当前位置:文档之家› 复合材料的增韧技术

复合材料的增韧技术

《复合材料工艺与设备》课程介绍

《复合材料工艺与设备》课程介绍 一、课程简介 《复合材料工艺与设备》是复合材料与工程专业复合材料方向的一门主要的专业课,其主要任务是使学生掌握复合材料研究与生产中的各种成型工艺方法、成型工艺原理、复合材料工艺配方设计等方面的系统知识。通过本科程学习,要求学生掌握复合材料的基本性质、原材料的选用、各种典型成型工艺的主要工艺过程与复合原理,并了解这些工艺的主要成型设备。掌握各成型工艺制品的主要性质及其在实际生活中的应用。该课程的学习对本专业其他专业课的学习具有重要的关联作用。 课程的主要教学内容包括: 1、热固性树脂基复合材料的生产工艺与设备要求学生掌握手糊成型、夹层结构成型、模压成型等各种热固性树脂基复合材料成型工艺的原材料选择、工艺特点、成型工艺原理和过程。了解这些成型工艺的发展概况和成型设备。 2、热塑性树脂基复合材料的生产工艺与设备要求学生掌握树脂基体的成型性能、聚合物熔体的流变行为、聚合物的结晶和定向。掌握挤出成型、注射成型及片状模塑料冲压成型等热塑性树脂基复合材料的成型工艺的工艺原理、工艺过程。了解热塑性树脂基复合材料的发展,成型工艺的发展概况和成型设备。 3、无机非金属基复合材料成型工艺及设备掌握短纤维增强水泥的制造工艺、水泥对玻璃纤维的微观侵蚀机理等。了解纤维增强水泥基复合材料的发展概况和纤维水泥的增强机理。了解石膏基和陶瓷基复合材料的发展概况、成型工艺与成型设备。 4、金属基复合材料成型工艺及设备了解金属基复合材料的发展概况和复合工艺。 本课程的实验教学内容共有共有两个实验项目,包括不饱和聚酯树脂粘度的测定和手糊玻璃钢板。 通过本课的教学,掌握树脂基复合材料典型成型工艺如手糊成型工艺、夹层结构成型、模压成型、层压、缠绕、拉挤成型、注射成型等工艺的原材料选用、主要工艺过程与复合原理,了解这些成型工艺的发展概况和成型设备。掌握纤维增强水泥基复合材料的分类、特点、缺陷及应用,短纤维增强水泥的制造工艺、

高性能基体树脂 复合材料增韧新途径

高性能基体树脂和复合材料增韧新途径前言:材料复合化是新材料技术的重要发展趋势之一。所谓高性能复合材料,是指具有高比模量、高比强度、优异的耐高温性能及多功能的复合材料。高性能复合材料主要以高性能纤维为增强体的复合材料为主,基体树脂作为高性能复合材料的重要组成部分,其性能及成本对高性能复合材料的设计、制备、性能、加工具有重要意义。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。高性能热固性树脂是目前使用最广泛的先进复合材料基体,其复合材料具有优异的力学性能,可在恶劣的环境下长期使用。环氧树脂是聚合物基复合材料中应用最广泛的基体树脂之一。EP是一种热固性树脂,具有优异的粘接性、耐磨性、力学性能、电绝缘性能、化学稳定性、耐高低温性,以及收缩率低、易加工成型、较好的应力传递和成本低廉等优点。但环氧树脂固化后交联密度高,呈三维网状结构,存在内应力、质脆、耐疲劳性、耐热性、耐冲击性差等不足,以及剥离强度、开裂应变低和耐湿热性差等缺点,加之表面能高,在很大程度上限制了它在某些高技术领域的应用。因此,对环氧树脂的增韧研究一直是人们改性环氧树脂的重要研究课题之一。 一、高性能基体树脂及其复合 1. 高性能基体树脂 材料是先进科技发展的重要物质基础,以高科技含量的航空航天领域为例,新型航空、航天飞行器的诞生往往建立在先进新材料研制的基础上,航空、航天飞行器性能的突破很大程度上受到材料发展水平的制约[1]。高性能树脂基复合材料以其轻质、高比强、高比模、高耐温和极强的材料一性能可设计性而成为发展中的高技术材料之一,其在航空、航天工业中的应用也显示出了独特的优势和潜力,是航空、航天材料技术进步的重要标志。 目前通用的高性能树脂基体通常可以分为两大类:热塑性和热固性树脂。 典型的高性能热塑性树脂包括热塑性聚酰亚胺、聚酰胺、聚醚砜、液晶聚酯、聚醚醚酮等。由于高性能热塑性树脂一般具有高的熔点和熔体黏度,作为复合材料基体使用时成型工艺性差,高温使用时易发生蠕变,极大地限制了其作为复合材料基体树脂的使用[2]。

