当前位置:文档之家› 高效交联剂

高效交联剂

高效交联剂
高效交联剂

高效交联剂

型号粉剂

品牌华润

外观白色粉末PH值6

有效物质含量70(%)浊点21

质量指标:

项目指标粉剂

外观白色粉末

含量≥70%

酸值——

物理性质:

分子量:249.27

形状:室温(25℃)为无色液体或结晶体

性状:室温下为无色或微黄色液体或六方片状晶体。

比重:1.155(30℃)

比热:0.6(40℃)

熔点:23℃—26℃(纯品)17℃—21℃(工业级)

闪点:355℃

粘度:86±3厘泊(30℃)

沸点:144℃/3mmHg;297℃/N2,760mmHg

溶解性:溶于芳烃、卤化烃、环烷烃、丙酮、多种醇等,微溶于烷烃,不溶于水。

化学性质:

在常温下性能十分稳定,可长期在室温下贮存。TAIC的功能团为三个烯丙基,具有脂肪族烯烃的一般通性,如多种加成反应、均聚和共聚反应、Prins反应等。在过氧化物引发下,TAIC较其他烯丙基更易发生聚合反应,在空气中加热到140℃以上即发生自聚反应,成为透明、质硬的均聚物。

用途:

1、多种热塑塑料(聚乙烯、聚氯乙烯、氯化聚乙烯、EVA、聚苯乙烯等)的交联和改性。热交联一般添加量为1-3%,另加过氧化二异丙苯(DCP)为0.2-1%;辐照交联添加量为0.5-2%,可不再加DCP。交联后可显著提高制品的耐热性、阻燃性、耐溶剂性、机械强度及电性能等。它比单独采用过氧化物体系交联要显著地提高产品质量,且无异味。典型用于聚乙烯、聚乙烯/氯化聚乙烯、聚乙烯/EVA交联电缆和聚乙烯高、低发泡制品。

2、乙丙橡胶、各种氟橡胶、CPE等特种橡胶的助硫化(与DCP并用,一般用量为0.5-4%), 可显著地缩短硫化时间、提高强度、耐磨性、耐溶剂和耐腐蚀性。

3、丙烯酸、苯乙烯型离子交换树脂的交联。它比二乙烯苯交联剂用量少、质量高、可制备抗污、强度大、大孔径、耐热、耐酸碱、抗氧化等性能极佳的离子交换树酯。这是国内外新近开发的,前景极好的新型离子交换树酯。

4、聚丙烯酸酯、聚烷基丙烯酸酯等的改性。可显著地提高耐热性、光学性能和工艺加工性能等。典型用于普通有机玻璃的耐热改性。

5、环氧树酯、DAP(聚苯二甲酸二烯丙酯)树酯的改性。可提高耐热性、粘合性、机械强度和尺寸稳定性。典型用于环氧灌封料和包封料的改性。

6、不饱和聚酯和热塑聚酯的交联和改性。可显著提高耐热性、抗化学腐蚀性、尺寸稳定性、耐候性和机械性能等。典型用于提高热压性不饱和聚酯玻璃钢制品耐热性,改性后的制品使用温度可达180℃以上。

7、TAIC本身的均聚物——聚三烯丙基异三聚氰酸酯为一种透明、硬质、耐热、电绝缘优良的树脂,亦可用于粘合玻璃及陶瓷等。典型用于制造多层安全玻璃。

8、聚苯乙烯的内增塑、苯乙烯与TAIC等共聚改性,可制得透明的、耐碎的制品。

9、金属耐热、抗辐射、耐候性的保护剂,TAIC预聚物在金属表面进行烤镀,其烤镀膜具有十分优良的耐热、耐辐射、耐候性和电绝缘性。典型用于制造微电子产品的印刷线路板等绝缘材料。

10、用作光固化涂料、光致抗蚀剂、阻燃剂和阻燃交联剂等的中间体。典型用于合成高效阻燃剂TBC和阻燃交联剂DABC。

包装贮运:

200kg镀锌铁桶或25kg塑料桶装,避光、避热贮存,贮存温度以25℃以下为宜,保存期一年,非危险品,可按一般化学品贮运.

经典絮凝原理.doc

1 絮凝原理 餐饮废水中污染物主要以胶体形式存在。胶体本身既具有巨大的表面自由能、有较大的吸附能力,又具有布郎运动的特性,从而颗粒间有较多碰撞的机会,似乎可以粘附聚合成大的颗粒,然后受重力作用而下沉。但是由于同类的胶体微粒带着同性的电荷,它们之间的静电斥力阻止微粒间彼此接近而聚合成较大颗粒;其次,带电荷的胶粒和反离子与周围的水分子发生水化作用,形成一层水化壳,也阻碍各胶粒的聚合。投加铝盐等无机盐后,发生金属离子水解和聚合反应过程,被吸附的带正电荷的多核络离子能够压缩双电层、降低ζ电位,使胶粒间最大排斥能降低,从而使胶粒脱稳[1]。 使用无机盐絮凝剂处理的同时,有机高分子也常作絮凝剂使用。高分子絮凝剂有较好的架桥和吸附作用,和无机盐絮凝剂共同使用可以加快反应速度,提高处理效果。 2 实验方法 絮凝剂配成1g/L的溶液。烧杯搅拌实验在磁力搅拌器上进行,每次实验水样为200mL,水样取自某星级宾馆的餐饮废水,经初沉后用0.1mol/L稀盐酸和0.1mol/L氢氧化钠精确调pH值到要求值。操作程序为:在快速搅拌下投加絮凝剂反应2min后,改变搅拌速度为慢速,继续搅拌10min,静沉20min后,距上液面 约5cm处吸取部分上清液测定剩余浊度及CODcr[2]。 3 结果与讨论 3.1 絮凝剂的选择 各种絮凝剂的用量为2mL,试验温度为22~29℃,取絮凝处理后的上清液,测定CODcr及浊度,结 果见表1。 从表1可以看出,分别采用碱式氯化铝、硫酸铁、氯化铝、硫酸亚铁、硫酸铝钾、硫酸铝钾+聚丙烯酰胺处理餐饮废水,其中硫酸铝钾+聚丙烯酰胺去除废水CODcr效果最好,这说明单独使用一种无机盐作絮凝剂,效果不如复合絮凝剂使用效果好,为此选用硫酸铝钾+聚丙烯酰胺作絮凝剂。 3.2 絮凝条件的优化 确定了硫酸铝钾+聚丙烯酰胺作为絮凝剂后,对最佳絮凝条件进行摸索试验。 从图1中可看出,随着加药量的增加,絮凝后浊度呈现先增加,后降低,再增加的趋势,说明加药量不是越多越好,其最佳投药量为:200mL水样加入3.2mL硫酸铝钾+聚丙烯酰胺。确定了最佳投药量后,在此基础上实验确定最佳pH值,结果如图2。沉淀速度与pH的关系曲线见图3。

