当前位置:文档之家› pid参数整定口诀及程序

pid参数整定口诀及程序

pid参数整定口诀及程序
pid参数整定口诀及程序

. 调试步骤没有一种控制算法比调节规律更有效、更方便地了.现在一些时髦点

地调节器基本源自.甚至可以这样说:调节器是其它控制调节算法地妈.为什么应用如此广泛、又长久不衰?因为解决了自动控制理论所要解决地最基本问题,

既系统地稳定性、快速性和准确性.调节地参数,可实现在系统稳定地前提下,

兼顾系统地带载能力和抗扰能力,同时,在调节器中引入积分项,系统增加了

一个零积点,使之成为一阶或一阶以上地系统,这样系统阶跃响应地稳态误差

就为零.由于自动控制系统被控对象地千差万别,地参数也必须随之变化,以满

足系统地性能要求.这就给使用者带来相当地麻烦,特别是对初学者.下面简单介绍一下调试参数地一般步骤:

.负反馈自动控制理论也被称为负反馈控制理论.首先检查系统接线,确定系统

地反馈为负反馈.例如电机调速系统,输入信号为正,要求电机正转时,反馈信

号也为正(算法时,误差输入反馈),同时电机转速越高,反馈信号越大.其余

系统同此方法.

.调试一般原则

.在输出不振荡时,增大比例增益.

.在输出不振荡时,减小积分时间常数.

.在输出不振荡时,增大微分时间常数.

.一般步骤

.确定比例增益确定比例增益时,首先去掉地积分项和微分项,一般是令、

(具体见地参数设定说明),使为纯比例调节.输入设定为系统允许地最大值地,由逐渐加大比例增益,直至系统出现振荡;再反过来,从此时地比例增益逐渐

减小,直至系统振荡消失,记录此时地比例增益,设定地比例增益为当前值地.

比例增益调试完成.

.确定积分时间常数比例增益确定后,设定一个较大地积分时间常数地初值,然后逐渐减小,直至系统出现振荡,之后在反过来,逐渐加大,直至系统振荡消失.记录此时地,设定地积分时间常数为当前值地.积分时间常数调试完成.

.确定积分时间常数积分时间常数一般不用设定,为即可.若要设定,与确定和

地方法相同,取不振荡时地.

.系统空载、带载联调,再对参数进行微调,直至满足要求.

控制简介目前工业自动化水平已成为衡量各行各业现代化水平地一个重要标志.

同时,控制理论地发展也经历了古典控制理论、现代控制理论和智能控制理论

三个阶段.智能控制地典型实例是模糊全自动洗衣机等.自动控制系统可分为开环控制系统和闭环控制系统.一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口.控制器地输出经过输出接口、执行机构,加到被控系统上;

控制系统地被控量,经过传感器,变送器,通过输入接口送到控制器.不同地控

制系统,其传感器、变送器、执行机构是不一样地.比如压力控制系统要采用压

力传感器.电加热控制系统地传感器是温度传感器.目前,控制及其控制器或智能控制器(仪表)已经很多,产品已在工程实际中得到了广泛地应用,有各种各

样地控制器产品,各大公司均开发了具有参数自整定功能地智能调节器( ),其

中控制器参数地自动调整是通过智能化调整或自校正、自适应算法来实现.有利

用控制实现地压力、温度、流量、液位控制器,能实现控制功能地可编程控制

器(),还有可实现控制地系统等等.可编程控制器() 是利用其闭环控制模块来实

现控制,而可编程控制器()可以直接与相连,如地等.还有可以实现控制功能地

控制器,如地产品系列,它可以直接与相连,利用网络来实现其远程控制功能.、开环控制系统开环控制系统( )是指被控对象地输出(被控制量)对控制器()地输出没有影响.在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路.、闭环控制系统闭环控制系统( )地特点是系统被控对象地输出(被控制量)会反

送回来影响控制器地输出,形成一个或多个闭环.闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( ),若极性相同,则称

为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统.闭环控制系

统地例子很多.比如人就是一个具有负反馈地闭环控制系统,眼睛便是传感器,

充当反馈,人体系统能通过不断地修正最后作出各种正确地动作.如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统.另例,当一台真正地全自动洗

衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一

个闭环控制系统.

、阶跃响应阶跃响应是指将一个阶跃输入()加到系统上时,系统地输出.稳态误差是指系统地响应进入稳态后,系统地期望输出与实际输出之差.控制系统地

性能可以用稳、准、快三个字来描述.稳是指系统地稳定性(),一个系统要能正

常工作,首先必须是稳定地,从阶跃响应上看应该是收敛地;准是指控制系统

地准确性、控制精度,通常用稳态误差来( )描述,它表示系统输出稳态值与期

望值之差;快是指控制系统响应地快速性,通常用上升时间来定量描述.

