当前位置:文档之家› 第七章 线性变换

第七章 线性变换

第七章 线性变换
第七章 线性变换

第七章线性变换

§7.1 线性映射

=(x1,x2,x3)是R3的任意向量.下列映射哪些是R3到自身的

1.令

(1)(ξ) =ξ+ α,α是R3的一个固定向量.

(2)(ξ) = (2x1–x2 + x3,x2 + x3,–x3)

(3)(ξ) =(x12,x22,x32).

(4)σ() =(cos x1,sin x2,0).

2.设V是数域F上一个一维向量空间.证明V到自身的一个映射是线性

V,都有() = a,这里a是F中一个

映射的充要条件是:对于任意

3.令M n (F) 表示数域F上一切n阶矩阵所成的向量空间.取定A M n (F).

对任意

(F),定义(X) = A X–X A.

X M

n

(i)证明:是M n (F)是自身的线性映射。

(ii)证明:对于任意X,Y M n (F),(XY) = (X)Y+X (Y) .

4.令F4表示数域F上四元列空间,取

A=

对于

F4,令(

) = A

.求线性映射的核和像的维数.

5.设V和W都是数域F上向量空间,且dim V = n.令是V到W的一个

线性映射.我们如此选取V的一个基:

1

,…,

s

s+1

,…,n,使

1,…,

s

,是Ker()的一个基.证明:

(i)(

s+1

),…,(n)组成Im()的一个基;

(ii)dim Ker() + dim Im() = n.。

6.设是数域F上n维向量空间V到自身的一个线性映射.W1,W2是V的

子空间,并且V = W

1

W

2

.证明:有逆映射的充要条件是V = (W

1

)

(W

1

) .

§7.2 线性变换的运算

1.举例说明,线性变换的乘法不满足交换律.

2.在F[x]中,定义:f (x) f’(x) ,

:f (x) xf (x) ,

这里f’(x)表示f(x)的导数.证明, ,都是F[x]的线性变换,并且对于任意正整数n都有n–n = n n-1

3.设V是数域F上的一个有限维向量空间.证明,对于V的线性变换来说,下列三个条件是等价的:

(i)是满射; (ii)Ker() = {0}; (iii) 非奇异.

当V不是有限维时,(i),(ii)是否等价?

L(V),V,并且,(),…,k-1()都不等于零,

4.设

k(

) = 0.证明:,(),…,k-1() 线性无关.

Ker()当且仅当2 = ;

(1) Im()

(2)

(3)

(i) 证明:是F n的一个线性变换,且n = ;

(ii) 求Ker()和Im() 的维数.

§7.3 线性变换和矩阵

1.令Fn[x]表示一切次数不大于n的多项式连同零多项式所成的向量空间,:f (x) f’(x) ,求 关于以下两个基的矩阵:

(1) 1,x ,x2,…,x n,

(2) 1,x –c ,

,…,

,c F .

2.设F 上三维向量空间的线性变换

关于基 {

1

2

3

}的矩阵

关于基

1 = 2

1 +3

2 +

3

2

= 3

1

+4

2

+

3

3

=

1

+2

2

+2

3

的矩阵.

= 2 1 +

2

3

.求

( )关于基

1

2

3

的坐标.

3.设{

1

2

,…,

n

}是n 维向量空间V 的一个基.

j

= ,

= , j = 1,2,…,n ,

并且

1

2

,…,

n

线性无关.又设

是V 的一个线性变换,使得 (

j

) =

,j = 1,2,…,n ,求

关于基

,…,

的矩阵.

4.设A ,B 是n 阶矩阵,且A 可逆,证明,AB 与BA 相似.

5.设A是数域F上一个n阶矩阵,证明,存在F上一个非零多项式f (x)

使得

f (A) = 0.

6.证明,数域F上n维向量空间V的一个线性变换是一个位似(即单位变换的一个标量倍)必要且只要关于V的任意基的矩阵都相等.

7.令M n (F)是数域F上全休n阶矩阵所成的向量空间.取定一个矩阵A M n (F) .对任意X M n (F),定义(X) = A X–X A.由7.1习题3知是M n (F)的一个线性变换,设

A =

是一个对角形矩阵.证明,关于M

n (F)的标准基{E

ij

|1

}(见6.4,

例5)的矩阵也是对角形矩阵,它的主对角线上的元素是一切a i–a j(1

).

[建议先具体计算一下n = 3的情形.]

8.设是数域F上n维向量空间V的一个线性变换.证明,总可以如此选

取V的两个基{

1,

2

,…,

n

}和{

1

2

,…,

n

},使得对于V

的任意向量

来说,如果

=

,则(

) =

,这里0

是一个定数。

[提示:利用7.1,习题5选取基

1,

2

,…,

n

.]