浅谈增碳剂的选择与使用

浅谈增碳剂的选择与使用 摘要:提出了当前对增碳剂的认识存在的误区,以及优质增碳剂的选择。把加增碳剂的熔炼新工艺与传统工艺(只加生铁)工艺进行对比,分析了增碳剂对熔炼的影响,说明使用中应当注意的问题,阐明了增碳剂的正确使用方法。 关键词:增碳剂; 熔炼; 一种含碳量很高的黑色或者灰色颗粒的产物,加入到金属冶炼炉里,提高铁液里碳的含量,一方面可以降低铁液里氧的含量,另一方面更重要的是提高冶炼金属或者铸件的力学性能。 增碳剂的来源很多,形态各异,根据其加工工艺和成分不同,价格差异很大。传统的熔炼方式比如冲天炉熔炼:使用生铁,回炉料,废钢钛合金等作为金属炉料; 新的合成铸铁生产工艺:使用废钢作为炉料,利用增碳剂来调整铁液的碳当量。后一种生产工艺更容易保证优质铁液,同时通过少用或者取代生铁改用废钢大大降低成本。通俗的说,利用增碳剂,我们能用最差的(废钢)冶炼出最好的(铸件)。 国外增碳剂技术已经日趋成熟,国内此项新工艺近几年才开始发展,业内很多人对增碳剂的品质和质量了解不够深入。有的铸造工作者选用增碳剂存在误区。例如混淆增碳剂的固定碳含量和含碳量的含义,固定碳值是根据样品的水分,挥发份,灰份和硫份计算得来的,而含碳量直接测碳仪便可以获得。有些增碳剂的灰份高,含碳量也高,但是它的固定碳值一定不会太理想。还有些铸造工作者片面的从增碳剂的固定碳含量和其物质性质便断定其是否优质,其结果可能误入歧途,导致选用的增碳剂物不所值。 一.增碳剂的选择及其指标性能 在冶炼过程中,由于配料或装料不当以及脱碳过量等原因,有时造成钢或铁中含量没有达到预期的要求,这时要向钢或铁液中增碳。通常用来增碳的物质主要有无烟煤粉,增碳生铁,电极粉,石油焦粉,沥青粉,木炭粉和焦炭粉。对增碳剂的要求是,固定碳越高越好,灰份,挥发份及硫份等有害杂质含量越低越好,以免污染铁水。 铸件的冶炼使用含杂质很少的石油焦经过高温焙烧后的优质增碳剂,这是增碳工艺中最重要的环节。增碳剂质量好坏决定了铁液质量的好坏,也决定了能否获得好的石墨化效果。简言之,减少铁液收缩增碳剂起举足轻重的作用。全废钢电炉熔炼时,优先选用经过石墨化处理的增碳剂,经过高温石墨化处理的增碳剂碳原子才能从原来的无序排列变成片状排列,片状石墨才能成为石墨形核的最好核心,以利于促进石墨化。因此,我们应该要选用经过高温石墨化处理的增碳剂。因为高温石墨化处理时硫份被生成SO2气体溢出而降低。所以高品质的增碳剂含硫份很低,W(s)小于0.05%,最好的W(s)小于0.03%。同时,这也是判断是否经过高温石墨化处理以及石墨化是否良好的一个简洁指标。如果选用的增碳剂没

整理编辑:絮凝剂、混凝剂、助凝剂的原理和区别

整理编辑:絮凝剂、混凝剂、助凝剂的原理和区别 一、絮凝的定义和絮凝剂的分类 絮凝是聚合物的高分子链在悬浮的颗粒与颗粒之间发生架桥的过程。“架桥”就是聚合物分子上不同链段吸附在不同颗粒上,促进颗粒与颗粒聚集。絮凝剂多数为聚合物,并有特定的电性(离子性)和电荷密度(离子度)。 絮凝剂一般分有机絮凝剂和有机絮凝剂。无机絮凝剂有硫酸亚铁、氯化亚铁、明矾、聚合氯化铝、碱式氯化铝、、硫酸铝、氯化钙等;有机絮凝无主要是高分子絮凝剂,目前使用的比较多的是聚丙烯酸钠、聚丙烯酰胺、聚苯乙烯磺酸盐、聚氧化乙烯等。 二、混凝的原理混凝剂的类别 水中悬浮的颗粒在粒径小到一定程度时,其布朗运动的能量足以阻止重力的作用,而使颗粒不发生沉降。这种悬浮液可以长时间保持稳定状态。而且,悬浮颗粒表面往往带电(常常是负电),颗粒间同种电荷的斥力使颗粒不易合并变大,从而增加了悬浮液的稳定性。 混凝过程就是加入带正电的混凝剂去中和颗粒表面的负电,使颗粒“脱稳”。于是,颗粒间通过碰撞、表面吸附、范德华引力等作用,互相结合变大,以利于从水中分离。 混凝剂是分子量低而阳电荷密度高的水溶性聚合物,多数为液态。它们分为无机和有机两大类。无机混凝剂主要是铝、铁盐及其聚合物。常用的铁盐混凝剂是三氯化铁。该种混凝剂适合的pH在6.8~8.4之间,因其水解过程中会产生H+,降低pH,因而一般需投加石灰作为助凝剂。三氯化铁在对污泥的调质中能生成大而重的絮体,使之易于脱水,因而使用较多。 三、助凝剂的作用机理和分类 助凝剂是为了改善或强化混凝过程而投加的一些辅助药剂,其作用原理与具体用途有关,对于藻类过量繁殖的情况,可加入氧化剂进行预氧化提高混凝效果,也可加入有机高分子助凝剂,增加絮体密度,提高混凝沉淀效果;对于低温低浊水处理,由于其黏度大,絮体沉降性能差,造成混凝剂投加量增大,此时加入有机或无机高分子助凝剂增大絮体尺寸、增加絮体密度,提高沉速;对于碱度较低的原水,混凝过程会导致pH下降,不但影响混凝效果,而且会产生酸性水,不利于管网水质稳定,因此需要投加碱进行pH调整;对于有机类色度水,不但混凝剂投加量升高,而且沉降性能恶化,可加入一定量有机高分子助凝剂提高沉降性能,也可加入一定量的氧化剂破坏有机物对胶体的稳定作用。对于含铁、锰废水,氧化剂可使铁和锰的有机物络合物破坏,有利水中铁、锰和有机物的去除。 助凝剂种类:⒈有机与无机高分子,如活化硅酸、聚丙烯酰胺、骨胶等;⒉pH调节剂如盐酸、硫酸和碱石灰;⒊无机颗粒如黏土、微砂、硅藻土、粉煤灰、细炉渣等惰性物质;⒋氧化剂如高锰酸钾、二氧化氯等。助凝剂的作用是调节污泥的pH(如加石灰),或提供形成较大絮体的骨料,改善污泥颗粒的结构,从而增强混凝剂的混凝作用。 在实际运用中由于混凝剂/絮凝剂/助凝剂都是高分子物质,同一产品中大大小小的分子都有,