、控制地原理和特点在工程实际中,应用最为广泛地调节器控制规律为比例、

积分、微分控制,简称控制,又称调节.控制器问世至今已有近年历史,它以其

结构简单、稳定性好、工作可靠、调整方便而成为工业控制地主要技术之一.当

被控对象地结构和参数不能完全掌握,或得不到精确地数学模型时,控制理论

地其它技术难以采用时,系统控制器地结构和参数必须依靠经验和现场调试来

确定,这时应用控制技术最为方便.即当我们不完全了解一个系统和被控对象,

或不能通过有效地测量手段来获得系统参数时,最适合用控制技术.控制,实际

中也有和控制.控制器就是根据系统地误差,利用比例、积分、微分计算出控制

量进行控制地.比例()控制比例控制是一种最简单地控制方式.其控制器地输出与输入误差信号成比例关系.当仅有比例控制时系统输出存在稳态误差().积

分()控制在积分控制中,控制器地输出与输入误差信号地积分成正比关系.对

一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有

稳态误差地或简称有差系统().为了消除稳态误差,在控制器中必须引入“积

分项”.积分项对误差取决于时间地积分,随着时间地增加,积分项会增大.这样,即便误差很小,积分项也会随着时间地增加而加大,它推动控制器地输出增大

使稳态误差进一步减小,直到等于零.因此,比例积分()控制器,可以使系统在

进入稳态后无稳态误差.微分()控制在微分控制中,控制器地输出与输入误差

信号地微分(即误差地变化率)成正比关系.自动控制系统在克服误差地调节过

程中可能会出现振荡甚至失稳.其原因是由于存在有较大惯性组件(环节)或有

滞后()组件,具有抑制误差地作用,其变化总是落后于误差地变化.解决地办法

是使抑制误差地作用地变化“超前”,即在误差接近零时,抑制误差地作用就应

该是零.这就是说,在控制器中仅引入“比例”项往往是不够地,比例项地作用仅

是放大误差地幅值,而目前需要增加地是“微分项”,它能预测误差变化地趋势,这样,具有比例微分地控制器,就能够提前使抑制误差地控制作用等于零,甚

至为负值,从而避免了被控量地严重超调.所以对有较大惯性或滞后地被控对象,比例微分()控制器能改善系统在调节过程中地动态特性.

、控制器地参数整定控制器地参数整定是控制系统设计地核心内容.它是根据被

控过程地特性确定控制器地比例系数、积分时间和微分时间地大小.控制器参数

整定地方法很多,概括起来有两大类:一是理论计算整定法.它主要是依据系统

地数学模型,经过理论计算确定控制器参数.这种方法所得到地计算数据未必可

以直接用,还必须通过工程实际进行调整和修改.二是工程整定方法,它主要依

赖工程经验,直接在控制系统地试验中进行,且方法简单、易于掌握,在工程

实际中被广泛采用.控制器参数地工程整定方法,主要有临界比例法、反应曲线

法和衰减法.三种方法各有其特点,其共同点都是通过试验,然后按照工程经验

公式对控制器参数进行整定.但无论采用哪一种方法所得到地控制器参数,都需

要在实际运行中进行最后调整与完善.现在一般采用地是临界比例法.利用该方法进行控制器参数地整定步骤如下:()首先预选择一个足够短地采样周期让系统

工作;()仅加入比例控制环节,直到系统对输入地阶跃响应出现临界振荡,记

下这时地比例放大系数和临界振荡周期;()在一定地控制度下通过公式计算得

到控制器地参数.

控制器参数地工程整定,各种调节系统中参数经验数据以下可参照:温度: 压

力: , 液位: , 流量: .

. 常用口诀:参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏

离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢.微分时间应加长理想曲线两个波,前高后低比

一看二调多分析,调节质量不会低参考资料:

评论()

求助知友

希儿当前分类:级

擅长网站使用:级

按默认排序按时间排序

其他回答共条

当前分类:级排名:

<>

<>

<>

<> {

; 设定目标

; 比例常数

; 积分常数

; 微分常数

; []

; []

;

} ; ; ()

; () ^^ ^ ^ ^ ^ ^;

;

占空比调节参数

;

;

;

;

;

***********************************************************延时子程序,延时时间以晶振为准,延时时间为×

***********************************************************

( )

{

;

(<)

(<){}

}

***********************************************************写一位数据子程序

***********************************************************

( )

{

;

; *拉低以开始一个写时序*

()

{

();

; *如要写,则将总线置高*

}

(); *延时供采样* ; *释放总线*

();

();

;

}

***********************************************************写一字节数据子程序***********************************************************

( )

{

;

;

;

;

(<) *写一字节数据,一次写一位*

{

>>; *移位操作,将本次要写地位移到最低位*

(); *向总线写该位*

}

(); *延时后*

;

;

}

***********************************************************读一位数据子程序***********************************************************

()

{

;

;

; *拉低,开始读时序*

();

();

; *释放总线*

(<){} ;

; ();

}

***********************************************************读一字节数据子程序***********************************************************

()

{

;

;

(<)

{

(()) *读一字节数据,一个时序中读一次,并作移位处理*

<<;

(); *延时以完成此次都时序,之后再读下一数据*

}

;

();

}

***********************************************************复位子程序

***********************************************************

()

{

;

;

; *拉低总线开始复位*

(); *保持低电平*

; *释放总线*

();

; *获取应答信号*

(); *延时以完成整个时序*

;

(); *返回应答信号,有芯片应答返回,无芯片则返回*

}

***********************************************************获取温度子程序

***********************************************************

() {

;

