当前位置:文档之家› 考虑平台转动的等效水深截断系泊系统优化设计_潘沈浩

考虑平台转动的等效水深截断系泊系统优化设计_潘沈浩

考虑平台转动的等效水深截断系泊系统优化设计_潘沈浩
考虑平台转动的等效水深截断系泊系统优化设计_潘沈浩

海洋平台的安全性与规范设计【开题报告】

开题报告 船舶与海洋工程 海洋平台的安全性与规范设计 一、综述本课题国内外研究动态,说明选题的依据和意义: 最近几年,我国海上石油开采已从近海浅水走向深海.未来5 年~10 年内,我国海洋石油的开采水深有望达到500 米-2000 米.由于导管架平台和重力式平台自重和工程造价随水深大幅度增加,已经不能适应深水海域油气开发的要求.因此,研究、发展深海采油平台的有关技术势在必行. 而深海石油平台的设计,建造及相关技术是深海油气资源开发中的关键技术之一,及早了解和和掌握国外深海平台的建造和使用情况,探讨国外深海平台设计和使用中积累的经验和存在的问题,对我国海洋油气开发具有重要意义。 对深水开采,钢质导管架平台的造价会随水深增加而急剧增长,以致增加到在经济上不可行。这就促使我们在深海开发中使用新的结构形式,如混凝土结构和浮式结构。典型的浮式结构是FPSO,半潜式平台,张力腿平台(TLP)和SPAR平台。 海洋平台结构复杂,体积庞大,造价昂贵,特别是与陆地结构相比,它所处的海洋环境十分复杂和恶劣,风、海浪、海流、海冰和潮汐时时作用于结构,同时还受到地震作用的威胁。在此环境条件下,环境腐蚀、海生物附着、地基土冲刷和基础动力软化、材料老化、构件缺陷和机械损伤以及疲劳和损伤累积等不利因素都将导致平台结构构件和整体抗力的衰减,影响结构的服役安全度和耐久性。另外,操作不当、管理不当等人为因素也直接影响海洋石油平台的安全性。随着对海洋平台复杂性的深入了解,造成了重大的经济损失和不良的社会影响。例如,1965年英国北海的“海上钻石”号钻井平台支柱拉杆脆性断裂导致平台沉没;1968年“罗兰角”号钻井平台事故;1969年我国渤海2号平台被海冰推倒,造成直接经济损失2000多万元;1997年渤海4号烽火平台倒毁;1980年北海Ekofisk油田的Alexander L Kielland 号五腿钻井平台发生倾覆,导致122人死亡;以及2001年巴西油田的P-36平台发生倾覆。 1982年7月交通部烟台海难救助打捞局,经过一年多的努力,将“渤海2号”沉船分割成10大块打捞上岸。主甲板上共有10个通风筒,其中,泵舱的四个通风筒—两个进风风筒和两个排风风筒,全部被风浪打掉。事故分析报告给出三个主要原因,原因

海洋平台结构设计与模型制作计算书

海洋平台结构设计与模型制作 理论方案 浙江大学结构设计竞赛组委会 二○一二年

第一部分:方案设计摘要 根据学长“简单、粗犷”的原理,在实践中抛 弃了很多复杂、沉重的构件,最终展现在我们面前 的是一个四棱台与四棱柱结合的简单作品。 自下而上的构件分别为: 底部为深入沙中的底柱,长为10cm。通过一次 实验,为利于柱子插入细沙中而将柱子削尖。 联结底柱的是四棱台,高42cm、底边长45cm、 顶边长28cm。为抵抗风荷载的力矩而增大重力的力 臂,在保证质量较轻的条件下增大底部长度。初时 对竖向荷载过分估计以致四周承重柱以及斜撑杆过 重,但稳重的底部在加载过程汇中也有可取之处。 之所以将高度定为28cm,是因为伊始准备在四棱台 中间安置塑料片筒体。但在实际操作中我们放弃了 这个设想。 联结四棱台的是被斜杆分成三部分的四棱柱。 借鉴了别人的轻质理念,一改底座的笨重,上部桁 架的布置简明,但纤细的杆件也使整体遭受了风荷 载的极大挑战。在实验加载中发现荷载箱稍小,因 此改进顶部边长、露出四个小柱。本欲在与水面相 切处设置420*420的塑料片则可以利用水的吸附 力,可惜塑料片质量稍重、效果也不太明显。改进 后,四棱台留在空中的部分受风荷载较大,布置了 较密的桁架。 在构件联结处,我们尽力增大构件的接触面积,同时也做了些小木段与木片作为加固。 总结来看,在最初的设计思考中我们还是有一些新的想法,比如筒体,比如利用水的吸附力,但在实践制作过程中我们缺乏对可操作性的理性认识;同时我们过分估计竖向荷载以致质量过重,轻视水平风荷载而在试验中多次面临剧烈的扭转。最终我们的结构形式归于简单,但过程并不平淡。在否定与自我否定中,我们已有收获。