有机交联剂作用的三种原理

有机交联剂对高分子化合物的交联反应,大致可以分为三种类型。 1.交联剂引发自由基反应 在这类交联反应中,交联剂分解产生自由基,这些自由基引发高分子自由基链反应。从而导致高分子化合物链的C-C键交联,在这里交联剂实际上起的是引发剂的作用。以这种机理进行交联的交联剂主要是有机过氧化物,它既可以和不饱和聚合物交联,亦可以和饱和聚合物交联。 (1)对不饱和聚合物的交联根据不饱和聚合物的结构,有机过氧化物分解生成的自由基将进行各种不同反应。交联过程大致可分别三步。 首先过氧化物分解产生自由基,该自由基引发高分子链脱氢生成新的自由基,高分子自由基进行连锁反应或在双键处连锁加成完成交联反应。 此外,还伴有交联剂自由基对聚合物的加成反应及聚合物自由基和交联剂自由基的加成等副反应。 (2)对饱和聚合物的交联。将聚乙烯和有机过氧化物反应可制得交联产物,例如过氧苯甲酰引发的反应: 交联聚乙烯是一种受热不熔的类似于硫化像胶的高分子材料,且具有优良的耐老化性能。 对饱和烃类高分子,用有机过氧化物引发自由裁的例子相当多,除交联聚乙烯发泡体外,甲基硅橡胶、乙丙橡胶、聚氨脂弹性体、全氯丙烯及偏二氟乙烯齐聚物均可采用有机过氧化物交联。 由于有机过氧化物在酸性介质中容易分解,因此在使用有机过氧化物时,不能添加酸性物质作填料,填加填料时要严格制其pH值。此外,并非所有饱和型高聚物均可发生,交联反应,与聚异丁烯反应时,会使聚合物发生分解。 同时,不同的过氧化物对不同聚合物的交联效率变化也很大,并伴有其他副反应产生。这也是选择交联剂时应该注意的。

(接上篇)2.交联剂的官能团与高分子聚合物反应 利用交联剂分子中的官能团(主要是反应性双官能团。多官能团以及C =C双键等),与高分子化合物进行反应,通过交联剂作为桥基把聚合大分子交联起来。这种交联机理是除过氧化物外大多数交联剂采用的形式。 胺类化合物广泛应用于环氧树脂的固化反应,固化机理可认为按如下进行: 这样就把大分子链通过N -R-N桥基交联起来,成为体型分子,使其固化。通常BF3胺化合物、苯酚、酸酐及羧酸等,能促进芳香族胺和环氧树脂之间的反应。又如,用叔丁基酚醛树脂硫化天然橡胶或丁基橡胶的交联反应如下: 叔丁基酚醛树脂两端的羟基与天然像胶分子中a氢原子进行缩合反应,结果使橡胶分子交联而成为体型结构。 羧酸及酸酐交联剂则多用于环氧树脂的固化,其机理是羧酸可使环氧基开环生成羧基,然后和羧酸发生酯化反应而进行交联。羧酸一般选择二元羧酸。 3.交联剂引发自由基反应和交联剂官能团反应相结合 这种交联机理实际上是前述两种机理的结合形式,它把自由基引发剂和官能团化合物联合使用。例如用有机过氧化物和不饱和单体来使不饱和聚酯进行交联就是一个典型的例子。 不饱和聚酯的种类很多,但它们的分子链上都含有碳碳双键结构。如丁烯二酸丙二醇酯。 用不饱和聚酯制造玻璃钢时,可以在不饱和聚酯中加入有机过氧化物(如过氧化苯甲酰、过氧化环己酮等)以及少量的苯乙烯。在这种情况下,由于有机过氧化物的引发作用,使得苯乙烯分子中的C =C与不饱和聚酯中的C =C发生自由基加成反应,从而把聚酯的分子链交联起来。交联后,聚酯就由线型结构变成体型结构,因而硬化。有机交联剂的这三种交联机理往往同时存在于同一交联过程中,并伴有许多副反应发生是一个复杂的反应体系。

包材与药物相容性研究汇总

直接接触药品的包装材料和容器是药品不可分割的一部分,它伴随药品生产、流通及使用的全过程。由于包装材料、容器的组成、药品所选择的原辅料及生产工艺的不同,药品包装材料和容器中有的组份可能会被所接触的药品溶出、或与药品发生互相作用、或被药品长期浸泡腐蚀脱片而直接影响药品的质量;而且,有些对药品质量及人体的影响具有隐患性(即通过对药品质量及人体的常规检验不能及时发现的问题)。例如,安瓿、输液瓶(袋),如果不是针对不同药品采用不同的处方和生产工艺进行选择,常常会有药品包装材料和容器中的组份被溶出及玻璃脱片现象,这些影响在一般的常规药检时不能被发现;再例如,天然橡胶塞中溶出的异性蛋白对人体可能是致热源,溶出的吡啶类化合物是致癌、致畸、致突变的肯定因素,而细微的玻璃脱片是堵塞血管形成血栓或肺肉芽肿隐患等等。从另一个方面讲,由于药品的种类多且有效活性基团复杂,不同药品与直接接触药品的包装材料和容器之间的相互影响也不同,所以,一种包装材料和容器适用于所有的药品,或者一种药品可以采用任何可获得的包装材料和容器都是存在巨大的质量和安全性隐患的。药品是一种特殊的商品,特别是注射剂产品,其质量和由包装材料和容器引起的安全性隐患要高于口服剂型,所以对注射剂产品的直接接触药品的包装材料和容器的选择,不仅要考虑包装材料和容器是否能满足药品本身应能达到的无菌保证水平的要求,同时更要关注直接接触药品的包装材料和容器与药品之间的相互作用。 1 我国药包材生产企业的现状与管理要求

我国药包材生产企业和药包材产品相对落后。虽然,现有药包材生产企业约1000家,生产药用玻璃、金属、药用明胶制品、橡胶、塑料(容器、片材、膜)及其复合片(膜)等五大类六十多个品种的直接接触药品的包装材料和容器,但是,现有药包材生产企业多为乡镇集体企业,普遍存在规模小,人员素质、装备、技术及管理水平低,产品质量不稳定等问题。因而,质量不高、不符合标准的药包材产品常见;使用不合格药包材产品或使用未经审批药包材问题尚未解决;所以,优新药包材产品的推广应用缓慢,一些落后、使用不便、甚至影响药品质量的药包材淘汰困难,有的仍然在影响着药品的质量。 与国外先进制药公司相比,我国制药企业对包装、包材与药品质量的关系普遍认识不清,对药品包装、包材与药品相互影响的研究重视不够,往往不是依据药物制剂的特性及相容性试验结果选择药包材,而是为了降低成本而选用包装材料。一些落后的包装形式、包装技术在我国制药企业中仍被采用。由此,造成的药品质量问题和使用的安全问题时有发生。 根据《药品管理法》,我国对药包材实行产品注册制度,其中第五十二条规定:直接接触药品的包装材料和容器,必须符合药用要求,符合保障人体健康、安全的标准,并由药品监督管理部门在审批药品时一并审批。药品生产企业不得使用未经批准的直接接触药品的包装材料和容器。如果使用未经批准的直接接触药品的药包材包装药品,按照《药品管理法》第四十九条(四)的规定,该药品将按劣药论处。 同时,结合我国国情,为提高直接接触药品的包装材料、容器的