§7.4 不变子空间

1.设是有限维向量空间V的一个线性变换,而W是的一个不变子空间,证明,如果有逆变换,那么W也在-1之下不变.

是向量空间V的线性变换,且.证明Im()和Ker()

2.设

都在之下不变.

3.是数域F上向量空间V的一个线性变换,并且满足条件2=.证

明:

(i) Ker(

) = {};

(ii)V = Ker(

(iii)如果是V的一个线性变换,那么Ker()和Im()都在之下不变的充要条件是.

4.设是向量空间V的一个位似(即单位变换的一个标量倍).证明,V的每一个子空间都在之下不变.

5.令S是数域F上向量空间V的一些线性变换所成的集合.V的一个子空

间W如果在S中每一线性变换之下不变,那么就说W是S的一个不变子空间.S 说是不可约的,如果S在V中没有非平凡的不变子空间,设S不可约,而是V的一个线性变换,它与S中每一线性变换可交换。证明或者是零变换,或者是可逆变换.

[提示:令W = Ker .证明W是要的一个不变子空间.]

§7.5 本征值和本征向量

1.求下列矩阵在实数域内的特征根和相应的特征向量:

(i) ; (ii) ;(iii) .

2.证明:对角形矩阵

相似必要且只要b1,b2,…,b n是a1,a2,…,a n的一个排列.

3.设 A = 是一个实矩阵且ad–bc = 1 .证明:

(i) 如果| trA |>2,那么存在可逆实矩阵T,使得T-1AT = .这里且,1,-1.

(ii) 如果| trA | = 2且A,那么存在可逆实矩阵T,使得

T-1AT = 或 ..

(iii) 如果| trA | < 2则存在可逆实矩阵T及,使得

T-1AT = .

[提示] 在(iii),A有非实共轭复特征根 =1.将写成三角形式.令是A的属于的一个特征向量,计算A和A.4.设a,b,c.令

A=,B=,C=.

(i) 证明,A,B,C彼此相似;

(ii) 如果BC=CB,那么A,B,C的特征根至少有两个等于零.5.设A是复数域C上一个n阶矩阵.

(i) 证明:存在C上n阶可逆矩阵T使得

T-1AT =.

(ii) 对n作数学归纳法证明,复数域C上任意一个n阶矩阵都与一个“上三角形”矩阵

相似,这里主对角线以下的元素都是零.

6.设A是复数域C上一个n阶矩阵,是A的全部特征根(重根按重数计算).

(i) 如果 f (x)是C上任意一个次数大于零的多项式,那么 f (是f(A)的全部特征根.

(ii) 如果A可逆,那么,并且是A-1的全部特征根

7.令

A =

是一个n阶矩阵。

(i) 计算. (ii) 求A的全部特征根.

8.是任意复数,行列式

D =

叫做一个循环行列式,证明: D = ,

这里,而是全部n次单位根.

[提示:利用6.7两题的结果.]

9.设A,B是复数域上n阶矩阵.证明,AB与BA有相同的特征根,并且对应的特征根的重数也相同.[提示:参看5.3习题2.]

§7.6 可以对角化的矩阵

1.检验7.5习题1中的矩阵哪些可以对角化.如果可以对角化,求出过渡

矩阵T.

2.设,求A10.

3.设是数域F上n维向量空间V的一个线性变换.令是的两两不同的本征值,是属于本征值的本征子空间.证明,子空间的和是直和,并在之下不变.

4.数域F上n维向量空间V的一个线性变换叫做一个对合变换,如果2 =ι,ι,是单位变换,设是V的一个对合变换,证明:

(i) 的本征值只能是;

(ii) V = V

1,这里V

1

是的属于本征值1的本征子空间,V是的

属于本征值–1 的本征子空间.[提示:设 ]

5.数域F上一个n 阶矩阵A叫做一个幂等矩阵,如果 ,设A是一个幂等矩阵.证明:

(i)I + A 可逆,并且求.

(ii)秩A + 秩 [提示:利用7.4,习题3 (ii).]

6.数域F上n维向量空间V的一个线性变换叫做幂零的,如果存在一个自然数m使m = 0.证明:

(i) 是幂零变换当且仅当它的特征多项式的根都是零;

(ii) 如果一个幂零变换可以对角化,那么一定是零变换.

7.设V是复数域上一个n维向量空间,S是V的某些线性变换所成的集合,而是V的一个线性变换,并且与S中每一线性变换可交换,证明,如果S 不可约 (参看7.4,习题5),那么一定是一个位似. [提示:令是的一个本征值,考虑的属于的本征子空间,并且利用7.4,习题5的结果.] 8.设是数域F上n维向量空间V的一个可以对角化的线性变换,令

是的全部本征值.证明,存在V的线性变换,使得

(i) ;

(ii)

(iii)

(iv)

(v) 的属于本征值的本征子空间,

9.令V是复数域C上一个n维向量空间,,是V的线性变换,且

(i) 证明,的每一本征子空间都在之下不变;

(ii) 与在V中有一公共本征向量.