海洋平台介绍

国际浮式生产储油卸油船(FPSO)发展态势: FPSO(Floating Production Storage and Offloading)浮式生产储油卸油船,它兼有生产、储油和卸油功能,油气生产装置系统复杂程度和价格远远高出同吨位油船,FPSO装置作为海洋油气开发系统的组成部分,一般与水下采油装置和穿梭油船组成一套完整的生产系统,是目前海洋工程船舶中的高技术产品。 韩国船企对FPSO建造具有较强规模效应。如现代重工专门建有FPSO海洋项目生产厂,已交付了6艘大型FPSO;三星重工手中持有5艘大型FPSO订单;大宇造船海洋工程公司则是全球造船企业中建造海上油气勘探船最多的企业,2005年承接海洋项目设备订单计划指标是17亿美元。据海事研究机构(DW)预计,未来5年内FPSO新增需求将会达到84座,投资额约为210亿美元。 FPSO主要技术结构表: FPSO主要技术结构 FPSO主要结构功能 系泊系统:主要将FPSO系泊于作业油田。FPSO在海域作业时系泊系统多采用一个或多个锚点、一 根或多根立管、一个浮式或固定式浮筒、一座转塔或骨架。FPSO系泊方式有永久系泊和 可解脱式系泊两种; 船体部分:既可以按特定要求新建,也可以用油轮或驳船改装; 生产设备:主要是采油和储油设备,以及油、气、水分离设备等; 卸载系统:包括卷缆绞车、软管卷车等,用于连接和固定穿梭油轮,并将FPSO储存的原油卸入穿梭 油轮。其作业原理是通过海底输油管线把从海底开采出的原油传输到FPSO的船上进行处 理,然后将处理后的原油储存在货油舱内,最后通过卸载系统输往穿梭油轮。 配套系统:在FPSO系统配置上,外输系统是其关键的配套系统。 FPSO主要优点随着海洋油气开发、生产向深海不断进入,FPSO与其它海洋钻井平台相比,优势明显,主要表现在以下四个方面: (1)生产系统投产快,投资低,若采用油船改装成FPSO,优势更为显著。而且目前很容易找到船龄不高,工况适宜的大型油船。 (2)甲板面积宽阔,承重能力与抗风浪环境能力强,便于生产设备布置;

系统性能优化方案

系统性能优化方案 (第一章) 系统在用户使用一段时间后(1年以上),均存在系统性能(操作、查询、分析)逐渐下降趋势,有些用户的系统性能下降的速度非常快。同时随着目前我们对数据库分库技术的不断探讨,在实际用户的生产环境,现有系统在性能上的不断下降已经非常严重的影响了实际的用户使用,对我公司在行业用户内也带来了不利的影响。 通过对现有系统的跟踪分析与调整,我们对现有系统的性能主要总结了以下几个瓶颈: 1、数据库连接方式问题 古典C/S连接方式对数据库连接资源的争夺对DBServer带来了极大的压力。现代B/S连接方式虽然不同程度上缓解了连接资源的压力,但是由于没有进行数据库连接池的管理,在某种程度上,随着应用服务器的不断扩大和用户数量增加,连接的数量也会不断上升而无截止。 此问题在所有系统中存在。 2、系统应用方式(架构)问题(应用程序设计的优化) 在业务系统中,随着业务流程的不断增加,业务控制不断深入,分析统计、决策支持的需求不断提高,我们现有的业务流程处理没有针对现有的应用特点进行合理的应用结构设计,例如在‘订单、提油单’、‘单据、日报、帐务的处理’关系上,单纯的数据关系已经难以承载多元的业务应用需求。 3、数据库设计问题(指定类型SQL语句的优化)

目前在系统开发过程中,数据库设计由开发人员承担,由于缺乏专业的数据库设计角色、单个功能在整个系统中的定位模糊等原因,未对系统的数据库进行整体的分析与性能设计,仅仅实现了简单的数据存储与展示,随着用户数据量的不断增加,系统性能逐渐下降。 4、数据库管理与研究问题(数据存储、物理存储和逻辑存储的优化) 随着系统的不断增大,数据库管理员(DBA)的角色未建立,整个系统的数据库开发存在非常大的随意性,而且在数据库自身技术的研究、硬件配置的研究等方面未开展,导致系统硬件、系统软件两方面在数据库管理维护、研究上无充分认可、成熟的技术支持。 5、网络通信因素的问题 随着VPN应用技术的不断推广,在远程数据库应用技术上,我们在实际设计、开发上未充分的考虑网络因素,在数据传输量上的不断加大,传统的开发技术和设计方法已经无法承载新的业务应用需求。 针对以上问题,我们进行了以下几个方面的尝试: 1、修改应用技术模式 2、建立历史数据库 3、利用数据库索引技术 4、利用数据库分区技术 通过尝试效果明显,仅供参考!

巨型海洋平台的设计及优化设计

1前言 随着中国经济的发展 ,特别是作为支柱产业的石油化工和汽车工业的快速发展 ,石油和天然气供应不足的矛盾日益突出。石油天然气资源是发展石油工业的前提条件和基础 ,探明储量是制定石油工业长期发展规划和建设项目的依据 ,剩余可采储量的多少决定了石油工业发展潜力所在。目前我国陆上石油后备资源严重不足 ,原油产量增长缓慢。由于长期的强化开采 ,大多数主力油田在基本稳定基础上陆续进入产量递减阶段 ,开采条件恶化 ,开发难度增大。鉴于陆上资源的日渐枯竭 ,资源开发向海洋、尤其是深海进军已成必然趋势。因此,如何控制海上石油平台的震动,保护平台的安全可靠成为一个亟待解决的问题。 1.1海洋平台简介 在陆地上钻井时,钻机等都安装在地面上的底座上;在海上钻井时,不可能将钻井设备安放在海里,因此就需要一个安放钻井设备等的场所,这个场所就是海洋钻井平台。海上钻井平台分类[2]如下: 按运移性分为:固定式钻井平台,移动式钻井平台。移动式钻井平台又分为坐底式钻井平台、自升式钻井平台、半潜式钻井平台、浮式钻井平台。 按钻井方式分为:浮动式钻井平台和稳定式钻井平台。浮动式钻井平台分又为,半潜式钻井平台、浮式钻井船和张力腿式平台;稳定式钻井平台又分为,固定式钻井平台、自升式钻井平台和坐底式钻井平台。 固定式海洋平台是从海底架起的一个高出水面的构筑物,上面铺设甲板作为平台,用以放置钻井机械设备,提供钻井作业场所及工作人员生活场所。 海洋平台的安装包括:导管架的安装和工作平台的安装。其中导管架的安装方法有:提升法、滑入法和浮运法。工作平台的安装方法有:吊装和浮装。 海洋平台的组成部分有:导管架和桩基、栈桥、上部模块、生活楼直升机甲板和火炬臂。