{(); *复位*

}(); *为无反馈信号*; *发送设备定位命令*(); *发送开始转换命令*();

(); *延时*

{(); *复位*

}(); ; *设备定位*(); *读出缓冲区内容*();

(); (); (<<);

( )();

(*);

>>;

; *获取地温度放在中*

}

*

*

( *)

{ ( ( ));

}

*计算部分

*

( *, )

{

;

> ; 偏差

> ; 积分 > >; 当前微分

> >;

> ;

(> * 比例项

> * > 积分项

> * ); 微分项

}

***********************************************************温度比较处理子程序***********************************************************()

{

;

(>)

{

(>)

{;

}

{

(<)

{ () ;

( );

}

(<)( )();

();

}

}

(<)

{

(>)

{;

}

{

(<)

{ () ;

( );

}

(<)( )();

();

}

}

{}

}

*****************************************************中断服务子程序,用于控制电平地翻转 *周期

****************************************************** ()

{

(<())

;

(<)

{

; }

;

;

;

}

*****************************************************串行口中断服务程序,用于上位机通讯

******************************************************

()

{

* ;

; ;

()

{

(){}

;

;

(){}

;

}

()

{

;

;

(){}

;

}

; *

}

( [])

{

;

(<)

{

[]; (<)

{;

([]);

[][]>>;

()

;

;

();

();

}

}

}

*****************************************************显示子程序功能:将占空比温度转化为单个字符,显示占空比和测得到地温度

******************************************************

()

{

[]{};

[];

;

;

;

;

()[];

[];

[][][][];

;

[][][][][][];

();

}

***********************************************************主程序

***********************************************************

()

{

;

;

[]{};;

;

;

;

;

;

;

;

;

;

;

;

;

;

; ( ); ; ; ()

{

()

{

; (<)

(<){}

()

{;

;

}

}

()

{

(<)

(<){}

()

{;

;

}

}

()

{

(<)

(<){}

()

{

; ;

}

;

}();

;

()

;

((())>)

;

;

; ;

(>)

{

();

;

}();

}

;

;

()

{

;

()

{

(<)

(<){}

()

();

;

}

;

}

}b5E2R。

常用的PID整定口诀

常用的PID整定口诀 2008年01月07日星期一 22:34 参数整定找最佳,从小到大顺序查。 先是比例后积分,最后再把微分加。 曲线振荡很频繁,比例度盘要放大。 曲线漂浮绕大弯,比例毒盘往小扳。 曲线偏离回复慢,积分时间往下降。 曲线波动周期长,积分时间再加长。 曲线振荡频率快,先把微分降下来。 动差大来波动慢,微分时间应加长。 理想曲线两个波,前高后低四比一。 一看二调多分析,调节质量不会低。 DCS集散控制系统特点 2008年01月13日星期日 21:42 二。集散控制系统(DCS)是一种以微处理器为基础的分散型综合控制系统,DCS 系统综合了计算机技术、网络通讯技术、自动控制技术、冗余及自诊断技术,采用了多层分级的结构,适用现代化生产的控制与管理需求,目前已成为工业过程控制的主流系统。集散控制系统把计算机、仪表和电控技术融合在一起,结合相应的软件,可以实现数据自动采集、处理、工艺画面显示、参数超限报警、设备故障报警和报表打印等功能,并对主要工艺参数形成了历史趋势记录,随时查看,并设置了安全操作级别,既方便了管理,又使系统运行更加安全可靠。其特点有: 1、基于现场总线思想的I/O总线技术 2、先进的冗余技术、带电插拔技术po 3、完备的I/O信号处理 4、基于客户/服务器应用结构 5、WindowsNT平台,以太网,TCP/IP协议 6、OPC服务器提供互连 7、Web浏览器风格,ActiveX控件支持 8、ODBC,OLE技术,实现信息,资源共享 9、高性能的过程控制单元。 10、支持标准现场总线 11、Internet/Intranet应用支持 三、判断题(对的画√,错的画×) 1.UCN网络上允许定义64个非冗余设备,节点地址为1-64。×

关于PID调节及其口诀

关于PID调节及其口诀 经常看到有关PID调节问题书籍,看来看去看不懂他们再说什么。还有一些技术员一提起PID调节,就摇头,搞不懂呀!那么PID调节的实质是什么?通俗的概念是什么?我们通过图1进行分析。 此主题相关图片如下,点击图片看大图: 一个自动控制系统要能很好地完成任务,首先必须工作稳定,同时还必须满足调节过程的质量指标要求。即:系统的响应快慢、稳定性、最大偏差等。很明显,自动控制系统总希望在稳定工作状态下,具有较高的控制质量,我们希望持续时间短、超调量小、摆动次数少。为了保证系统的精度,就要求系统有很高的放大系数,然而放大系数一高,又会造成系统不稳定,甚至系统产生振荡。反之,只考虑调节过程的稳定性,又无法满足精度要求。因此,调节过程中,系统稳定性与精度之间产生了矛盾。 如何解决这个矛盾,可以根据控制系统设计要求和实际情况,在控制系统中插入“校正网络”,矛盾就可以得到较好解决。这种“校正网络”,有很多方法完成,其中就有PID方法。 简单的讲,PID“校正网络”是由比例积分PI和比例微分PD"元件组"成的。为了说明问题,这里简单介绍一下比例积分PI和比例微分PD。 微分: 从电学原理我们知道,见图2,当脉冲信号通过RC电路时,电容两端电压不能突变,电流超前电压90°,输入电压通过电阻R向电容充电,电流在t1时刻瞬间达到最大值,电阻两端电压Usc此刻也达到最大值。随着电容两端电压不断升高,充电电流逐渐减小,电阻两端电压Usc也逐渐降低,最后为0,形成一个锯齿波电压。这种电路称为微分电路,由于它对阶跃输入信号前沿“反应”激烈,其性质有加速作用。 积分:

我们再来看图3,脉冲信号出现时,通过电阻R向电容充电,电容两端电压不能突变,电流在t1时刻瞬间达到最大值,电阻两端电压此刻也达到最大值。电容两端电压Usc随着时间t不断升高,充电电流逐渐减小,最后为0,电容两端电压Usc也达到最大值,形成一个对数曲线。这种电路称为积分电路,由于它对阶跃输入信号前沿“反应”迟缓,其性质是“阻尼”缓冲作用。 此主题相关图片如下,点击图片看大图: 插入校正网络的情况 现在我们首先讨论自动控制系统引入比例积分PI的情况,见图4。曲线PI(1)对阶跃信号的响应特性曲线,当t=0时,PI的输出电压很小,(由比例系数决定)当t>0时,输出电压按积分特性线性上升,系统放大系数Ue线性增大。这就是说,当系统输入端出现大的误差时,控制输出电压不会立即变得很大,而是随着时间的推移和系统误差不断地减小,PI的输出电压不断增加,既,系统放大系数Ue不断线性增大。我们称这种特性为系统阻尼。决定阻尼系数因素是PI比例系数和积分时间常数。要不断提高控制系统的质量,就要不断改变PI比例系数和积分时间常数。 此主题相关图片如下,点击图片看大图: 我们再讨论控制系统引入比例微分PD的情况,见图4。曲线PD(2)对输入信号的响应特性曲线,当t=0时,PD使系统放大系数Ue骤增。这就是说,当系统输入端出现误差时,控制输出电压会立即变大。我们称这种特性为加速作用。可以看出,过强

速度环等PID调节-西门子ABB

西门子S7-300系列PLC的PID功能块的应用经验 1、可以在软件中进行自动整定; 2、自动整定的PID参数可能对于系统来说不是最好的,就需要手动凭经验来进行整定。P 参数过小,达到动态平衡的时间就会太长;P参数过大,就容易产生超调。 PID功能块在梯形图(程序)中应当注意的问题: 1、最好采用PID向导生成PID功能块; 2、我要说一个最简单的也是最容易被人忽视的问题,那就是:PID功能块的使能控制只能采用SM0.0或任何1个存储器的常开触点并联该存储器的常闭触点这样的永不断开的触点!笔者在以前的一个工程调试中就遇到这样的问题:PID功能块有时间动作正常,有时间动作不正常,而且不正常时发现PID功能块都没问题(PID参数正确、使能正确),就是没有输出。最后查了好久,突然意识到可能是使能的问题——我在使能端串联了启动/停止控制的保持继电器,我把它改为SM0.0以后,一切正常! 同时也明白了PID功能块有时间动作正常,有时间动作不正常的原因:有时在灌入程序后保持继电器处于动作的状态才不会出现问题,一旦停止了设备就会出现问题——PID功能块使能一旦断开,工作就不会正常! 把这个给大家说说,以免出现同样失误。 下面是PID控制器参数整定的一般方法: PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类: 一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。 现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D 的大小。 比例I/微分D=2,具体值可根据仪表定,再调整比例带P,P过头,到达稳定的时间长,P 太短,会震荡,永远也打不到设定要求。 PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照: 温度T:P=20~60%,T=180~600s,D=3-180s; 压力P: P=30~70%,T=24~180s; 液位L: P=20~80%,T=60~300s; 流量L: P=40~100%,T=6~60s。

PID算法的通俗讲解及调节口诀

PID 调节口诀 1. PID 常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,一看二调多分析,调节质量不会低 2.PID 控制器参数的工程整定, 各种调节系统中P.I.D 参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。3.PID 控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID 调节。PID 控制器问世至今已有近70 年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID 控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。比例(P)控制比 例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。 当仅有比例控制时系统输出存在稳态误差(Steady-state error )。积分(I) 控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error )。为了消除稳态误差,在控制器中必须引入"积分项"。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。微分(D)控制在 微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因

PID参数整定 经验(DOC)

PID参数的工程整定方法培训教材 2005年12月20日

目录 第一节基本控制规律及其作用效果 (1) 第二节实用的控制规律 (2) 第三节PID参数的工程整定方法 (3) 第四节复杂调节系统的参数整定 (8) 附录一各厂家DCS系统PID相关数据统计 (8) 附录二相关的名词解释 (9)