第7章 线性变换

第7章 线性变换 §1 线性变换的定义 线性空间V 到自身的映射,通常叫做V 的一个变换,现在讨论的线性变换是线性空间的最简单也是最重要的一种变换。 一、线性变换的定义 定义7.1 设V 为线性空间,若对于V 中的任一向量α,按照一定的对应规则T ,总有V 中的一个确定的向量β与之对应,则这个对应规则T 称为线性空间V 中的一个变换,记为 βα=)(T 或 )(,V T ∈=αβα, β称为α的象,α称为β的原象。象的全体所构成的集合称为象集,记作T (V ),即 T (V )={}V T ∈=ααβ|)(。 由此定义可见,变换类似于微积分中的函数,不过微积分中的函数是两个实数集合间的对应,而这里的变换则是线性空间中的向量与向量之间的对应。 定义7.2 线性空间V 中的变换T ,若满足条件 (1) 对任意V ∈βα,有 (2) )()()(βαβαT T T +=+; (3) 对任意V ∈α及数域P 中任意数k 有 )()(ααkT k T =,

则称变换T 为V 中的线性变换。 例7.1 线性空间V 中的恒等变换或称单位变换E ,即 E )()(V ∈=αα α 以及零变换?,即 ?)(0 )(V ∈=αα 都是线性变换. 例7.2 设V 是数域P 上的线性空间,k 是P 中的某个数,定义V 的变换如下: V k ∈→ααα,. 这是一个线性变换,称为由数k 决定的数乘变换,可用K 表示.显然当1=k 时, 便得恒等变换,当0=k 时,便得零变换. 例7.3 在线性空间][x P 或者n x P ][中,求微商是一个线性变换.这个变换通常用D 代表,即 D ()(x f )=)(x f '. 例7.4 定义在闭区间[]b a ,上的全体连续函数组成实数域上一线性空间,以),(b a C 代表.在这个空间中变换 ?()(x f )=?x a dt t f )( 是一线性变换.

第七章 线性变换.

第七章线性变换 计划课时:24学时.( P 307—334) §7.1 线性变换的定义及性质(2学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1(P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1,2,3. §7.2 线性变换的运算(4学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件 教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义1 (P310) 注意:σ+τ是V的线性变换. 二. 数乘运算 定义2(P311) 显然kσ也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义3 (P311-312) 注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可

能是零变换. (2). 线性变换σ 的方幂 四. 可逆线性变换 定义4 (P 313) 线性变换可逆的充要条件 例2 (P 314) 线性变换的多项式的概念 (阅读内容). 作业:P 330 习题七 4,5. §7.3 线性变换的矩阵(6学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握ξ 与σ (ξ)关于同一个基的坐标 之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一. 线性变换σ关于基的矩阵 定义 (P 316) 。 注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应. 例1 (P 316) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例2 (P 317) 例3 (P 317) 二. ξ与σ (ξ)关于同一个基的坐标之间的关系. 定理7.3.1 例4 (P 318) 三. L (V )与M n (F )的同构 定理7.3.2 (P 320) 定理7.3.3 (P 320) 注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

第六章_线性变换_68180769

第六章 线性变换 映射:,X Y ≠?≠?,如果有一个法则σ,它使得X 中每个元素α,在Y 中有唯一确定的元素β与之对应,则称σ为X 到Y 的一个映射,记作:X Y σ→,()σαβ=,β称为α在σ下的象,α称为β在σ下的原象。 注:()(),X στασατα=??∈=对。 变换:一个集合到自身的映射。 线性变换的定义与性质 定义 设V 是数域F 上的线性空间,σ是V 的一个变换,如果满足条件: (1)()()()βσασβασV,α,β+=+∈?; (2)()()k F,αV,k αk σασ?∈?∈=, 则称σ是V 上的线性变换或线性算子。 (1), (2)等价于条件:,,,k l F V αβ?∈∈ ()()()σk αl βk σαl σβ+=+。 例:设σ:n n R R →,定义为()c αασ=,c 为常数。-----数乘 变换或位似变换。 c =0-----零变换,记为o 。 c =1-----恒等变换,记为ε。 例:设σ是把平面上的向量绕坐标原点逆时针旋转θ角的变换 设()()(),,,T T x y x y ασα''==,则