浅谈增碳剂的使用

浅谈增碳剂的使用 摘要:提出了当前对增碳剂的认识存在的误区,以及优质增碳剂的选择。把加增碳剂的熔炼新工艺与传统熔炼(只加生铁)工艺进行对比,分析了增碳剂对熔炼的影响,说明使用中应当注意的问题,阐明了增碳剂的正确使用方法。 关键词:增碳剂;熔炼; 一种含碳量很高的黑色或者灰色颗粒(或块状)的焦碳后续产物,加入到金属冶炼炉里,提高铁液里碳的含量,一方面可以降低铁液里氧的含量,另一方面更重要的是提高冶炼金属或者铸件的力学性能。 增碳剂的来源很多,形态各异,根据其加工工艺和成分等不同,价格差异很大。传统的熔炼方式类似冲天炉熔炼:使用生铁、回炉料、废钢、铁合金等作为金属炉料;新的合成铸铁生产工艺:使用废钢作炉料,利用增碳剂来调整铁液的碳当量。后一种生产方式更容易保证优质铁液,同时通过少用或者取代生铁改用废钢大大降低成本。通俗的说,利用增碳剂,我们能用最差的(废钢)炼出最好的(铸件)。 国外增碳技术已经日趋成熟,国内此项新工艺近几年才开始发展,业内很多人对增碳剂的品质和质量了解不够深入,有些铸造工作者选用增碳剂存在误区。例如混淆增碳剂的固定碳含量和含碳量的含义,固定碳值是根据样品的水分、挥发分、灰分、硫分计算得出的,而含碳量直接测碳仪便可以获得。有些增碳剂的灰分高,含碳量也高,但是它的固定碳值一定不会太理想。还有些铸造工作者片面的从增碳剂的固定碳含量和其物质性质便断定其是否优质,其结果很可能误入歧途,导致购入的增碳剂物不所值。 一、增碳剂的选择及其指标性能 在冶炼过程中,由于配料或装料不当以及脱碳过量等原因,有时造成钢或铁中碳含量没有达到预期的要求,这时要向钢或铁液中增碳。通常用来增碳的主要物质有无烟煤粉、增碳生铁、电极粉、石油焦粉、沥青焦、木炭粉和焦炭粉。对增碳剂的要求是,固定碳含量越高越好,灰分、挥发分及硫等有害杂质含量越低越好,以免污染钢。 铸件的冶炼使用含杂志很少的石油焦经过高温培烧后的优质增碳剂,这是增碳工艺中最重要的环节。增碳剂质量好坏决定了铁液质量的好坏,也决定了能否获得好的石墨化效果。简言之,减少铁液收缩增碳剂起到举足轻重的作用。 全废钢电炉熔炼时,优先选用经过了石墨化处理的增碳剂,经过高温石墨化处理的增碳剂,碳原子才能从原来的无序排列变成片状排列,片状石墨才能成为石墨形核的最好核心,以利促进石墨化。因此,我们应该要选用经过高温石墨化 气体逸出而降低。所以处理的增碳剂。因为高温石墨化处理时,硫分被生成SO 2 高品质的增碳剂含硫分很低, w(s)一般小于0.05%,更好的w(s)甚至小于0.03%。同时,这也是判断是否经过高温石墨化处理以及石墨化是否良好的一个间接指标。如果选用的增碳剂没经过高温石墨化处理,石墨的形核能力就大大降低,石墨化能力减弱,即使也能达到同样的碳量,但结果完全不一样。 所谓增碳剂,就是要在加入后可以有效提高铁液中碳的含量,所以增碳剂的固定碳含量一定不能太低,否则要达到一定的含碳量,就需要加入相比高碳的增碳剂更多的样品,这样无疑增加了增碳剂中其他不利元素的量,使铁液不能获得较好的收益。 低的硫、氮、氢元素是防止铸件产生氮气孔的关键,这样就要求增碳剂的含氮量越低越好。

电絮凝技术工作原理

电絮凝技术工作原理 电絮凝技术分析和设备 1 电絮凝的理论基础 电絮凝一个复杂的过程,在电场的作用下金属电极产生阳离子在进入水体时包括 许多物理化学现象,从离子的产生到形成絮体包括三个连续的阶段: (1)在电场的作用下,阳极产生电子形成“微絮凝剂”——铁或铝的氢氧化物; (2)水中悬浮的颗粒、胶体污染物在絮凝剂的作用下失去稳定性; (3)脱稳后的污染物颗粒和微絮凝剂之间相互碰撞,结合成肉眼可见的大絮体。 由于电絮凝过程中电解反应的产物只是离子,不需要投加任何氧化剂或还原剂,对环境不产生或很少产生污染,被称为是一种环境友好水处理技术。电絮凝法具有很多的优点,如:设备简单,占地面积少,设备维护简单;电絮凝过程中不需要添加任何化学药剂,产生的污泥量少,且污泥的含水率低,易于处理;操作简单,只需要改变电场的外加电压就能控制运行条件的改变,很容易实现自动化控制; 电絮凝法中常用的电极材料为铝和铁,在阳极和阴极之间通以直流电,发生 的电极反应如下: 铝阳极 Al-3e→Al3e+ (1) 在碱性条件下 Al3e++3OH-→Al(OH)3 (2) 在酸性条件下 Al3e++3H2O→Al(OH)3+3H+ (3) 铁阳极 Fe-2e→Fe2e+ (4) 在碱性条件下 Fe2e++2OH-→Fe(OH)2 (5) 在酸性条件下 4Fe2e++O2+2H2O→4Fe3e++4OH-(6) 另外,水的电解还有氧气放出 2H2O-4e→O2+4H+ (7) 在阴极发生如下反应 2H2O+2e→H2+2OH-(8) 电絮凝法在处理过程中具有多功能性,除了电絮凝作用之外还有电化学氧化和还 原、电气浮等作用。 2 电絮凝反应器中电极组合方式 在电絮凝器中,按照电极板两侧的电极极性分,电絮凝器可分为单极式、双极式