第一节基本控制规律及其作用效果 在工业生产过程控制中,常用的基本调节规律大致可分为: 1 位式调节 也就是常说的开/关式调节,它的动作规律是当被控变量偏离给定值时,调节器的输出不是最大就是最小,从而使执行器全开或全关。在实际应用中,常用于机组油箱恒温控制、水塔以及一些储罐的液位控制等。在实施时, 只要选用带上、下限接点的检测仪表、位式调节器或PLC、再配一些继电器、电磁阀、执行器、磁力起动器等即可构成位式控制系统。因此,位式控制的过渡过程必然是一个持续振荡的过程。如图0所示。 图0 位式控制的过渡过程 2 比例调节 它依据“偏差的大小”来动作。它的输出与输入偏差的大小成比例,调节及时,有力,但是有余差。用比例度δ来表示其作用的强弱,用%表示。例如比例度60%,即表示当偏差为量程的60%时,输出变化值为量程的100%。δ越小,调节作用越强,调节作用太强时,会引起振荡。比例调节作用适用于负荷变化小,对象纯滞后不大,时间常数

较大而又允许有余差的控制系统中,常用于塔和储罐的液位控制以及一些要求不高的压力控制中。使用时应注意,当负荷变化幅度较大时,为了平衡负荷变化所需的调节阀开度变化也将较大,待稳定后,被控变量的余差就可能较大。比例控制规律的动态方程为: 其中:y(t)——输出变化量。 e(t)——输入变化量。 Kp ——比例增益。 δ——比例度,它是Kp的倒数。 3 积分调节 它依据“偏差是否存在”来动作。它的输出与偏差对时间的积分成比例,只有当余差完全消失,积分作用才停止。其实质就是消除余差。但积分作用使最大动偏差增大,延长了调节时间。用积分时间Ti 表示其作用的强弱,单位用分(或秒)表示。Ti越小,积分作用越强,积分作用太强时,也会引起振荡。积分控制规律的动态方程为: 其中:TI ——积分时间。 4 微分调节 它依据“偏差变化速度”来动作。它的输出与输入偏差变化的速度成比例,其实质和效果是阻止被调参数的一切变化,有超前调节的作用。对滞后较大的对象有很好的效果。使调节过程动偏差减少,余差也减少(但不能消除)。用微分时间Td表示作用的强弱,单位用分

PID参数整定方法就是确定调节器的比例带PB

PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。一般可以通过理论计算来确定,但误差太大。目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。各种方法的大体过程如下: (1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。显然用经验法整定的参数是准确的。但花时间较多。为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。这样可大大减少现场凑试的次数。②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB过大,曲线漂浮较大,变化不规则,Ti过长,曲线带有振荡分量,接近给定值很缓慢。这样可根据曲线形状来改变PB或Ti。③PB过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti 过短,振荡周期较长;Td太长,振荡周期最短。④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。 (2)衰减曲线法是以4:1衰减作为整定要求的,先切除调节器的积分和微分作用,用凑试法整定纯比例控制作用的比例带PB(比同时凑试二个或三个参数要简单得多),使之符合4:1衰减比例的要求,记下此时的比例带PBs和振荡周期Ts。如果加进积分和微分作用,可按表3-4-2给出经验公式进行计算。若按这种方式整定的参数作适当的调整。对有些控制对象,控制过程进行较快,难以从记录曲线上找出衰减比。这时,只要被控量波动2次就能达到稳定状态,可近似认为是4:1的衰减过程,其波动一次时间为Ts。 (3)临界比例带法,用临界比例带法整定调节器参数时,先要切除积分和微分作用,让控制系统以较大的比例带,在纯比例控制作用下运行,然后逐渐减小PB,每减小一次都要认真观察过程曲线,直到达到等幅振荡时,记下此时的比例带PBk(称为临界比例带)和波动周期Tk,然后按表3-4-3给出的经验公式求出调节器的参数值。按该表算出参数值后,要把比例带放在比计算值稍大一点的值上,把Ti和Td放在计算值上,进行现场观察,如果比例带可以减小,再将PB 放在计算值上。这种方法简单,应用比较广泛。但对PBk很小的控制系统不适用。 (4)反应曲线法,前三种整定调节器参数的方法,都是在预先不知道控制对象特性的情况下进行的。如果知道控制对象的特性参数,即时间常数T、时间

PID-采样周期及参数整定方法

数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。 在选择数字PID参数之前,首先应该确定控制器结构。对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。一般来说,PI、PID和P控制器应用较多。对于有滞后的对象,往往都加入微分控制。 控制器结构确定后,即可开始选择参数。参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。这些要求,对控制系统自身性能来说,有些是矛盾的。我们必须满足主要的方面的要求,兼顾其他方面,适当地折衷处理。 PID控制器的参数整定,可以不依赖于受控对象的数学模型。工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。 采样周期的选择 采样周期: 采样一数据控制系统中,设采样周期为T S,采样速率为1/T S,采样角频率为 采样周期T S是设计者要精心选择的重要参数,系统的性能与采样周期的选择有密切关系。需要考虑的因素: 采样周期的选择受多方面因素的影响,主要考虑的因素分析如下。 (1)香农(Shannon)采样定理 (Wmax--被采样信号的上限角频率) 给出了采样周期的上限。满足这一定理,采样信号方可恢复或近似地恢复为原模拟信号,而不丢失主要信息。在这个限制范围内,采样周期越小,采样-数据控制系统的性能越接近于连续-时间控制系统。 (2)闭环系统对给定信号的跟踪,要求采样周期要小。 (3)从抑制扰动的要求来说,采样周期应该选择得小些。