高二通用技术系统的优化教案

3.2.2 系统的优化 一、教材内容分析 1.教材的地位和作用 系统优化是系统分析的深入,也是系统的结构和系统分析的综合,又是系统设计的基础,更是系统设计过程中的重要环节,它是是本书的重要内容之一。 二、学情分析 进入系统的内容,学生的兴趣明显比前期活跃,显然系统分析的深入符合高二学生的智力发展需求。但是,学生在对某个系统的分析容易陷入原有的逻辑思维,而不能很好地应用系统的思想和方法分析和解决问题,不能很好理解系统优化的约束条件和影响系统优化的因素,并能运用系统的方法分析问题,能对当前的系统提出优化的方案。 三、教学目标 知识与技能: 1.理解系统优化的意义 2.能分析影响系统优化的因素 3.初步掌握系统最优化的方法 4.能够对一个简单系统运用最优化的方法进行分析 过程与方法: 1.模仿非常6+1节目,采用小组竞赛的方法,课前制作了计分牌,用来累分。 2.通过讨论、案例分析,完成学生知识的自主构建。 情感态度与价值观: 1.体验系统优化的意义,指导学生把系统优化的思想延伸到整个生活和学习当中。 2.培养学生解决问题的方法,以用合作精神 3.培养节约能源的意识 教学重点与难点: 重点:系统最优化方法和一般性步骤 难点:系统优化的过程分析 能结合生产生活中的实例,理解系统优化的意义,并能结合实例分析影响系统优化的因素。 四、教学资源准备 多媒体课件 教学课时:1课时 本节教材中分三个部分: 第一部分:案例分析 通过“小闹钟”案例、“鸟巢”和刘翔训练方案的优化调整案例,目的是让学生感受系统优化的意义。从实例分析入手,在分析过程中体验系统优化的意义。 第二部分:第一个案例“风力发电”采用定性的分析方法,根据案例分析总结阐述系统优化方法和一般性步骤。第二案例“利润问题”采用定性的分析方法,第三案例“货物派送”采用定性和定量相结合的方法,要求学生运用系统的思想和定性、定量相结合的方法,确定研究课题、进行分析研究、评价比较、优化方案。总结归纳出系统最优化方法的含义。 第三部分:提供学生一个探究任务,优化一所小学门前的交通问题,让学生亲自完成一个系统优化的过程,用系统分析的方法分析问题进一步得到实践和提高。 五、教学流程 (一)情景创设引入新知 师:作为一个系统,通常会有这样或那样的问题,比如随着私家车的数量迅速增多,

海洋平台结构课程设计

中国海洋大学本科生课程大纲 一、课程介绍 1.课程描述: 海洋平台结构课程设计是针对船舶与海洋工程专业本科生开设的工作技术教育层面必修课。本课程通过实践环节,完成具体典型导管架平台的总体设计思路训练,包括海洋环境计算及工程简化、桩基础承载能力计算、导管架结构整体强度及刚度分析,设计计算书撰写和工程图纸表达。通过本课程的实践,使学生能够综合运用海洋平台结构及相关专业课程学习的基础理论和方法,系统完成结构分析计算,提高设计分析和工程表达能力。 2.设计思路: 本课程以海洋平台结构设计的基本过程为主线,结合先修课程中学到的环境荷载计算、桩基承载力验算、结构整体强度分析、CAD制图等基础知识,使学生将掌握的海洋平台结构设计理论知识应用到实际设计和验算中,通过实际设计检验学生对于基础知识的把握,加深学生对理论知识的理解。课程内容包括三个模块:目标平台调研、相关数据计算与分析、计算书编写及工程表达。 - 1 -

(1)目标平台调研: 该模块需要学生熟悉海洋平台设计的一般步骤,对目标平台进行参数和各项性能指标的调研,确定课程设计的各项数据标准。 (2)相关数据计算与分析: 根据已确定的主尺度,对结构在选定工况下的其他参数进行计算,主要分为:海洋环境荷载计算、基础承载力计算、结构整体强度分析。其中,海洋环境荷载计算为在选定海域环境条件下,对风、波浪、海流、冰荷载的计算,并且针对选定工况进行分析;基础承载力计算要求学生掌握桩基轴向承载力验算方法;结构整体强度分析主要包括设计目标平台在外荷载作用下的应力校核及位移校核方法。 (3)计算书编写及工程表达: 本模块中,学生需要学习并完成计算书的编写,掌握目标平台设计资料编写,并且通过专业分析软件完成平台的响应输出分析。最终上交课程设计纸质报告。 3. 课程与其他课程的关系 先修课程:海洋平台结构、钢结构设计基本原理。本门设计课程与先修课程密切相关,只有掌握了先修课程中的理论知识和设计方法,才能够在海洋平台结构设计中加以综合应用,设计出符合规范标准的结构。 二、课程目标 本课程的目标是培养学生从事海洋工程结构设计的基本技能,使学生对海洋工程设计中的标准和规范加以熟悉,对海洋平台结构以及其他先修课程中的理论知识进行综合运用。到课程结束时,学生应能: (1)熟练应用海洋平台结构设计中的相关规范和标准; (2)完成具体目标海洋平台的总体设计以及输出响应特点分析及校核; - 1 -

