)完全:无限制的访问权,用户可以随意访问参数 ?b)限制:具有限制权限的参数 ?c)锁定:锁定的参数,这些参数不能随意更改,通常由关系式确定。 (6)源:指定参数的来源 ?a)用户定义的:用户定义的参数,其值可以随意修改 ?b)关系:由关系式驱动的参数,其值不能随意修改。 (7)说明:关于参数含义和用途的注释文字 (8)受限制的:创建其值受限制的参数。创建受限制参数后,它们的定义存在于模型中而与参数文件无关。 (9)单位:为参数指定单位,可以从其下的下拉列表框中选择。 2.增删参数的属性项目 可以根据实际需要增加或删除以上9项中除了“名称”之外的其他属性项目

基于蜗轮蜗杆的三维建模与运动仿真

……………………. ………………. ……………… 山东农业大学 毕 业 论 文 基于Pro/E 的蜗轮蜗杆参数化建模及运动仿真分析 院 部 机械与电子工程学院 专业班级 机械电子工程专业 届 次 2013届 学生姓名 冯海明 学 号 20091192 指导教师 张开兴 老师 二O 一三 年 六 月 十 日 装 订 线 ……………….……. …………. …………. …

目录 摘要 (3) 1绪论 (5) 1.1课题研究意义 (5) 1.2课题研究CAD发展概述 (5) 1.2.1CAD技术发展历程 (5) 1.2.2CAD的发展趋势 (6) 1.3本课题研究的内容 (7) 2蜗轮蜗杆参数化设计基础 (7) 2.1蜗杆传动机构简介及类型 (7) 2.2圆柱蜗杆传动的主要参数和几何尺寸 (8) 2.3参数化特征造型技术简介 (9) 3 基于PRO/E的蜗轮参数化建模 (10) 3.1P RO/E的参数化建模简介 (10) 3.2蜗杆的参数化建模 (12) 3.2.1零件分析 (12) 3.2.2创建蜗杆 (13) 3.3蜗轮的参数化建模 (19) 3.3.1零件分析 (19) 3.3.2蜗轮的参数化建模 (20) 4蜗轮传动机构的运动仿真 (30) 4.1P RO/E运动仿真简介 (30) 4.2P RO/E平台机构运动仿真的步骤 (30) 4.3蜗轮蜗杆机构运动仿真的具体步骤 (31) 4.3.1蜗轮蜗杆机构的虚拟装配 (31) 4.3.2蜗轮蜗杆机构的运动仿真 (32) 5总结 (33) 参考文献 (34) 致谢 (34)

Contents Abstract (4) 1Introduction (5) 1.1The significance of this research (5) 1.2Development of research on CAD project (5) 1.2.1 CAD technology development (5) 1.2.2 The development trend of CAD (6) 1.3The contents of this research project (7) 2 Basic worm gear parametric design (7) 2.1Introduction and type of worm gear (7) 2.2The main parameters and geometric dimensions of a cylindrical worm drive (8) 2.3The parametric feature modeling technology (9) 3 Modeling of worm gear parameters based on PRO/E (10) 3.1 Parametric modeling of Pro/E (10) 3.2Parametric modeling of worm (12) 3.2.1 Part analysis (12) 3.2.2 Create a worm (13) 3.3Parametric modeling of worm gear (19) 3.3.1 Part analysis (19) 3.3.2 Parametric modeling of worm gear (20) 4 Motion simulation of worm gear transmission mechanism (30) 4.1 Introduction the Pro/E motion simulation (30) 4.2 Exercise Pro/E platform simulation steps (30) 4.3The specific steps of mechanism movement simulation of worm gear worm (31) 4.3.1 The virtual assembly of the worm gear (31) 4.3.2 Motion simulation of worm gear (32) 5 Summary (33) Reference documentation (34) Convey thanks (34)

相关主题
文本预览
相关文档 最新文档