PID参数调节设定常用口诀

PID参数调节设定常用口诀 来源:作者:时间:2008-07-27 标签:PID参数调节设定口诀 PID控制简介:PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID 控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。 1、闭环控制系统 闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈( Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。 2、开环控制系统 开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 3、阶跃响应

控制回路PID参数整定方法精

Honeywell DCS 控制回路PID参数整定方法 鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。 一、修改PID参数必须有“SUPPERVISOR”及以上权限权限,用键盘钥匙可以切换权限,钥匙已送交一联合主任陈胜手中; 二、打开要修改的控制回路细目画面,翻到下图所示的页面,修改PID控制回路整定的三个参数K,T1,T2; 三、PID参数代表的含义 K:比例增益(放大倍数),范围为0.0~240.0; T1:积分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有积分作用; T2:微分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有微分作用。 四、PID参数的作用 (1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K倍输出; 2、系统存在余差。 K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完

全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。 (2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。 (3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。 五、如果要知道控制回路的作用方式,可以进入控制回路的细目画面,进入下图所示页面: 其中“CTLACTN”代表控制器作用方式,“REVERSE”表示反作用,“DIRECT”代表正作用。 六、控制器的选择方法 (1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定范围内变化的系统; (2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;

如何进行PID参数整定

如何进行PID参数整定 如何进行PID参数整定在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为产业控制的主要技术之一。当被控对象的结构和参数不能完全把握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的丈量手段来获得系统参数时,最适适用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输进误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制 在积分控制中,控制器的输出与输进误差信号的积分成正比关系。对一个自动控制系统,假如在进进稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统

(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引进“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到即是零。因此,比例+积分(PI)控制器,可以使系统在进进稳态后无稳态误差。 微分(D)控制 在微分控制中,控制器的输出与输进误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引进“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能猜测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用即是零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。 在PID参数进行整定时假如能够有理论的方法确定PID 参数当然是最理想的方法,但是在实际的应用中,更多的是

PID参数的工程整定方法

PID参数的工程整定方法 班级: 姓名:侯泉宇 学号:52 PI D 调节器从问世至今已历经了半个多世纪, 在这几十年中, 人们为它的发展和推广作出了巨大的努力, 使之成为工业过程控制中主要的和可靠的技术工具。即使在微处理技术迅速发展的今天, 过程控制中大部分控制规律都未能离开 PI D, 这充分说明 P I D 控制仍具有很强的生命力。PI D 控制中一个至关重要的问题, 就是控制器三参数( 比例系数、积分时间、微分时间) 的整定。整定的好坏不但会影响到控制质量, 而且还会影响到控制器的鲁棒性。此外, 现代工业控制系统中存在着名目繁多的不确定性, 这些不确定性能造成模型参数变化甚至模型结构突变, 使得原整定参数无法保证系统继续良好的工作, 这时就要求 PI D 控制器具有在线修正参数的功能, 这是自从使用 PI D 控制以来人们始终关注的重要问题之一。本文在介绍 PI D 参数自整定概念的基础上, 对 P I D 参数自整定方法的发展作一综述。 PID 参数自整定概念PI D 参数自整定概念中应包括参数自动整定(auto tuning) 和参数在线自校正( self tuning onli ne) 。具有自动整定功能的控制器, 能通过一按键就由控制器自身来完成控制参数的整定, 不需要人工干预,它既可用于简单系统投运, 也可用于复杂系统预整定。运用自动整定的方法与人工整定法相比, 无论是在时间节省方面还是在整定精度上都得以大幅度提高, 这同时也就增进了经济效益。目前, 自动整定技术在国外已被许多控制产品所采用, 如 Lee d s &N or th r o p 的 El ec t r o ma x V、 Sa tt Con tr ol r 的 ECA40 等等, 对其研究的文章则更多。 自校正控制则为解决控制器参数的在线实时校正提供了很有吸引力的技术方案。自校正的基本观点是力争在系统全部运行期间保持优良的控制性能, 使控制器能够根据运行环境的变化, 适时地改变其自身的参数整定值, 以求达到预期的正常闭环运行, 并有效地提高系统的鲁棒性。 早在 20 世纪 7 0 年代, As tr o m 等人首先提出了自校正调节器, 以周期性地辨识过程模型参数为基础, 并和以最小方差为控制性能指标的控制律结合起来, 在每一采样周期内根据被控过程特性的变化, 自动计算出一组新的控制器参数。20 世纪 80 年代, Fo x bo r o 公司发表了它的 EX AC T 自校正控制器, 使用模式识别技术了解被控过程特性的变化, 然后使用专家系统方法去确定适当的控制器参数。这是一种基于启发式规则推理的自校正技术。20 世纪 90 年代, 神经网络的概念开始应用于自校正领域。具有自动整定功能和具有在线自校正功能的控制器被统称为自整定控制器。一般而言, 如果过程的动态特性是固定的, 则可以选用固定参数的控制器, 控制器参数的整定由自动整定完成。对动态特性时变的过程, 控制器的参数应具有在线自校正的能力, 以补偿过程时变。 2 P ID 参数自整定方法 要实现 PI D 参数的自整定, 首先要对被控制的对象有一个了解, 然后选择相应的参数计算方法完成控制器参数的设计。据此, 可将 PI D 参数自整定分成两大类: 辨识法和规则法。基于辨识法的 PI D 参数自整定,被控对象的特性通过对被控对象数学模型的分析来得到, 在对象数学模型的基础上用基于模型的一类整定法计算 PI D 参数。基于规则的 PI D 参数自整定, 则是运用系统临界点信息或系统响应曲线上的一些特征值来表征对象特性, 控制器参数由基于规则的整定法得到。 2. 1 辨识法 这类方法的本质是自适应控制理论与系统辨识的结合。为解决被控对象模型获取问题,