cos sin sin cos x x y y x y θθ θθ'=-??'=+? 记cos sin sin cos A θθθ θ-?? =??? ? ,则()A σαα=是一个线性变换。 例:判断下列变换是否是线性变换 (1) ()()12323,,1,,T T a a a a a σ=; (2) ()()12323,,0,,T T a a a a a σ=; (3) ()()12312231,,2,,T T a a a a a a a a σ=-+; (4) ()()212312 3,,,,3T T a a a a a a σ=. 线性变换的基本性质 (1)()θθσ=; (2)()()ασασ-=-; (3)线性变换保持向量的线性组合关系不变,即若s s αk αk αk β+++=Λ2211,则1122s s βk αk αk ασσσσ=+++L ; 若θ=+++s s αk αk αk Λ2211,则θσσσ=+++s s αk αk αk Λ2211。 (4)线性变换将线性相关的向量组映成线性相关的向量组。 线性变换的运算 ()V L ----线性空间V 上所有线性变换的集合。

第七章 线性变换 综合练习

第七章 线性变换综合练习 一.判断题 1.数域F 上的向量空间的线性变换的集合对线性变换的加法与数乘运算构成一个向量空间( ) 2.在向量空间3R 中, 1231223(,,)(2,,)x x x x x x x σ=-, 则σ是3R 的一个线性变换. ( )). 3.在向量空间[]n R x 中, 2(())()f x f x σ=, 则σ是[]n R x 的一个线性变换. ( ) 4.两个向量空间之间的同构映射σ的逆映射1-σ还是同构映射. ( ) 5.取定n n A F ?∈, 对任意的n 阶矩阵n n X F ?∈, 定义()X AX XA σ=-, 则σ是n n F ?的一个线性变换. 6.向量空间V 的可逆线性变换σ的核)(σKer 是空集.( ) 7.在向量空间3R 中, 已知线性变换 1231223312313(,,)(,,),(,,)(,0,). x x x x x x x x x x x x x στ=++= 则12321233(2)(,,)(,,)x x x x x x x x στ-=-+-. ( ) 8.设σ为n 维向量空间V 上的线性变换,则Im()ker()V σσ+=.( ) 9.向量空间2R 的两个线性变换σ,τ为12121(,)(,)x x x x x σ=-;12122(,)(,)x x x x x τ=- 则212212()(,)(,).x x x x x στσ-=-+( ) 10.在取定基后, V 的每个可逆线性变换对应于可逆矩阵, 但逆变换未必对应于逆矩阵. ( ) 11.数域F 上的向量空间V 及其零子空间, 对V 的每个线性变换来说, 都是不变子空间. ( ) 12.若21,αα都是数域F 上的方阵A 的属于特征根0λ的特征向量,那么任取 221121,,ααk k F k k +∈也是A 的属于0λ的特征向量.( ) 13. 线性变换σ的本征向量之和, 仍为σ的本征向量. ( ) 14.属于线性变换σ同一本征值0λ的本征向量的线性组合仍是σ的本征向量. ( ) 15.线性变换σ在一个基下可以对角化, 则σ在任何基下可以对角化. ( ). 16.复数域看作实数域上的向量空间是1维的. ( ) 17.σ是向量空间V 的线性变换, 向量组12,, ,m ααα线性无关, 那么12(),(),,() m σασασα也线性无关. ( )

高等代数第6章习题解

第六章习题解答 习题6.1 1、设2V R =,判断下面V 到V 的映射哪些是V 的线性变换,哪些不是? (1),()x x y V f y y αα+????=∈= ? ?????;(2),()x x y V f y y αα-????=∈= ? ????? ; (3)2,()x y V f y x y αα+????=∈= ? ?+???? ; (4)0,()x V f y αααα??=∈=+ ???,0V α∈是一个固定的非零向量。 (5)0,()x V f y ααα??=∈= ???,0V α∈是一个固定的非零向量。 解:(1)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (2)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (3)不是。因为 而 121211*********()()y y y y f f x y x y x x y y αβ++++??????+=+= ? ? ?+++++?????? 所以()()()f f f αβαβ+≠+ (4)不是。因为0()f k k ααα=+,而000()()kf k k k k ααααααα=+=+≠+ 所以()()f k kf αα≠ (5)不是。因为0()f αβα+=,而00002()()f f αβαααα+=+=≠ 2、设n n V P ?=是数域F 上全体n 阶方阵构成的集合,有§4.5,V 是F 上2 n 维线性空间, 设A V ∈是固定元,对任意M V ∈,定义 ()f M MA AM =+ 证明,f 是V 的一个线性变换。 证明:,,M N V k F ?∈∈,则 所以 f 是V 的一个线性变换。 3、设3 V R =,(,,)x y z V α=∈,定义