增塑剂、交联剂

213 甘油添加量对膜性能的影响 反应条件:成膜溶液的pH 值为3 ,反应温度为50 ℃。 结果见表2。 表2 不同配比对膜性能的影响 配比4∶1 3. 5∶1 3∶1 2. 5∶1 2∶1 厚度/ mm 0. 138 0. 163 0. 191 0. 190 0. 168 透光率/ 100 16. 8 17. 3 17. 5 18. 2 20. 2 水溶性/ % 32. 2 23. 3 21. 6 21. 1 18. 2 透水率1. 82 2. 11 2. 16 2. 33 3. 20 脂肪酸值25. 5 25. 7 26. 3 27. 1 29. 4 抗拉强度/ g 686. 246 637. 623 585. 472 490. 577 448. 660 延伸率/ % 78. 83 121. 22 143. 45 182. 10 201. 23 由表2 可知,当谷朊粉和甘油配比从4∶1 到3∶1 时,膜 的厚度随着甘油用量增加而不断增大,当谷朊粉和甘油配比从3∶1 到2∶1 时,膜的厚度随着甘油量的增加而不断减小; 随着甘油用量的增大,膜的透光率也不断增大;但膜的水溶性随着甘油量的增加而逐渐减小,而且膜的阻水性和阻氧性随着甘油在膜体系中含量的上升而不断下降;同时,随着甘油含量在膜体系中的增大,膜的抗拉强度不断增大,膜的延伸率减小。故配比取3. 5∶1 左右。 5 成膜添加剂 可食性薄膜中可以加入各种物质来改变其力学 性能、渗透性能、营养性能等。比如增塑剂是一些 低挥发性的化合物,它可以使可食性聚合物薄膜更 柔软。常用食品增塑剂有:甘油、山梨酸、甘露醇、 蔗糖、丙二醇和聚乙二醇等多元醇 2. 4 增塑剂用量对胶原蛋白膜机械 性能的影响 制膜条件: 采用水解时间为1. 5 小时的胶原4. 5% , 淀粉0. 4% , 戊 二醛0. 25% , 干燥温度60℃, 干燥 时间10 小时。 图7增塑剂用量对胶原蛋白膜 抗张强度的影响 图8增塑剂用量对胶原蛋白膜断裂 伸长率的影响 图7、图8 表明, 随着增塑剂用 量的增加, 胶原蛋白膜的抗张强度

解析常用塑料助剂的分类

本文摘自再生资源回收-变宝网(https://www.doczj.com/doc/c71787926.html,) 解析常用塑助剂的分类 塑料助剂可以从广义和狭义两个方面解释。广义的塑料助剂是指在塑料制品加工成型过程中,所有添加在树脂基体中,可用于降低制品成本、改善或赋予制品某项使用性能,或者是改善塑料制品的加工性,都可称为塑料助剂。包括有机、无机、小分子和大分子。狭义的塑料助剂又称为塑料添加剂,特指可以改善塑料加工性能或者是改善或赋予制品某项性能的化工原料。如润滑剂、抗氧剂和阻燃剂等。在这里主要给大家介绍广义上的塑料助剂。 二、常用塑料助剂分类 目前,塑料常用助剂大致分为以上三大类。狭义上的助剂其实就是指上图中的加工助剂和功能助剂,并不包括填料。接下来,变宝网小编就给大家详细的介绍每一类助剂。 1、加工类助剂 塑料加工类助剂,根究用途可以分为三类: ①润滑剂:润滑剂的作用是降低物料之间及物料和加工设备表面的摩擦力,从而降低熔体的流动阻力,降低熔体粘度,提高熔体的流动性,避免熔体与设备的粘附,提高制品表面的光洁度等。 润滑剂按作用可分为内润滑剂和外润滑剂。实质也就是我们通常说的增塑剂和脱模剂。只是在不同树脂中叫法不一样,如增塑剂通常是在pvc树脂加工中应用较多,实质也是其内润滑的作用。内、外润滑剂的区分主要依其与树脂的相容性大小。内润滑剂与树脂亲和力大,其作用是降低大分子间的作用力;外润滑剂与树脂的亲和力小,其作用是降低树脂与加工机械之间的摩擦。

常用的润滑剂有饱和烃类(固体石蜡、液体石蜡、微晶石蜡和低分子量聚乙烯等)、金属皂类(硬脂酸锌、硬脂酸钙、硬脂酸镁等)、脂肪族酰胺(EBS、油酸酰胺等)、脂肪酸类(硬脂酸、羟基硬脂酸)、脂肪酸酯类(PETS、单硬脂酸甘油酯、多硬脂酸甘油酯等)及脂肪醇类(硬脂醇、季戊四醇等)。 ②热稳定剂:塑料在加工成型过程中,会因加热、摩擦或剪切等产生热量,或因塑料制品在使用过程中受热而发生性能变坏。为了防止塑料受热发生降解老化,需要添加一种使塑料在受热时不会引起分解和变化的物质,这种物质就叫做热稳定剂。主要用于PVC 树脂的加工。 纯PVC树脂对热极为敏感,当加热温度达到90℃以上时,就会发生轻微的热分解;当温度达到120℃后,即发生明显的热分解,使PVC树脂颜色逐渐加深。PVC的热降解机理十分复杂,但PVC的热分解反应的实质是由于脱HCl反应引起的一系列反应,最后导致大分子断裂。 常用热稳定剂品种:铅盐类热稳定剂(三盐基硫酸铅、二盐基亚磷酸铅、二盐基硬脂酸铅、碱式碳酸铅等);金属皂类热稳定剂(硬脂酸锌、硬脂酸钙、硬脂酸镁等);有机锡类热稳定剂(含硫有机锡类、有机锡羧酸盐等);稀土热稳定剂。 ③发泡剂:所谓发泡剂就是使对象物质成孔的物质,它可分为化学发泡剂和物理发泡剂和表面活性剂三大类。化学发泡剂是那些经加热分解后能释放出二CO2和N2等气体,并在聚合物组成中形成细孔的化合物;物理发泡剂就是泡沫细孔是通过某一种物质的物理形态的变化,即通过压缩气体的膨胀、液体的挥发或固体的溶解而形成的;发泡剂均具有较高的表面活性,能有效降低液体的表面张力,并在液膜表面双电子层排列而包围空气,形成气泡,再由单个气泡组成泡沫。 2、功能性助剂