S7 200的PID参数整定方法

PID控制器参数整定的一般方法: PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类: 一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改; 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。 现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P、I、D的大小。 书上的常用口诀: 参数整定找最佳,从小到大顺序查; 先是比例后积分,最后再把微分加; 曲线振荡很频繁,比例度盘要放大; 曲线漂浮绕大湾,比例度盘往小扳; 曲线偏离回复慢,积分时间往下降; 曲线波动周期长,积分时间再加长; 曲线振荡频率快,先把微分降下来; 动差大来波动慢。微分时间应加长; 理想曲线两个波,前高后低4比1; 一看二调多分析,调节质量不会低。 个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是消除静态误差的,一般D设置都比较小,而且对系统影响比较小。 PID控制原理: 1、比例(P)控制:比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。 2、积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以

PID控制参数整定方法

●专家论谈  PID控制参数整定方法 清华大学热能系(100084) 刘 镇 姜学智 李东海 过程工业控制中多采用PID控制算法,PID控制器只有在参数得到良好整定的前提下才能达到令人满意的控制效果。P ID控制器参数整定,是指在控制器的形式已经确定(PI、PID调节规律)的情况下,通过调整控制器参数,达到要求的控制目标。几十年来人们致力于研究P ID控制器参数的整定方法,提出了各种各样的方法。按应用条件分为在线整定算法、离线整定算法;按计算方式分为一次算法、反复迭代算法;本文将整定方法分为基于被控对象特性的整定方法和不依赖于对象动态特性的整定方法两大类。 1 基于被控对象特性的整定方法 控制参数整定的目标是使得由控制对象、控制器等组成的控制回路的动态特性满足性能指标要求,因此,若能得到被控对象的动态特性,就可通过各种手段来整定控制器参数。被控对象的特性可用不同的模型表征,常用的是对象的参数模型(如微分方程、传递函数)、非参数模型(如阶跃响应曲线)、输出响应特征值。 1.1 基于对象参数模型的整定方法 基于被控对象参数模型的整定方法是利用辨识算法得出对象的数学模型,在此基础上用整定算法对控制器参数进行整定。对象参数模型辨识方法(亦称现代的辨识方法)是在假定一种模型结构的基础上,通过极小化模型与过程之间的误差准则函数来确定模型的参数,比较常用的方法有最小二乘法、梯度校正法、极大似然法。若模型结构无法事先确定,则必须利用结构辨识方法先确定模型的结构参数(如阶次、纯迟延等)。在辨识得到对象的参数模型后,可用的参数整定方法有:极点配置整定法、相消原理法、内模控制法(IM C)、增益、相角裕量法(G PM)、基于二次型性能指标(I T A E/ IT E/ISE)的参数优化方法。这类方法对特性分明的被控对象的控制参数整定是十分有效的,但这种方法比较复杂,要得到精确的数学模型,需要较复杂的试验手段和数学手段,并且这种方法对被控过程模型有较强的限制,因而对不能或难以用精确数学模型描述的复杂过程难以奏效。 若采用对象参数离线辨识,则整定为一离线的计算过程;若采用在线辨识,则整定为一在线的迭代优化过程。1.2 基于对象非参数模型的整定方法 非参数模型辨识方法(亦称经典辨识方法)获得的模型是对象的非参数模型,即对象的阶跃响应、脉冲响应、频率响应等,其表现形式是以时间或频率为自变量的实验曲线。这种方法在假定过程是线性的前提下,不必事先确定模型的具体结构,因而可适用于任意复杂的过程。其所得的非参数模型经适当的数学处理,可转变为参数模型——传递函数形式,而后应用适当的整定方法或计算公式可得控制器参数。 目前工程上常用测取过程对象的阶跃响应,然后由阶跃响应曲线确定过程的近似传递函数。当阶跃响应曲线比较规则时,近似法、半对数法、切线法和两点法都能比较有效地导出近似传递函数。当对象的阶跃响应曲线呈现不规则形状时,上述方法就不能获得满意的效果,这时可采用面积法来获取所需数据。面积法计算量较大,且必须正确选择传递函数阶次。阶跃响应法的局限性在于对含有积分作用的对象来说,开环阶跃响应会无限增大。对象的非参数模型辨识方法除了阶跃响应法以外,还有脉冲响应法、频率响应法、相关分析法和谱分析法等。在取得了对象的近似模型后,可应用很多整定方法和公式进行控制器参数整定,其中最著名的是Z—N整定公式[1]及Coh en—Co on整定公式[2]。 基于对象非参数模型的整定方法只可用于离线整定。 1.3 基于对象输出响应特征值的控制参数整定方法 对于整定来说,传统对象模型中含有的冗余信息量往往很大,这些冗余信息并不影响控制器的参数整定,且控制器参数往往具有不确定性和不唯一性,一个经合理整定的控制器应能容忍对象模型的某些摄动而保持系统稳定。由此可见,可以压缩对象模型的信息量,而抽取其主要特征进行参数整定。目前,基于对象输出响应特征值来进行PID参数整定的方法较多,比较常用的是基于开环对象N yquist曲线上的一个特征点的知识来进行控制器参数整定。比较著名的有闭环Z—N方法、继电整定法等。 闭环Z—N方法(也称临界比例度法、稳定边界法)是Zieg ler和N ichlos在1942年提出的,方法是将