七、线性变换习题课

七、线性变换习题课 1.复习线性变换的概念 例1 将C看成R上的线性空间,变换是线性的,看成C上的线性空间则不是。 证明:R上:有== 又 故A是R上线性空间C的线性变换。 C上:取及,有, 而,故A不是C上线性空间C的线性变换。 由上例,变换A是否为线性变换与所讨论的数域有关。 2.利用运算的意义,运算律推证线性变换的等式,利用线性变换与n阶方阵代数同构解决有关问题。 例2设A,B是线性变换,如果证明: ,(k>0) 证明: 由已知,对k=1结论成立,故考虑用数学归纳法. 对k用归纳法.当k=1时结论成立. K=2时,由已知 =AB=(BA+E)A+A-BA2 =BA2+A+A-BA2=2A 结论成立. 设当k时结论成立,即,也即. 当k+1时, =ABA k+AkA k-1-BA k+1=(BA+E)A k+kA k-BA k+1 =BA k+1+A k+kA k-BA k+1=(k+1)A k 所以结论对k+1也成立,从而对一切k1成立. 例3设V是数域P上n维线性空间,证明:V的与全体线性变换交换的线性变换是数乘变换. 证明: 需要表达出线性变换,联系到某基下的矩阵. 设令A,B在某基下的矩阵分别为A,B. 因为,所以由得AB=BA.由的任意 性,也是任意的,从而存在某个k使得A=kE为数量阵(P.204,ch.4.ex.7.3),于是 为数量变换. 有了变换乘积,进一步可考虑可逆变换.

3. 系统小结可逆线性变换的的等价条件,并举例说明一些基本论证方法. A可逆10存在使=E. A是双射. A在基下的矩阵A可逆—有限维 例4 设是线性空间V的一组基,A是V上的线性变换,证明:可逆当且仅当 线性无关. 证明:证法一: “”,,若=0,有B()=0,即 =0,=0,即线性无关. “”线性无关, 因dimV=n,故使得 =A() 令使=() 易见,且,即 又任给设= 有()== 故,从A可逆. 证法二:利用双射 “” A是双射,则0==A() 得0=(0对应0) 故,线性无关. “”由dimV=n,V的任一向量可由唯一表示,即V中任一向量有唯一(要证明)原像(显然).故A是双射. 证法三:利用矩阵 A可逆A在下的矩阵A可逆 ()A也是一组基=n 线性无关

第七章线性变换习题答案

第七章线性变换3.在P[x]中,Af(x)f(x),Bf(x)xf(x),证明: ABBA=E. 『解题提示』直接根据变换的定义验证即可. 证明任取f(x)P[x],则有 =(A BBA)f(x)ABf(x)BAf(x)A(xf(x))B(f(x)) (xf(x))xf(x)f(x)Ef(x), 于是ABBA=E. 4.设A,B是线性变换,如果ABBA=E,证明: kkk k1,k1ABBAA. 『解题提示』利用数学归纳法进行证明. 证明当k2时,由于ABBA=E,可得 22()()2 ABBAAABBAA B BAAA, 因此结论成立. 假设当ks时结论成立,即ssss1 ABBAA.那么,当ks1时,有 s1s1(s s)()ssss(s1)s ABBAAABBAA B BAAAAA, 即对ks1结论也成立.从而,根据数学归纳法原理,对一切k1结论都成立. 『特别提醒』由 AE可知,结论对k1也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 1证明设A是线性空间V上的一个可逆变换.对于任意的,V,如果AA,那么,用 A 作用左右两边,得到A AAA,因此A是单射;另外,对于任意的V,存在1()1() 1()1() 1V A,使得 1 AA(A),即A是满射.于是A是双射.

-1-

『特别提醒』由此结论可知线性空间V上的可逆映射A是V到自身的同构. 6.设1,2,,n是线性空间V的一组基,A是V上的线性变换,证明A可逆当且仅当 A1,A2,,A n线性无关. 证法1若A是可逆的线性变换,设k AkAkA0 ,即 1122nn A(kkk nn)0. 1122 而根据上一题结论可知A是单射,故必有k kk0,又由于 1,2,,n是线性无关的, 1122nn 因此k 1k2k n0.从而A1,A2,,A n线性无关. 反之,若A 1,A2,,A n是线性无关的,那么A AA也是V的一组基.于是,根据 1,2,,n 教材中的定理1,存在唯一的线性变换B,使得B(A i)i,i1,2,,n.显然 BA(i)i,A B(A i)A i,i1,2,,n. 再根据教材中的定理1知,ABBAE.所以A是可逆的. 证法2设A在基 1,2,,n下的矩阵为A,即 A(,,,n)(A,A,,A n)(,,,n)A. 121212 由教材中的定理2可知,A可逆的充要条件是矩阵A可逆. 因此,如果A是可逆的,那么矩阵A可逆,从而A 1,A2,,A n也是V的一组基,即是线性无 关的.反之,如果A AA是线性无关,从而是V的一组基,且A是从基 1,2,,n到1,2,,n A1,A2,,A n的过渡矩阵,因此A是可逆的.所以A是可逆的线性变换. 『方法技巧』方法1利用了上一题的结论及教材中的定理1构造A的逆变换;方法2借助教材中的定理2,将线性变换A可逆转化成了矩阵A可逆. 9.设三维线性空间V上的线性变换A在基1,2,3下的矩阵为 aaa 111213 A aaa. 212223 aaa 313233 1)求A在基3,2,1下的矩阵;

第一章 线性空间与线性变换概述

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R)和复数域(记为C),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有αα+=0; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间. 线性空间{0}V =称为零空间.