半潜式平台的水动力及系泊系统性能研究

半潜式平台的水动力及系泊系统性能研究 海洋能源、矿产等资源的大力勘探和开采促使了海洋工程领域的蓬勃发展,而半潜式平台以其抗风浪能力强、适应水深范围广、装载量大等优点,成为了海洋资源勘探开发的主流工具之一。因此,对半潜式海洋平台进行水动力性能分析,计算平台在风浪流联合作用时的运动响应和系泊系统的张力响应,是尤为重要的。 本文以南海300米水深的某半潜式平台为对象进行水动力分析和系泊系统 性能研究,在此基础上探讨了半潜式平台运动响应的影响因素。论文的主要内容包括以下几个方面:1.在三维势流理论的基础上,利用ANSYS-AQWA软件,建立半 潜式平台的水动力模型,计算分析平台的水动力性能,获得了附加质量、阻尼系数、运动响应幅值算子和波浪力等水动力参数。 2.根据作业水深和半潜式平台的特点,将平台的系泊系统初步设计为8根对称布置的悬链线式系泊系统。再利用前章节计算的频域水动力结果,对半潜式平台和系泊系统在生存载况、作业载况,以及风浪流联合作用下进行时域耦合动力分析,计算了平台的响应历时曲线和系泊线的张力变化曲线。 3.进行模型试验验证研究,在频域和时域计算分析中各选取了一种典型工况,结合模型试验结果进行验证分析。分析表明,在规则波中仿真计算和模型试验结果吻合度很高。 在复杂工况的时域分析中,虽然二者之间存在一定的误差,但依旧能较准确 的预报出平台的运动响应和系泊性能。因此,利用AQWA仿真计算平台的水动力性能具有可靠性和实用性。 4.在上述研究的基础上,通过数值计算分析的方法,探讨了半潜式平台运动 响应的影响因素。计算模型仍旧为原半潜式平台,分别计算了不同重心高度、吃

水深度和是否带有垂荡板对平台运动响应的变化规律,为今后半潜式平台的优化设计提供一定的参考。 本文的研究内容对于使用AQWA仿真和模型试验来研究半潜式平台的水动力问题有一定的借鉴作用;同时,本文探讨的半潜式平台运动响应的影响因素,所得到结果对于半潜式平台的设计和结构优化具有一定的意义。

电机驱动系统效率优化控制技术研究现状

1.2 电机驱动系统效率优化控制技术研究现状 电动汽车的动力由电动机提供,电机驱动系统(简称驱动系统)的性能直接影响了电动汽车的性能。电动汽车系统需要能够满足频繁停车启动、加速、大负载爬坡以及紧急制动等要求,也需要考虑到汽车行驶路况复杂多变,存在雨天、酷热、下雪等恶劣天气,以及颠簸、泥泞等复杂路况。另外,在满足行驶条件的情况下还应最大限度地保证驾驶人员和乘坐人员的舒适安全。作为电动汽车的核心部分,驱动系统应满足宽调速范围、宽转矩输出范围、良好的加减速(起动、制动)性能、运行效率高(提高续航里程)以及高可靠性等要求。 针对永磁同步电机驱动系统的效率优化,总体来说可分为以下三个方向: 1)从电机本体的电磁设计、制造工艺以及电机的材料着手,开发高效电机。 2)改进脉宽调制(Pulse Width Modulation,PWM)技术,降低功率开关器件上的损耗从而提高逆变器的整体效率;降低变频器输出电压的谐波含量,如采取空间矢量脉宽调制(Space Vector Pulse Width Modulation,SVPWM)技术和软开关技术,减小谐波含量从而提高驱动系统的整体效率。 3)研究合适的控制策略,在保证电机满足运行条件的情况下减小直流侧的功率输入,提高驱动系统的效率。 目前,针对永磁同步电机驱动系统效率优化所提出的控制策略很多,总体来说可以分为两大类:第一类是基于损耗模型的效率优化控制(Loss Model Control,LMC)策略;第二类是基于搜索法的效率优化控制(Search Control,SC)策略。下面分别进行概述。 1.2.1 基于损耗模型的效率优化控制策略 该控制策略作为一种基于前馈式的控制方法,基本原理是:在充分考虑电机各部分损耗的基础上,建立较为精确的损耗模型,根据电机运行状况(负载转矩和实际转速)计算出该运行状况下最优的控制变量(一般为磁场、电压或者电流)以减小驱动系统的损耗。若控制变量为电枢电流,对永磁电机驱动系统来讲一般选择最优的直轴电流i d和交轴电流i q,对混合励磁电机驱动系统来讲包括i d、i q以及励磁电流I f。这种控制策略目前已被广泛应用到了闭环传动系统中,可以保障电机驱动系统在全局运行范围内都能实现效优化。基于损耗模型的同步电机效率优化控制基本框图如图1.1所示。 基于损耗模型的驱动系统效率优化策略最早由T.M.Rowan和T.A.Lipo[1],以及H.G.Kim [2]等人提出并进行研究;1987年Bose[3][4]等人将该策略运用到永磁同步电机驱动系统中。美国学者X.Wei和R.D.Lorenz已将基于损耗模型控制策略结合直接转矩控制(Direct Torque Control,DTC)中,以提高永磁同步电机在瞬态过程中的效率[5]。针对同步电机而言,基于损耗模型的效率优化策略总共可以分为五种类型:考虑铁损的损耗模型控制策略[6][7]、考虑铜损的损耗模型控制策略[8][9]、考虑铁损和铜损的损耗模型控制策略[10][11]、基于电机精确损耗模型损耗模型控制策略[12][13]和约束条件下的损耗模型控制策略[14][15]。