交联剂在纺织品中的应用及进展_史亚鹏

史亚鹏1,2,周向东1,2 (1.苏州大学现代丝绸国家工程实验室,江苏苏州215123; 2.苏州大学纺织与服装工程学院,江苏苏州215021) 摘要:综述了国内外有关酰胺-甲醛类、 脲醛类、多元羧酸类、环氧化合物类、氮丙环类、反应性有机硅类、乙烯砜类、1,3,5-三丙烯酰胺六氢化均三嗪类、乙二醛类、水性聚氨酯类等交联剂在纺织品中的应用及研究进展,概括了这些类型交联剂的优势及存在的问题,并分析了它们的发展趋势. 关键词:交联剂;纺织品;应用;进展中图分类号:TQ340.47 文献标识码:A 文章编号:1004-0439(2011)12-0009-05 交联剂在纺织品中的应用及进展 Application and research progress of cross-linking agents in textiles SHI Ya -peng 1,2,ZHOU Xiang -dong 1,2 (1.National Engineering Laboratory for Modern Silk,Suzhou 215123,China;2.College of Textile and Clothing Engineering,Soochow University,Suzhou 215021,China) Abstract :The application and research progress of cross-linking agents in the textiles at home and abroad were reviewed,including amide -formaldehyde,urea formaldehyde,polycarboxylic acid,epoxy compounds,aziridines,reactive silicone,vinyl sulfone,1,3,5-triacryloylhexahydro -1,3,5-triazine,glyoxal,water -based polyurethane.The advantages and problems of the cross-linking agents were summarized,and the development trend of cross-linking agents was analyzed. Key words :cross-linking agent;textiles;application;progress 收稿日期:2011-01-14 基金项目:江苏高校优势学科建设工程资助项目(PAPD ) 作者简介:史亚鹏(1985-),男,陕西咸阳人,在读硕士研究生,主要从事功能纺织助剂的开发及纺织品后整理的研究. 通信作者:周向东(1965-),男,湖南邵阳人,教授,硕士生导师,博士,主要从事功能纺织品助剂的开发及纺织品后整理的研究与教学工作. 纺织品在印染加工中需要用交联剂进行一定的化学处理,以提高其加工性、 穿着舒适性等.交联剂在线型分子间起架桥作用,使多个线型分子相互键合交联成网状或体型结构的物质.[1]而纺织品用交联剂则是指能在纤维大分子之间、纤维大分子与助剂分子之间或纤维大分子与染料分子之间形成共价键交联,提高其形态稳定性、弹性以及其他物理化学性能的一类化合物.纺织品用交联剂的分子结构中通常含有2个或多个能与纤维上羟基、氨基等发生交联的反应性基团,可以在纤维大分子之间起到架桥作用,形成纤维-交联剂组成的网状交联结构体系.[2]38纺织品用交联剂有着广泛的应用领域,如用于纤维素纤维和蛋白质纤维的抗皱整理[3]325;在装饰织物硬挺整理中,用于提 高硬度和耐久牢度[4]31;在涂料印花色浆中,用于改善涂料印花的摩擦牢度[5];用于羊毛的处理,可赋予纤维防毡缩性能[6]16;在纤维改性中,增强纤维与染料的反应性,形成共价键结合,达到提高染色牢度的目的.[7] 1 交联剂种类 1.1 酰胺-甲醛类交联剂 为了改善纺织品的抗皱性,从20世纪30年代开始,人们采用三聚氰胺-甲醛树脂.脲醛树脂和三聚氰胺-甲醛树脂主要是通过高温焙烘,在织物上形成网状缩聚物并沉积于纤维中,很少与纤维素羟基发生交联,其工作液不稳定,分子质量会越聚越大,溶液的粘度也越来越大,抗皱效果不理想.[2]38 印染助剂 TEXTILE AUXILIARIES Vol.28No.12Dec .2011 第28卷第12期2011年12月

PCABS合金相容增韧剂的分类与应用

PC/ABS合金相容剂的分类与应用 根据PC/ABS合金相容剂的两相之间的作用特征,合金相容剂可分为反应型相容剂和非反应型相容剂两类。 反应型相容剂 反应型相容剂主要通过自身的反应基团在混炼时同原料聚合物发生化学反应形成化学键提高相容性。 PC/ABS反应性相容增韧剂NX-001 一般是大分子型的,其活性官能团可以在分子的末端,也可以在分子的侧链上。其大分子主链可以和共混体系中的至少一种高分子基体相同,也可以不同。但在不同的情况下,其大分子主链应和共混体系中的至少一种高分子基体有较好的相容性。 这类相容剂优点是作用效率高、所要加入量少,综合成本低。

主要分类及品种 01、环状酸酐型(MAH) 环状酸酐型类反应型相容剂是早期常用的一类反应型相容剂。其中,以马来酸酐接枝到聚烯烃相容剂为主,其接枝率一般为0.8%-1.0%,主要应用于聚烯烃塑料的改性。将马来酸酐接枝到PS或以PS为基体的共聚反应型相容剂,可应用于PA/PC、ABS/GF、PA/ABS的改性、共混或合金。一般用量5%-8%。近年来已经出现新型的相容增韧剂,由于酸酐型的酸酐活性低,不稳定,易氧化。所以逐渐被新型反应性相容增韧剂替代 02、羧酸型 羧酸类中的代表产品为丙烯酸型相容剂。通常是将丙烯酸接枝到聚烯烃树脂上,用途大体与马来酸酐型相同。 03、环氧型 新型环氧型(GMA)反应型相容剂是环氧树脂或具有环氧基的化合物与其他聚合物接枝共聚而成。由于这类反应型相容剂含有活性高的环氧官能团,稳定性好,GMA的接枝率高,所以活性和稳定性均优于马来酸酐的基团。活性环氧集团和合金的官能团发生原位聚合反应,形成稳定的化学键,使合金两相形成网状结构,大大增强了两相的粘合性,能起到良好的相容曾韧作用。常用的牌号有诺信高分子的PC/ABS相容增韧剂NX-001. 04、恶唑啉型 用恶唑啉接枝的PS,即RPS,是一种比较重要的相容剂,接枝率为1%,特点是应用领域较广,不仅能与一般的含氨基或羧基的聚合物反应,还可与含羰基、酸酐、环氧基团反应,生成接枝共聚物。因此,它可以用于PS及多种工程塑料或经改性的聚烯烃树脂。此外,它还可以"就地"相容化,直接用于塑料改性、共混和合金。 05、酰亚胺型 酰亚胺型为改性聚丙烯酸酯,主要适用于PA/PO、PC/PO、PA/PC等工程塑料合金或共混。 06、异氰酸酯型 成分为间-异丙烯基-2,2-二甲基苯酰异氰酸酯。可用于含有氨基及羧基的工程塑料合金。 07、低分子型 低分子型相容剂是反应型相容剂,以反应型单体及低分子量聚合物,包括一些能与塑料合成的一个组分相容,并与另一组分反应、交联或键合,从而形成塑料合金的有机和无机化合物。这样,不仅简化了制造塑料合过程,而且原料易得,成本较低。不过,对挤出机的要求较高,

水处理过程中化学絮凝的原理和应用

水处理过程中化学絮凝的原理和应用 摘要:絮凝沉降(或浮上)进行固液分离的方法是目前水处理技术中重要的分离方法之一,采用水溶液高聚物为絮凝剂来处理工业废水、生活废水、工业给水、循环冷却水、民用水时,具有促进水质澄清,加快沉降污泥的过滤速度,减少泥渣数量和滤饼便于处置等优点[1]。本文介绍了采用絮凝剂絮凝的原理、絮凝剂的分类、在生产生活中的应用以及研究进展。 关键词:絮凝剂原理应用共聚物衍生物 一、化学絮凝原理 絮凝剂的化学絮凝原理是假设粒子以明确的化学结构凝集,并由于彼此的化学反应造成胶质粒子的不稳定状态。当发生凝结作用时,胶体粒子必失去稳定作用或发生电性中和,不稳定的胶体粒子再互相碰撞而形成较大的颗粒。当加入絮凝剂时,它会离子化,并与离子表面形成价键。为克服离子彼此间的排斥力,絮凝剂会由于搅拌及布朗运动而使得粒子间产生碰撞,当粒子逐渐接近时,氢键及范德华力促使粒子结成更大的颗粒。碰撞一旦开始,粒子便经由不同的物理化学作用而开始凝集,较大颗粒粒子从水中分离而沉降 [2]。 二、化学絮凝剂的简述 在絮凝过程中用到的助剂称为絮凝剂。絮凝剂有不少品种,其共通特点是能够将溶液中的悬浮微粒聚集联结形成粗大的絮状团粒或团块。化学絮凝剂简述如下。