PID控制最通俗的解释与PID参数的整定方法要点

PID控制最通俗的解释与PID参数的整定方法 [ 2010/6/18 15:15:45 | Author: 廖老师 ] PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。阅读本文不需要高深的数学知识。 1.比例控制 有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。 下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。 操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。 闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。 比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。 增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。 单纯的比例控制很难保证调节得恰到好处,完全消除误差。 2.积分控制 PID控制器中的积分对应于图1中误差曲线与坐标轴包围的面积(图中的灰色部分)。PID控制程序是周期性执行的,执行的周期称为采样周期。计算机的程序用图1中各矩形面积之和来近似精确的积分,图中的TS就是采样周期。

PID算法的通俗讲解及调节口诀

PID调节口诀 1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分, 最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度 盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理 想曲线两个波,前高后低4比1,一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可 参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 3.PID控制 的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称 PID调节。PID控制器问世至今已有近 70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制 的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学 模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经 验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一 个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用 PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统 的误差,利用比例、积分、微分计算出控制量进行控制的。比例(P)控制比 例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一 个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态 误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入"积分项"。积分项对误差取决于时间的积分,随着时间 的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例 +积分(PI)控制器,可以使系统在进入稳态后无稳态误差。微分(D)控制在 微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因

PID参数整定方法

2·2 用试凑法确定PID 控制器参数 试凑法就是根据控制器各参数对系统性能的影响程度,边观察系统的运行,边修改参数,直到满意为止。 一般情况下,增大比例系数KP 会加快系统的响应速度,有利于减少静差。但过大的比例系数会使系统有较大的超调,并产生振荡使稳定性变差。减小积分系数KI 将减少积分作用,有利于减少超调使系统稳定,但系统消除静差的速度慢。增加微分系数KD 有利于加快系统的响应,是超调减少,稳定性增加,但对干扰的抑制能力会减弱。在试凑时,一般可根据以上参数对控制过程的影响趋势,对参数实行先比例、后积分、再微分的步骤进行整定。 2·2·1 比例部分整定。 首先将积分系数KI 和微分系数KD 取零,即取消微分和积分作用,采用纯比例控制。将比例系数KP 由小到大变化,观察系统的响应,直至速度快,且有一定范围的超调为止。如果系统静差在规定范围之内,且响应曲线已满足设计要求,那么只需用纯比例调节器即可。 2·2·2 积分部分整定。 如果比例控制系统的静差达不到设计要求,这时可以加入积分作用。在整定时将积分系数KI 由小逐渐增加,积分作用就逐渐增强,观察输出会发现,系统的静差会逐渐减少直至消除。反复试验几次,直到消除静差的速度满意为止。注意这时的超调量会比原来加大,应适当的降低一点比例系数KP 。 2·2·3 微分部分整定。 若使用比例积分(PI)控制器经反复调整仍达不到设计要求,或不稳定,这时应加入微分作用,整定时先将微分系数KD 从零逐渐增加,观察超调量和稳定性,同时相应地微调比例系数KP 、积分系数KI,逐步使凑,直到满意为止 2·3 扩充临界比例度法 这种方法适用于有自平衡的被控对象,是模拟系统中临界比例度法的扩充。其整定步骤如下: (1)选择一个足够短的采样周期T 。所谓足够短,就是采样周期小于对象的纯之后时间的1 /10。 (2)让系统作纯比例控制,并逐渐缩小比例度 ( =1/KP)是系统产生临界振荡。此时的比例度和振荡周期就是临界比例度 K 和临界振荡周期TK 。 (3)选定控制度。所谓控制度,就是以模拟调节器为基准,将系统的控制效果与模拟调节器的控制效果相比较,其比值即控制度。 对于电机快速跟随调节,一般采用PD 控制算法,积分项的加入会导致系统的滞后,使得电机无法做到快速跟随运动。此外电机为一阶惯性环节为 111+s T k 。小车的传递函数为s e s T s T K s T k s T k s G s G s G τ-++=++==)1)(1(1*1)()()(212211 21 T1和T2 为小车两电机的时间常数。

相关主题
文本预览
相关文档 最新文档