第七章线性变换总结篇

第 7章 线性变换 7、1知识点归纳与要点解析 一.线性变换的概念与判别 1、线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ与数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就就是其保持向量的加法与数量乘法的变换。 2、线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3、线性变换的性质 设V 就是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈L 。 性质1、 ()()00,σσαα==-; 性质2、 若12s ,,,αααL 线性相关,那么()()()12s ,,,σασασαL 也线性相关。 性质3、 设线性变换σ为单射,如果12s ,,,αααL 线性无关,那么()()()12s ,,,σασασαL 也线性无关。 注:设V 就是数域P 上的线性空间,12,,,m βββL ,12,,,s γγγL 就是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++L L L L L L 记: ()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? L L L L M M M L 于就是,若()dim V n =,12,,,n αααL 就是V 的一组基,σ就是V 的线性变换, 12,,,m βββL 就是V 中任意一组向量,如果:

第七章 线性变换

MATLAB软件应用第七章线性变换 例1:求矩阵 122 212 221 A ?? ?? =?? ?? ?? 的特征值与特征向量,并将其对角化. 解1:建立m文件v1.m如下: clc A= [1 2 2;2 1 2; 2 2 1]; E=eye(3); syms x f=det(x*E-A) %矩阵A的特征多项式 solve(f) %矩阵A的特征多项式的根,即A的特征值 %所以A的特征值为x1=5,x2=x3=-1. %(1)当x1=5时,求解(x1*E—A)X=0,得基础解系syms y y=5; B=y*E-A; b1=sym(null(B)) %b1为(x1*E—A)X=0基础解系 %(2)当x2=-1时,求解(x2*E—A)X=0,得基础解系y=-1; B=y*E-A; b2=sym(null(B)) %b2为(x2*E—A)X=0基础解系 T=[b1,b2] %所有特征向量在基下的坐标所组成的矩阵 D=T^-1*A*T %将矩阵A对角化,得对角矩阵D 运行结果如下: f = x^3-3*x^2-9*x-5 ans = 5 -1 -1 b1 = sqrt(1/3) sqrt(1/3) sqrt(1/3) b2 = [ sqrt(2/3), 0] [ -sqrt(1/6), -sqrt(1/2)] [ -sqrt(1/6), sqrt(1/2)] T =

[ sqrt(1/3), sqrt(2/3), 0] [ sqrt(1/3), -sqrt(1/6), -sqrt(1/2)] [ sqrt(1/3), -sqrt(1/6), sqrt(1/2)] D = [ 5, 0, 0] [ 0, -1, 0] [ 0, 0, -1] 解2:建立m文件v2.m如下: clc A= [1 2 2;2 1 2; 2 2 1]; d=eig(A) %求全部特征值所组成的向量 [V,D]=eig(A) %求特征值及特征向量所组成的矩阵inv(V)*A*V %A可对角化,且对角矩阵为D 运行结果如下: d = -1 -1 5 V = 247/398 1145/2158 780/1351 279/1870 -1343/1673 780/1351 -1040/1351 1013/3722 780/1351 D = -1 0 0 0 -1 0 0 0 5 ans = -1 * * * -1 * * * 5 例2:求矩阵 110 430 102 A -?? ?? =-?? ?? ?? 的特征值与特征向量,并判别A 是否可以对角化. 解:建立m文件v3.m如下:clc a=[-1 1 0;-4 3 0;1 0 2]; [V,D]=eig(a)