海洋平台设计原理

1)海洋平台按运动方式分为哪几类?列举各类型平台的代表平台? 固定式平台:重力式平台、导管架平台(桩基式); 活动式平台:着底式平台(坐底式平台、自升式平台)、漂浮式平台(半潜式平台、钻井船、FPSO); 半固定式平台:牵索塔式平台(Spar):张力腿式平台(TLP) 2)海洋平台有哪几种类型?各有哪些优缺点? 固定式平台。优点:整体稳定性好,刚度较大,受季节和气候的影响较小,抗风 暴的能力强。缺点:机动性能差,较难移位重复使用 活动式平台。优点:机动性能好。缺点:整体稳定性较差,对地基及环境条件有要求 半固定式平台。优点:适应水深大,优势明显。缺点:较多技术问题有待解决 3)导管架的设计参数有哪些?(P47) 1、平台使用参数; 2、施工参数; 3、环境参数:a、工作环境参数:是指平台在施工和使用期间经常出现的环境参数,以保证平台能正常施工和生产作业为标准;b、极端环境参数:指平台在使用年限内,极少出现的恶劣环境参数,以保证平台能正常施工和生产作业为标准 4、海底地质参数 4)导管架平台的主要轮廓尺寸有哪些?(P54) 1、上部结构轮廓尺度确定:a、甲板面积;b、甲板高程 2、支承结构轮廓尺度确定:a、导管架的顶高程;b、导管架的底高程;c、导管架的层间高程;d、导管架腿柱的倾斜度(海上导管架四角腿柱采用的典型斜度1:8);e、水面附近的构件尺度;f、桩尖支承高程 5)桩基是如何分类的? 主桩式:所有的桩均由主腿内打出; 群桩式:在导管架底部四周均布桩柱或在其四角主腿下方设桩柱 6)受压桩的轴向承载力计算方法有哪些?(P93) 1、现场试桩法:数据可靠,费用高,深水实施困难; 2、静力公式法:半经验方法,试验资料+经验公式,考虑桩和土塞 重及浮力,简单实用; 3、动力公式法:能量守恒原理和牛顿撞击定理,不能单独使用; 4、地区性的半经验公式法:地基状况差别,经验总结。 7)简述海洋平台管节点的设计要求?(P207) 1、管节点的设计应降低对延展性的约束,避免焊缝立体交叉和焊缝过度集中,焊缝的布置应尽可能对称于构件中心轴线; 2、设计中应尽量减少由于焊缝和邻近母材冷却收缩而产生的应力。在高约束的节点中,由于厚度方向的收缩变形可能引起的层状撕裂 3、一般尽量不采用加筋板来加强管节点,若用内部加强环,则应避免应力集中 4、一般受拉和受压构件的端部连接应达到设计荷载所要求的强度。

海洋工程概论论文

海洋工程概论论文 15级海洋工程与技术黄嘉荣 内容概论:本文就我国的海洋工程发展现状,趋势和前景进行分析和探究,了解到我国的海洋工程技术发展的迫切需要和未来的发展空间。 海洋工程,从广义上说,所有涉及货与海洋环境有关的工程都可以归入海洋工程研究的范围,如我们经常谈论的海洋平台,系泊系统,海底管线以及其他开发海洋资源的设备和工程建筑,如海浪能源转换系统之类的。海洋工程研究范围有海洋环境动力学,海洋工程结构物设计研究,海上施工技术,以及大部分的船舶工程。 海洋工程,从其所指的建筑物角度来看,实际上包括了两类建筑物:沿岸结构物和近海建筑物。 一.我国海洋工程的发展现状。 1.我国海洋石油工程。 我国海洋石油工程具有巨大的发展潜力,我国海域辽阔,海安县长达18000多公里,海域面积472.2万平方公里,大陆架为130多平方公里,由于中国沿海大陆架是世界上最后一批面积大,易于开采而尚未勘探开发的地区之一,而且水深在120m以内的水域占很大一部分,作业条件优于北海油田(其水深在100m~300m),已经引起全世界的注目1979年以来,经过我国政府批准,利用

外资,同国外联合开发,已经先后与日本,法国,美国,英国等石油公司签订了在渤海,南海的北部湾,莺歌海,珠江口盆地的合作勘探开发合同。我国目前的勘探开发仍处于起步阶段,面临着以下四个方面的挑战:1.我国近海石油地质条件较为复杂,如渤海油田的近岸滩涂地区。2.原有性质特殊,轻,中,重三种油质中,中质和重质油储量可能会多一些。3.国际油价起伏不定,不时处于疲乏状态。4.海况条件比中东等地区差,台风,海冰,地震影响较大。另外,较于其它英,美发达国家,我国海洋石油工程正处于落后的阶段,表现在平台设计,平台材料,平台设备及仪器仪表系统,平台的制作工艺,海上施工安装等方面。 我国海洋工业开始于上世纪60年代末期,最早的海洋石油开发起步于渤海湾地区,该地区典型水深约为20m。到了80年代末期,在南中国海的联合勘探和生产开始在100m左右水深的范围内进行。现在我国也准备加快南中国海油气资源的勘探开发,但这一海域水深在500~2000m,而我国目前还不具备在这样水深海域进行油气勘探和生产的技术,因此迫切需要发展深海油气勘探和开发技术。鉴于此,由国家发展改革委员会牵头,组织中石油、中石化、中海油三大公司参与,投入大量资金,共同研究深海海洋油气开发技术。目前,中石油已获批准在南中国海12万km2 的海域勘探和开发油气资源,并以辽河油田和大港油田为基地成立了海洋石油工程公司。中海油也已获批准在南中国海7万多km2的海域勘探和开发油气资源,并且已有8个区块开始向全球招商,积极寻求外部合作。另外,其子公司中海油服股份公司也投入巨资开始建造122m(400ft)深水钻井平台,并

系统优化方法(《生活与哲学》)