1.无机絮凝剂 1.1无机絮凝剂的分类和性质[3] 无机絮凝剂按金属盐可分为铝盐系及铁盐系两大类。在传统的铝盐和铁盐的基础上发展合成出聚合硫酸铝、聚合硫酸铁等新型的水处理剂,它的出现不仅降低了处理成本,而且提高了功效。这类絮凝剂中存在多羟基络离子,以oh-为架桥形成多核络离子,从而变成了巨大的无机高分子化合物,无机聚合物絮凝剂之所以比其他无机絮凝剂能力高、絮凝效果好,其根本原因就在于它能提供大量的如上所述的络合离子,能够强烈吸附胶体微粒,通过粘附、架桥和交联作用,从而促使胶体凝聚。同时还发生物理化学变化,中和胶体微粒及悬浮物表面的电荷,降低了zeta电位,使胶体粒子由原来的相斥变成相吸,破坏了胶团的稳定性,促使胶体微粒相互碰撞,从而形成絮状混凝沉淀,而且沉淀的表面积可达(200~1000)m2/g,极具吸附能力。也就是说,聚合物既有吸附脱稳作用,又可发挥黏附、桥联以及卷扫絮凝作用。 1.2改性的单阳离子无机絮凝剂 除常用的聚铝、聚铁外,还有聚活性硅胶及其改性品,如聚硅铝(铁)、聚磷铝(铁)。改性的目的是引入某些高电荷离子以提高电荷的中和能力,引入羟基、磷酸根等以增加配位络合能力,从而改变絮凝效果,其可能的原因是[4]:某些阴离子或阳离子可以改变聚合物的形态结构及分布,或者是两种以上聚合物之间具有协同增效作用。

凝胶制剂及总结

凝胶制剂概况 凝胶制剂由药物溶解或均匀分散于凝胶中制成。因凝胶能与作用部位紧密黏附,有较好的生物相容性,多通过皮肤、黏膜给药,也可口服发挥药效。由于凝胶吸水溶胀后形成的水化凝胶层对药物有一定的控制释放作用,现广泛用于缓释、控释系统,加上凝胶制剂本身具有透气性佳,不污染衣物,作用持久,使用方便等特点,近来对凝胶制剂的研究日益增多。 1. 制剂类型 1.1 按作用部位分 ①皮肤用:此类制剂非常多,所用药物主要涉及抗细菌、抗病毒、抗真菌、解热镇痛激素、局部麻醉、解毒、维生素类以及许多具有祛瘀镇痛、活血通经、清热燥湿、泻火解毒、疗疮等作用的中药。 ②口腔黏膜用:多用于治疗口腔厌氧菌感染及促进溃疡愈合,以硝咪唑类药物为主。 ③眼贴膜用:盐酸地匹福林眼用凝胶剂,阿昔洛韦眼用凝胶。 ④鼻粘膜用:复方环麻滴鼻凝胶剂,用于治疗急慢性鼻窦炎、过敏性鼻炎及感冒引起的鼻塞等。 ⑤直肠粘膜用:直肠用凝胶剂来治疗小儿哮喘。 ⑥口服:口服云南白药凝胶治疗消化道大出血。 1.2 按剂型分 ①普通亲水凝胶:凝胶制剂大多采用亲水性高聚物为基质,制成含药的普通亲水凝胶。 ②复乳型凝胶:司盘. 80和三乙醇胺为复乳的乳化剂,以羧甲基纤维素钠(CMC. Na) 和聚乙烯醇(PVA. 124)作为混合型亲水凝胶基质,制成W/0/ W复乳凝胶剂,具有 药物浓度高、不易挥发、作用持久的特点。 ③脂质体凝胶:为解决皮肤或黏膜给药所致的药物不良反应问题,将剂型改作脂质体。有报道对硝酸益康唑脂质体凝胶和盐酸丁卡因脂质体凝胶进行研究,取得满意效果。 2. 常用基质 凝胶是由大分子材料交联成网状结构作为骨架,凝胶基质多为单独或联合使用亲水性高聚物的大分子材料,基质的选择对凝胶剂的流变学性质及释药性有重要影响。常用基质有以 下几种。 ①丙烯酸树脂类:以卡波姆为代表,还有以 1 %交联聚丙烯酸钠-400(SDL-B —400)为 基质的。卡波姆,又名卡波普(carbopol)为一类由丙烯酸与烯丙基蔗糖或季戊四醇交联而成的高分子聚合物,根据聚合度的不同,形成了多种规格的产品。卡波姆易溶于水形成酸性胶体溶液,加无机碱或有机碱可将卡波姆中和成透明且稠厚的凝胶,释药快,无毒,无刺激, 与皮肤、黏膜具有良好的藕合性,所成的凝胶还具有良好的乳化性和成膜性,目前已成为最常用的理想的凝胶基质。 ②纤维素衍生物:常用的有CMC—Na、羟丙基甲基纤维素(HPMC)、羟丙基纤维素(HPC)羧甲基淀粉钠等。 ③乙烯聚合物:常用的有聚乙烯吡咯烷酮(PVP卜聚乙烯醇(PVA)等。 ④天然树胶:有西黄耆胶、果胶、明胶、海藻酸、黄原胶、琼脂等。 3. 几种凝胶基质的配方举例 ①苓柏凝胶的最佳基质配方为:羟丙甲基纤维素 2 . 5%,卡波姆0. 75%,三乙胺 0.75% ,甘油5% ,丙二醇5% ,,氮酮2% 。(加入药物、蒸馏水等总重的比例) ②盐酸米诺环素微球凝胶基质处方:卡波姆940 1 . 0 g,丙二醇10 g,甘油10g,氢氧

常用的压裂液交联剂类型与品种

常用的交联剂类型与品种: (1)两性金属(或非金属)含氧酸的盐:由两性金属(或两性非金属)组成的含氧酸根阴离子的盐,如硼酸盐、铝酸盐、锑酸盐、钛酸盐等,一般为弱酸强碱盐。在水溶液中电离水合后溶液呈碱性。这些两性金属离子以羟基合物酸根阴离子的形式存在。大多数两性金属含氧酸盐在溶液PH值为7-11时,其羟基合物阴离子通过极性键和配位键与含有邻位顺式羟基的各种非离子型半乳甘露糖植物胶及其非离子型衍生物交联。锑酸盐需在PH值为3-6时与非离子型植物胶及其非离子型衍生物交联。 常用的交联剂:硼酸钠、偏铝酸钠、焦锑酸钾等。 (2)无机酸的两性金属盐:无机酸的两性金属盐,如硫酸铝、氯化铬、硫酸铜、氯化锆等一般为强酸弱碱盐。其金属离子在水中电离、水合后形成水合络离子。水合物水解生成羟基水合阳离子,溶液呈酸性。提高溶液的PH值,羟基水合离子以羟桥联结形成多核配合物。不同的金属离子形成羟基水合物的PH条件不同。一般无机酸的两性金属盐在PH值4-7条件下,以多核羟桥配合物的形式通过极性键和配位键与具有钠羧酸基、酰胺基、邻位反式羟基的聚合物交联,即与羧甲基植物胶、羧甲基纤维素、聚丙烯酰胺阴离子型衍生物、海藻酸钠及生物聚多糖等交联。某些聚合物,如羟乙基纤维素,则需在PH值为11-13条件下与以上同类的多核配合物交联。 常用的交联剂:三氯化锆、硫酸铬钾、重铬酸钾、三氯化铝、硫酸铝、硫酸铜、四氯化钛、氧氯化锆等。 (3)无机酸酯:无机酸分子中的氢原子被烃基取代生成无机酸酯。用作交联剂的无机酯主要是一些高价两性金属含氧酸酯,如钛酸酯、锆酸酯。对于非离子型植物胶来说,一般难以与钛酸盐和锆酸盐交联。因钛盐和锆盐在浓的强碱溶性中并不生成组成固定的钛酸盐、锆酸盐,所得的二氧化化钛水合物或二氧化锆水合物吸附了碱金属氢氧化物的沉淀。用这种胶状沉淀交联非离子型植物胶,其冻胶性能差。用钛盐、锆盐制取的钛酸酯、锆酸酯则是非离子型植物胶的理想的高温交联剂。 常用的交联剂:双三乙醇胺双异丙基钛酸酯(有机钛)、双乳酸双异丙基钛酸铵(有机钛)、正锆酸四乙酰丙酮酯(有机锆)等。 (4)醛类:能溶于水的低级醛,如甲醛、乙醛、乙二醛等是聚丙烯酰胺及其衍生物的有机物交联剂。醛类与聚丙烯酰胺及其衍生物的交联反应一般要在一定的PH值条件下,一定的反应温度下,作用一定的时间。生成的网状体型凝胶