第七章 线性变换练习题参考答案

第七章 线性变换练习题参考答案 一、填空题 1.设123,,εεε是线性空间 V 的一组基,V 的一个线性变换σ在这组基下的矩阵是33112233(),,ij A a x x x V αεεε?==++∈则 σ在基321,,εεε下的矩阵B =1,T AT -而可逆矩阵T =001010100?? ? ? ??? 满足1,B T AT -=σα在基123,,εεε下的坐标为123x A x x ?? ? ? ??? . 2.设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换:(),n A P σσξξξ=∈,则1(0)σ-={}|0,n A P ξξξ=∈,()1dim (0)σ-=n r -,()dim ()n P σ=r . 3.复矩阵()ij n n A a ?=的全体特征值的和等于1n ii i a =∑ ,而全体特征值的积等于 ||A . 4.设σ是n 维线性空间V 的线性变换,且σ在任一基下的矩阵都相同,则σ为__数乘__变换 . 5.数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为2n 维线性空间,它与n n P ?同构. 6.设n 阶矩阵A 的全体特征值为12,,,n λλλ ,()f x 为任一多项式,则()f A 的全体特征值为12(),(),,()n f f f λλλ . 7.设???? ??=2231A ,则向量??? ? ??11是A 的属于特征值 4 的特征向量. 8.若????? ? ?--=100001011A 与1010101k B k ?? ?=-- ? ???相似,则k = -1/2 . 9.设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A 3 .

高等代数第七章 线性变换复习讲义

第七章线性变换 一.线性变换的定义和运算 1.线性变换的定义 (1)定义:设V是数域p上的线性空间,A是V上的一个变换,如果对任意α,β∈V和k∈P都有A(α+β)=A(α)+A(β),A(kα)=kA(α)则称A为V的一个线性变换。(2)恒等变换(单位变换)和零变换的定义:ε(α)=α,ο(α)=0,任意α∈V. 它们都是V的线性变换。 (3)A是线性变换的充要条件:A(kα+lβ)=kA(α)+lA(β),任意α,β∈V,k,l∈P. 2.线性变换的性质 设V是数域P上的线性空间,A是V的线性变换,则有(1)A(0)=0; (2)A(-α)=-A(α),任意α∈V; (3)A(∑kiαi)=ΣkiA(α),α∈V,ki∈P,i=1,…,s;(4)若α1,α2,…,αs∈V,且线性相关,则A(α1),A (α2),…,A(αs)也线性相关,但当α1,α2,…,α s线性无关时,不能推出A(α1),A(α2),…,A(α

s)线性无关。 3.线性变换的运算

4.线性变换与基的关系 (1)设ε1,ε2,…,εn是线性空间v的一组基,如果线性变换A和B在这组基上的作用相同,即Aεi=Bεi,i=1,2,…,n,则有A=B. (2)设ε1,ε2,…,εn是线性空间v的一组基,对于V 中任意一组向量α1,α2,…,αn,存在唯一一个线性变换A 使Aεi=αi,i=1,2,…,n. 二.线性变换的矩阵 1.定义:设ε1,ε2,…,εn是数域P上n维线性空间v的一组基,A是V中的一个线性变换,基向量的像可以被基线性表出 Aε1=a11ε1+a21ε2+…an1εn Aε2=a12ε1+a22ε2+…an2εn …… Aεn= a1nε1+a2nε2+…annεn 用矩阵表示就是A(ε1,ε2,…,εn)=(ε1,ε2,…,εn)A,其中 a 11 a 12 …… a 1n a 21 a 22 …… a 2n A= …… a n1 a n2 …… a nn 称为A在基ε1,ε2,…,εn下的矩阵。 2.线性变换与其矩阵的关系 (1)线性变换的和对应于矩阵的和; (2)线性变换的乘积对应于矩阵的乘积; (3)线性变换的数量乘积对应于矩阵的数量乘积;

第七章线性变换.

第七章线性变换 计划课时:24 学时.(P 307—334) §7.1 线性变换的定义及性质( 2 学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1 (P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意: 1.定理7.1.2 给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2. 两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1 ,2, 3. §7.2 线性变换的运算( 4 学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义 1 (P310) 注意:+ 是V的线性变换. 二. 数乘运算 定义 2 (P311) 显然k 也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义 3 (P311-312)

注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可能是零变换. (2). 线性变换的方幂 四. 可逆线性变换定义 4 ( P313) 线性变换可逆的充要条件例 2 ( P314) 线性变换的多项式的概念( 阅读 内容). 作业:P330 习题七4, 5. §7.3 线性变换的矩阵( 6 学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握与( ) 关于同一个基的坐标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L(V)与M(F)的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L(V)与M(F)的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一.线性变换关于基的矩阵 定义 ( P316) 。 注意:取定n维向量空间V的一个基之后,对于V的每一个线性变换,有唯一确定的n阶矩阵与 它对应. 例 1 ( P316 ) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例 2 ( P317) 例 3 ( P317) 二.与( )关于同一个基的坐标之间的关系. 定理7.3.1 例 4 ( P318 ) 三? L(V)与M(F)的同构 定理7.3.2 (P320) 定理7.3.3 (P320) 注意:1.定理732 ( P320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2. 由于L(V) 同构于M n ( F ) ,所以就把研究一个很复杂的向量空间L(V) 的问题转化成研究一个很直观具体的向量空间M n(F) 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3 不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求 逆变换的方法。 四. 同一个线性变换在不同基下的矩阵之间的关系定理7.3.4 (P321). 作业:P331 习题七6,9,12,17.