《生活与哲学》第七课重难点解析 掌握系统优化的方法 一. 系统的含义及基本特征 系统是相互联系、相互作用的诸要素构成的统一整体。要素是组成系统整体的各个部分。无论是自然事物还是社会事物,包括人们的思想意识,一般都是以系统的方式而存在的。每一事物或过程,因其内在要素相互联系而形成小系统,又同周围的其他事物相互联系,构成更大的系统。如:在自然界中,每一个细胞都是由细胞核、细胞质、细胞膜等组成的系统;每一个生物体也都是由细胞组成的系统;每一个生物种属和生物群落也都自成系统。在人类社会中,每一个人都同他人结成层次不同的系统,如家庭、乡村、政党、民族、国家等。人类社会就是由生产力和生产关系、经济基础和上层建筑等要素组成的系统。 系统的基本特征主要有:(1)整体性。任何系统都是由各个要素相互联接、相互作用而构成的有机整体。整体性是系统的本质特征。这种整体性表现为,系统对外来作用能作为一个统一的整体作出反应,而不管它作用于哪一部分;同时,系统作为一个整体,具有它的各个要素都不单独具有的功能和性质。整体的新功能来自于各个要素的相互作用和结构优化,即“整体功能大于部分功能之和”。(2)有序性。系统内部结构具有层次等级式的组织化特征,每一系统都是由若干要素按照一定的秩序、方式或比例组合而成。系统中的各个要素各有其特定的位置、顺序和规则。结构稳定,系统就相对稳定;结构变化,系统的性质和功能就发生相应的变化。如整个社会就是一个大系统,随着我国经济的不均衡发展和社会内部结构的变化,影响社会发展的不稳定因素也在增加。构建和谐社会的发展策略也就应势而出。(3)内部结构的优化趋向。从系统的整体发展方向来看,系统的形成是从无序向有序、从低级有序向高级有序的不断演化过程。结构有序合理,会促进系统的发展,结构失序或不合理则阻碍系统的发展。因此,要注重系统内部结构的优化趋向。为促进系统的法则功能状态的提高,就要不断调整、完善和优化系统的结构。除上述特征外,系统还有层次性、开放性、关联性等。 综上所述,我们在把握系统优化的方法时,要注意这样三点:1.要着眼于事物的整体性,从整体上把握系统的功能和性质;2.要注意遵循系统内部结构的有序性;3.要注重系统内部结构的优化趋向。 二、掌握系统优化的意义 掌握系统优化的方法对于我们认识世界和改造世界都具有重要的指导意义。 首先,从认识世界来说,系统优化的方要求我们用综合的思维方式来认识事物。既要着眼于事物的整体,从整体出发认识事物和系统,又要把事物和系统的各个要素联系起来进行考察,在联系中把握各要素,把握事物整体,统筹考虑,优化组合,最终形成关于此事物的完整的、准确的认识。 从改造世界来说,系统优化方法要求处理和解决问题是要着眼于整体功能状态的优化,做到从整体出发,统筹全局,寻求最优目标。在工作实践中,要注重系统内部结构的优化趋向,实现整体功能大于部分功能之和。如在经济和社会发展中,社会发展是一个系统工程。经济发展和人口、资源、环境、社会保障等必须相互配合,东部地区的快速发展必须和西部大开发、东北老工业基地的振兴、中部地区的崛起协调共进,物质文明、精神文明、政治文明应该共同进步。所有

海洋平台-30题答案

红字的为待完善或不确定的 1.海洋平台按运动方式分为哪几类?列举各类型平台的代表? 固定式平台导管架平台 活动式平台 着底式平台(坐底式平台、自升式平台) 漂浮式平台(半潜式平台、钻井船)。 半固定式平台牵索塔式平台(Spar):张力腿式平台(TLP): 2.海洋平台有哪些类型?各有哪些优缺点? 固定式平台 优点:整体稳定性好,刚度较大,受季节和气候的影响较小,抗风暴的能力强缺点:机动性能差, 较难移位重复使用 活动式平台 优点:机动性能好 缺点:整体稳定性较差,对地基及环境条件有要求 半固定式平台 优点:适应水深大,优势明显 缺点:较多技术问题有待解决 3.设计半潜式平台的关键技术有哪些? 总体设计技术、系统集成技术、钻井系统集成与钻井设备技术、平台定位技术、结构强度与疲劳寿命分析技术、平台制造技术等。(深水半潜式) 4.设计SPAR平台的关键技术有哪些? 目前对Spar平台的研究主要集中在平台动力响应、系泊系统、疲劳分析、垂荡板和侧板的设计研究以及平台主体与系泊系统、平台构件之间的相互作用的耦合分析,同时,浮力罐与支架间的碰撞问题近年来也成为研究的热点问题之一 5.海洋平台的设计载荷分为哪三类?各类载荷的定义? 使用荷载:平台安装后,在整个使用期间,平台受到的除环境荷载以外的各种荷载。 环境荷载:由海洋的风、波浪、海流、海冰和地震等水文和气象要素在海洋平台上引起的荷载。 施工荷载:平台在施工期间所受到的荷载,是发生在建造、装船、运输、下水、安装等阶段的暂时性荷载。 6.在导管架平台建造过程中常见的施工措施有哪些? 吊装力:平台预制和安装过程中对平台组件的起吊力。 装船力:直接吊装&滑移装船,强度&稳性校核。 运输力:驳船装运&浮运,支撑力&拖航力。 下水力和扶正力:导管架平台安装。 安装期地基反力:地基的支撑力。

计算机系统优化方法

由于目前技术以及其他因素的限制,主流配置的笔记本电脑仍然与主流台式机的性能有相当的差距,这差距表现出来的就是流畅度,因此许多用惯了台式机的用户对笔记本电脑的性能嗤之以鼻,认为笔记本是高价低能的代名词,对此要说的是:NO! 第一步 首先,从系统下手,如今XP系统已经普及,但由于XP系统的卖点就是绚丽的操作界面,这都是以牺牲性能为代价的,对于笔记本,可以对一些效果适当的进行删减。 右键点击“我的电脑”,然后“属性”---“高级”---“性能”---“视觉效果”,这里选择“调整为最佳性能”,用户如果需要一些效果的话可以选择自定义来手动调整。 仍然在“性能”分页,选择“高级”,打开“虚拟内存”子页,这里把虚拟内存的大小调整为本机物理内存的2倍—3倍,然后应用,确定,退出此页。 第二步 现在打开开始菜单,选择运行,输入“gpedit.msc”; 进入组策略编辑器。 依次打开“计算机配置”—“管理模板”—“网络”—“QoS数据包计划”—“限制可保留带宽”,选择“起用”,在下面的输入栏里把20改成0,这样可以把系统自己占用的20%带宽解放出来。