增碳剂种类

增碳剂种类汇编 一、转炉炼钢对增碳剂有什么要求 转炉冶炼中、高碳钢种时,使用含杂质很少的石油焦作为增碳剂。对顶吹转炉炼钢用增碳剂的要求是固定碳要高,灰分、挥发分和硫、磷、氮等杂质含量要低,并要干燥,干净,粒度要适中。其固定碳ωC≥96%,挥发分≤%,ωS≤%,水分≤%,粒度在1~5mm;粒度太细容易烧损,太粗加入后浮在钢液表面,不容易被钢水吸收。 二、增碳剂的分类 按照材质分,一般可以分为:冶金焦增碳剂,煅煤增碳剂,石油焦增碳剂,石墨化增碳剂,天然石墨增碳剂,复合材料增碳剂。 1.石油焦增碳剂 石油焦增碳剂采用石油焦煅烧提纯等加工而成,外观成圆粒或多棱形。其特点高碳、低硫,低灰是冶金化工、机械、电力等行业理想的加碳材料和反应中间体,得到广泛应用。 增碳剂产品技术指标如下

冶金焦增碳剂,就是通常冲天炉用的大焦,其作用除了熔炼之外,还有就是为金属炉料增碳。 煅煤增碳剂,主要产自宁夏石嘴山,内蒙乌海。成分一般为C:90-93%,。主要用于炼钢企业使用,部分铸造企业用于灰铸铁。缺点是,碳含量低,融化慢,浪费电能,残余量大。 石油焦增碳剂,主要产于辽宁,天津和山东,辽宁主要生产弹丸焦,用于铸造不太好,山东和天津的石油焦可以用于铸造灰铸铁。成分一般为C:96-99%;。主要用于炼钢,灰铸铁,刹车片,包芯线等等。 石墨化增碳剂,主要产地为山东,河南等,生产厂家较少,主要材质是石墨化石油焦和石墨化电极。一般成分为碳含量>%;硫<。主要用于球墨铸铁。特点是吸收快,碳高硫低。 天然石墨增碳剂,主要是天然石墨,碳65-99%不等,主要用于炼钢厂,铸造厂不适用。 复合材料增碳剂,近期市面上有一些人工制造的棍状颗粒或者规则球状颗粒增碳剂,采用石墨粉,焦粉,石油焦等等下脚材料,添加粘结剂用机器压制成型,碳一般在93-97%之间,硫不稳定,一般在之间浮动。特点是价格便宜,缺点是使用时无法稳定加入量和控制硫含量。

共混物的相容性(精)

共混物的相容性 学校名 称:广东轻工职业技术学院院系名 称:轻化工技术学院 时 间:2017年4月28日

1.相容性的概念 相容性是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力,共混物性能的好坏与它们之间的相容性大小有很密切的关系:相容性好,则所形成的共混物稳定;反之,两种聚合物之间则可能发生相分离,性能较差。 不同聚合物之间相互容纳的能力差别很大。不同种类聚合物共混时可能出现三种形态:即完全相容、部分相容和不相容。 完全相容的聚合物共混体系,其共混物可形成均相体系,因而它具有单一的T g ,如图4-1(a)所示。部分相容的聚合物,其共混物为两相体系,其共混物具有 两个T g ,且两个T g 峰较每一种聚合物自身的T g 峰更为接近,如图4-1(b)所示。 还有许多聚合物之间是不相容的,不相容聚合物的共混物也有两个T g 峰,但两 个T g 峰的位置与每一种聚合物自身的T g 峰是基本相同的,如图4-1(c)所示。 图4-1以T g 表征共混物相容性的示意图 ——单一聚合物 ------- 共混物 在聚合物共混体系中,最具应用价值的体系是聚合物间“部分相容”的两相 体系。良好的相容性,是聚合物共混物获得优异性能的一个重要前提。共混体系的热力学相容性及共混加工过程中的动力学因素对研究共混体系的形态与结构有着及其重要的意义。 2.热力学相容性 聚合物热力学相容性是指两种高聚物在任何比例时都能形成稳定的均相体系的能力。因此,若要使两种聚合物相互溶解,在恒温恒压下聚合物混合时必须

是自由能减少,即△G <0。而体系自由能的变化取决于混合时焓的变化(△H m )和熵的变化(△S m ),以及混合时的温度(T),即应满足: △G =△Hm —T △Sm <0 式4-1 式4-1也可用于判定热力学相容是否成立。 在式4-2中,对于两种聚合物的共混: △ S m = — R(n 11n 1 φ+ n 21n 2 φ) 式4-2 式中:n 1,n 2 —— 两种聚合物的物质的量 1φ,2φ —— 两种聚合物的体积分数 R —— 气体常数 由式4-2可以看出,△S m 为正值,即在混合过程中,熵总是增加的。但是,对于大分子间的共混,熵的增加是很小的,且聚合物相对分子质量越高,熵的变化就越小。这时,△S m 的值很小,甚至接近于0。 Scott 使用溶解度参数δ来判定聚合物之间的热力学相容性: △H m =V m (δ1—δ2) 21φ2φ 式 4-3 式中 δ1,δ 2 —— 两种聚合物的溶解度参数 V m ——共混物的摩尔体积 1φ,2φ——两种聚合物的体积分数 为满足热力学相容的条件,即△H m —T △S m <0,且△S m 的值很小,甚至接近于0,从式4-3中可以看出,δ1与δ2必须相当接近,才能使△H m 的值足够地小。因此,δ1与δ2之间的差值,就成了判定热力学相容性的判据。常见聚合物的溶解度参数如表4-3所示。

相关主题
文本预览
相关文档 最新文档