第七章线性变换(小结)

第七章 线性变换(小结) 本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换与矩阵的一一对应关系. 线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用. 本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换. 一、线性变换及其运算 1. 基本概念: 线性变换,可逆线性变换与逆变换; 线性变换的值域与核,秩与零度; 线性变换的和与差, 乘积和数量乘法, 幂及多项式. 2. 基本结论 (1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组 (2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换. (3) 线性变换的基本运算规律(略). (4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间. (5) 线性空间V 的线性变换A 的象Im(A )= A V 与核ker A = A -1(0) (a) A 的象Im(A )= A V 与核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基 n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }. ker A = A -1(0)= { α∈V | A α=0}. (c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n . (d)A 是双射?A 是单射? Ker(A )={0}?A 是满射.

第七章 线性变换复习

第七章线性变换 §1 线性变换的定义 一、线性变换的定义 线性空间V到自身的映射称为V 的一个变换. 定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元素β α,和数域P中任意数k,都有 α+)=A (α)+A (β); A (β A(αk)=A k(α). 一般用花体拉丁字母A,B,…表示V的线性变换,A (α)或Aα代表元素α在变换A下的像. §3 线性变换和矩阵 一、线性变换关于基的矩阵 设V是数域P上n维线性空

间.n εεε,,,21 是V 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式n n x x x εεεξ+++= 2211 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一

组基,如果线性变换?与?在这组基上的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个向量.存在唯一的线性变换?使 A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n

1.什么是线性空间什么是线性变换线性变换

1. 什么是线性空间?什么是线性变换?线性变换的秩如果小于空间的维数将会怎样?平方的秩? 2. 描述一下密度矩阵的特征,纯态和混合态的区别(表现在密度矩阵的秩) 3. 什么是U 变换,U 变换对应的矩阵满足什么样的特点。U 矩阵一定是可对角化的吗?对应欧氏空 间的正交变换有什么特点?正交变换对应的矩阵的矩阵元一定是实的吗? 4. 什么是厄米算符,厄米算符的物理意义?对应的矩阵具有什么样的特点?厄米算符的本征值具有 什么样的特征?厄米算符对应的矩阵的矩阵元是实的吗?厄米算符是否可以表示成实矩阵,特点是什么?互相对易的厄米算符具有共同的本征态,具有共同本征态的算符一定是对易的吗?具有共同本征值的呢?厄米算符的和是厄米算符吗?厄米算符的乘积呢?直积呢?不对易的厄米算符一定不可交换吗? 5. exp (A )exp (B )=exp (A+B )?LnA 怎么计算? 6. 简单介绍一下三种picture 的物理意义,态的特征,算符的特征。为什么采用这三种picture ,只有 这三种picture 吗?你觉得相互作用picture 可以用在什么地方?Heisenberg picture 的波函数不随时间演化,本征态呢?与哈密顿量对易算符的本征态呢?本征值怎么样? 7. 传播子的物理意义?路径积分与惠更斯原理有什么联系吗?两个光子能够叠加吗?最小作用原 理和路径积分的联系。 8. 什么是态的纠缠?什么是直积态? 9. 量子力学的五大假设是什么?什么是测量假设?测量假设可以从量子力学的其它假设推导出来 吗?能够从态演化过程推导出来吗?它是一个物理过程吗? 10. EPR 佯谬讲了一些什么内容?说明了什么物理本质? 11. Bell 不等式怎么写?它有什么作用?2),(),(),(),(≤-++=''''b a b a b a b a u u E u u E u u E u u E S 12. 在quantum teleportation 中,对于粒子1的初态10βαψ+=,如果根据粒子1和2的Bell 基测 量结果推知粒子3的量子态为10βαψ-=,10αβψ+=以及10αβψ-=,怎么样才能是粒子3的态恢复到粒子1原来的量子态? 13. 什么是定态? 第二次作业中的2.2题中的(e)小问, 为什么在上一次测量x μ得到0μ+之后隔一个时间间隔t ?再测量x μ,得到0μ+的几率并不完全等于1? 1). 若体系的H 不显含时间t ,在初始时刻(t=0)体系处于某一个能量本征态)()0,(E ψψ=,其中),(),(t r E t r H E E ψψ=,则 ]/exp[)(),( iEt t E -=ψψ

线性变换和矩阵

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个线性变换.基向量的像可以被基线性表出: ?? ? ?? ? ?+++=+++=+++=. , , 22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ??? ??? ? ??=nn n n n n a a a a a a a a a A 212222111211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ?? ?+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

相关主题
文本预览
相关文档 最新文档