回到组策略编辑器的主界面,依次打开“用户配置”—“管理模板”—“任务栏和开始菜单”,找到“关闭用户跟踪”一项,选择“启用”,确定,退出。 第三步

打开开始菜单,选择运行,输入“regedit”;进入注册表编辑器(请做好备份工作)。 1、基于CPU的纂改,找到 HKEY_LOCAL_MACHINE—SYSTEM—CurrentControlSet—Control—SessionManager--Memory Management--SecondLevelDataCache然后按照你的本本CPU 的情况修改,若你的本本CPU是CeleronA或Celeron2,就将其果断的改为128;是Mobile PⅡ或PⅢ,就改为256;若是Mobile PIV或是迅驰,那么就修改为512。你可以看出这是内存的参数,没错,这是CPU的二级缓存,与内存参数大同小异。 2、基于读盘速度的纂改,找到 HKEY_LOCAL_MACHINE—SYSTEM—CurrentControlSet—Control-- SessionManager--Memory Management—PrefetcHParameters--EnablePrefetcher然后将数值修改为3。照例重启,你也可以再向更大的数字改动,变化就是速度是令你大跌眼镜,速度快的让你连界面都看不清,就像流星一样!(256兆内存建议设为3,512兆及以上建议设为5) 3、基于弹出菜单的纂改,找到HKEY_CURRENT_USER--Control PanelDesktopMenuShowDelay将数字值改为0就OK了,重新启动,你看看菜单有何变化! 4、基于清楚无用程序的纂改,找到 HKEY_LOCAL_MACHINE—SOFTWARE—Microsoft—Windows—CurrentVersion—Explorer新创建一个名为AlwaysUnloadDLL子键。将名字设置为双字节1的,然后重新启动,这个篡改的目的是清除没有用的DLL程序文件,以达到提升系统速度的目的! 5、基于系统的纂改,找到 HKEY_LOCAL_MACHINE—SYSTEM—CurrentControlSet—Control—SessionManager--Memory Management--LargeSystemCache,将0改成1,这里要值得一提的是,前提是你的本子内存必须是大于等于256MB的,才可以看到效果! 6、基于CMOS时钟的纂改,找到 HKEY_LOCAL_MACHINE—System—CurrentControlSet—Control --PriorityControl在里面重新创建一个名为IRQ8Priority的双字节值,并设为1。重新启动,你主板的性能就会提高了! 7、基于自动关机的纂改,找到HKEY_CURRENT_USER--Control Panel--Desktop将里面的AugoEndTasks键值修改为1。这下就可以消灭恼人的“是否关机”的对话框了,它的消失对于系统来说,真是如释重负!

系统优化技术

SDD-1 算法原理 上个世纪,美国计算机公司实现的SDD-1 是世界第一套分布式数据库系统,虽然在之后又出现了很多不同版本的分布式数据库系统,但大多数都是建立在此模型基础之上。该系列的分布式数据库系统查询技术就是采用半连接操作技术,为了纪念该成果,后来人们将该系列分布式数据库中查询算法定义为分布式数据库SDD-1 查询算法,在详细介绍SDD-1 查询算法之前,先引入以下概念: 定义1 设有关系R和S,半连接操作R∝S的选择因子有以下公式: 其中card(πa(S))是以R和S的公共属性a对S做投影操作后的元组个数,其 card(S)是关系S的元组个数。 定义2设有关系R和S,半连接操作R∝S的效益有以下公式: 其中size(R)代表R的大小(以字节为单位)。 定义3 设有关系R和S,半连接操作R∝S的费用开销公式: 结果为真那么称此半连接R∝S为有益半连接。 定义5 最有益半连接:在定义4 的多个有益半连接中, 结果值最大的有益半连接称最有益半连接。 SDD-1 查询算法通过循环迭代获得最有益半连接,每次获得最有益半连接都 减少了网络数据传输量,最后选择数据量最大的站点作为数据装备站点。SDD-1 查询算法在执行时主要分两部分:首先执行基本算法,然后执行后优化算法。在 基本算法中,首先统计各半连接的效率、收益、费用等信息,利用这些统计信息 给出半连接缩减程序集,最后得出执行策略;在后优化算法中,修正基本算法得 出的执行策略,使最后的执行策略更高效。 SDD-1 查询基本算法是[24,27,42]: 首先根据查询语句及分布式数据库数据字典得出一个查询图G。 第一步: 对半连接静态特性表中的所有半连接进行收益值估算。 第二步:排序所有半连接的收益值,并选择该值最大的半连接执行 第三步:根据第二步执行的结果更新半连接静态特性表,并重新估算收益值。 第四步:判断半连接静态特性表中所有半连接是否执行完,如执行完转第五 步,如没有执行完转第二步循环执行。 第五步:选取对所有关系经过缩减后的基数(行数)最大所在的站点作为数据

深水半潜式平台系泊系统设计研究

第14卷第5期船舶力学Vol.14No.5 2010年5月Journal of Ship Mechanics May2010文章编号:1007-7294(2010)05-0495-09 深水半潜式平台系泊系统设计研究 周素莲,聂武,白勇 (哈尔滨工程大学船舶工程学院,哈尔滨150001) 摘要:随着海洋平台逐步向更深水域的发展,系泊系统设计成了深海平台开发的关键问题之一。该文主要采用时域计算方法对系泊系统进行动力响应分析,给出了深水半潜式平台系泊系统的基本设计方法,并对2000m水深的半潜式平台系泊缆索进行了8根与12根锚链线的系泊方案的对比分析,结果表明系泊方式不同,锚泊线的张力,系统的运动响应都受到了一定程度的影响。 关键词:深水半潜式平台;时域;动力响应分析;系泊方案 中图分类号:U675.92文献标识码:A Investigation on mooring system design of a deepwater semi-submersible platform ZHOU Su-lian,NIE Wu,BAI Yong (Department of Ship Building,Harbin Engineering University,Harbin150001,China) Abstract:With the development of the offshore platform used in deeper and deeper waters,the design of moor-ing system is one of the key issues in the exploitation of platforms for deepwater.In this paper,the dynamic response analysis of mooring system is solved in time domain,and a basic design method of deepwater se-mi-submersible platform mooring systems is presented.Then the comparative analysis of the mooring system in the depth of2000m,which has8and12mooring lines to position is carried out.The results show that the platform motion responses and the mooring line tensions are effected to some extent by the different mooring scheme. Key words:deepwater semi-submersible platform;time domain;dynamic response analysis; the mooring scheme 1引言 随着海上油气勘探和开采技术不断发展,海洋油气生产浮式结构的工作水深不断增长。这些海上结构通常主要采用两种定位系统[1]:系泊定位系统和动力定位系统。由于系泊系统具有投资少、使用和维修方便等特点,因而系泊系统是目前主要采用的定位系统,其广泛应用于半潜式钻井平台、钻井船以及半潜式采油平台。与其他工程问题一样,一种方法的选取及其有效性取决于其所采用的假定与真实情况的符合程度。系泊系统所受的载荷主要有自重、流力、波浪力等,可以根据不同情况得到不同的计算模型来对其进行动力分析,对于系泊系统的动力分析目前已有学者进行了相关研究[2-8],其中肖越,王言英[2]采用频时域相结合的方法分析了水深为119.5m的浮体运动响应与锚泊线张力。童波,杨建民等[3] 收稿日期:2009-09-29 作者简介:周素莲(1981-),女,哈尔滨工程大学船舶工程学院讲师,博士研究生,Email:lsczsl@https://www.doczj.com/doc/c17790492.html,; 聂武(1944-),男,教授,哈尔滨工程大学船舶工程学院博士生导师,主要从事各种海洋工程结 构动态响应分析。

海洋平台优化设计的研究进展

《海洋与环境》课程论文 海洋平台优化设计的研究进展 课程海洋与环境 学生姓名 学号 所在学院 所在班级 任课教师 提交时间

海洋平台优化设计的研究进展 国内外海洋平台的静力优化设计研究相对较多。目前海上结构的设计规范大多采用的是工作应力 ( WSD) 方法。L RF D( 荷载抗力分项系数设计)方法结合WSD方法和可靠性理论的优点, 既考虑了抗力与各种荷载的随机性又继承了WS D 设计方法。Ma nuel 等在传统设计( WSD/ LR FD) 方法的基础上充分运用了可靠性技术, 对受波浪荷载的海洋平台进行设计。胡云昌等对渤海北部结冰海域海洋平台的LRFD设计表达式的系数进行标定并优化,大大提高了材料的利用率。基于LRF D法海洋平台优化设计简便实用, 但必须根据不同的海域特点进行相关参数的标定。海洋平台优化设计的约束不仅需考虑到结构自身的强度, 刚度和稳定性约束, 还需考虑桩基承载力约束 ( 桩- 土相互作用) 等, 而桩与地基的作用很大程度上主导了结构抗力的不确定性和敏感性。封盛等研究了如何处理应力约束、桩基横向承载力约束和构件长细比约束, 即取构件截面最大Mise s应力, 桩顶侧位移或最大抗力比和受压构件长细比; 基于此对海洋平台优化设计, 减少了约束条件数目, 提高优化模型的求解效率。海洋平台结构优化设计研究主要集中在尺寸优化, 国内外不少学者充分地利用各种优化技术和先进的分析软件对海洋平台结构进行优化设计。鲍国斌等提出张力腿平台的尺寸优化模型, 并以平台造价为目标函数, 考虑尺寸约束, 运动约束和强度约束, 用约束变尺度法进行了优化设计, 为张力腿平台的概念设计提供了一种有效的工具。杨树耕等在建立桶

海洋平台的设计及建造施工

第四章海洋平台的设计及建造施工 第一节平台结构设计的一般步骤 海洋平台的结构设计首先是根据平台作业海域的环境条件、海底土壤特性、平台的使用要求、安全性、营运性能、建造工艺和维护费用以及业主的期望等选择平台的结构型式方案。由于平台长期固定或系泊于特定的海域中作业,它不像一般船舶那样,遇到大风浪可以避航,因此,在结构设计中正确的确定海洋环境条件显得非常重要。海洋环境条件一般包括海域的水深、风暴、波浪、海流、潮汐、海底冲刷和滑移、冰情和地震等。这些海洋环境因素对平台的安全和作业效率有极大的影响。 为了设计出满足各项设计条件,同时经济性能优良的平台结构,往往需要选择多种方案进行分析比较,最后选定最佳的方案。因此平台结构设计实际上是一个逐步逼近或试探的过程,例如挪威阿柯(AKER)集团设计的“阿柯—H3”号半潜式平台就选择了A至H的8中方案进行分析、筛选,最后选定了H方案中的第3种修改方案,平台也因而取名为“阿柯—H3”。 一般初步选定一种结构型式,确定平台主要尺寸,具体进行总体布置后,如果是移动式平台则需要进行运动性能和稳性的分析,倘若不满足设计任务要求和有关范围的规定,那么这种结构型式就要被淘汰。 为了进行结构安全性校核,需要进行外载荷计算、强力构件尺寸的初步确定和构件材料的选取等工作,最后进行结构的总体强度分析。外载荷计算包括确定平台的浮力、结构重量、平台的甲板载荷,由风、浪、流、冰、地震引起的环境载荷等,这些载荷直接影响着构件的布置、连接和尺寸的大小,是决定结构设计优劣的重要因素。对于固定式平台,还需进行桩基计算以及桩—土—结构相互作用的分析。平台的所有强力构件都必须符合规范的强度标准,否则应修改构件的尺寸和材料品种,直到满足要求为止。 在结构强度尺寸确定后应对在总体布置时估算的结构重量进行校核,看其与实际的是否一致,若相差较大还需要进行调整。 结构设计的最后一个阶段是局部节点结构设计,平台节点是重要的结构部位,它的强度和施工工艺往往直接影响平台总体结构的寿命。图4—1为平台结构设计的一般流程。

相关主题
相关文档 最新文档