复合材料成型工艺大全及说明

复合材料成型工艺大全及说明 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业 生产。 视所选用的树脂基体材料的不同,各方法适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。(2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅 需一套模具便能生产。 ◇ 层压及卷管成型工艺1、层压成型工艺层压 成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,

放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。2、卷管成型工艺卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品 成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。卷管成型按其上布方法的不同而可分为手工上布法和连续机械法两种。其基本过程是:首先清理各辊筒,然后将热辊加热到设定温度,调整好胶布张力。在压辊不施加压力的情况下,将引头布先在涂有脱模剂的管芯模上缠上约1圈,然后放下压辊,将引头布贴在热辊上,同时将胶布拉上,盖

复合材料工艺及设备-教学大纲

《复合材料工艺及设备》课程简介及教学大纲1.课程简介 《复合材料工艺及设备》课程简介 课程代码:613010421学分:1 总学时:16 课程性质:专业限选课先修课程:高分子物理、高分子化学 授课对象:材料科学与工程专业本科生 内容提要: 复合材料是由两种或两种以上的物理和化学性质不同的物质组合而成的一种多组分固体材料。复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是组分材料的简单加和,有着重要的改进。在复合材料中,通常有一相为连续的相,成为基体;另外一相为分散的相,称为增强材料。 通过该课程的学习,使学生掌握复合材料的制备原理和生产过程、工艺流程的共性和特点,使学生对复合材料材料的性能、生产过程和应用有较全面地了解。 2.教学大纲 《复合材料工艺及设备》教学大纲 一、课程性质与教学目的 本课程是针对材料类专业本科生而开设专业限选课。过对本课程的学习,使学生了解复合材料的基本知识、基体和增强体种类和特点,聚合物基复合材料、金属基复合材料和陶瓷基复合材料的特点、制备和应用。 二、基本要求 通过本课程的学习,学生应对复合材料的发展概况有一个基本的了解,掌握复合材料的基本知识,包括增强原理,基体、增强体材料,复合材料的界面,熟悉各类复合材料的制备方法、性能特点和应用。 三、教学内容及教学要求 第1章绪论(3学时掌握) 1.1复合材料发展概况 1.2复合材料的基本性能

1.3复合材料的成型工艺 1.4 选择成型方法的原则 第2章手糊成型工艺及设备(3学时掌握) 2.1原材料的选择 2.2手糊成型模具与脱模剂 2.3手糊成型工艺过程 2.4 喷射成型工艺及设备 第3章夹层成型工艺及设备(2学时掌握) 3.1概述 3.2蜂窝夹层结构制造工艺及设备 3.3泡沫塑料夹层结构制造工艺及设备 第4章模压成型工艺及设备(2学时掌握) 4.1概述 4.2模压料 4.3模压工艺及设备 第5章层压工艺及设备(2学时理解) 5.1概述 5.2胶布制备工艺及设备 5.3层压工艺及设备 第6章缠绕成型工艺及设备(2学时理解) 6.1概述 6.2芯模 6.3缠绕规律 6.4 缠绕工艺及设备 第7章注射成型工艺及设备(2学时理解) 7.1 概述 7.2 热塑性树脂基复合材料注射成型工艺 7.3 热固性树脂基复合材料注射成型工艺 四、学时分配 五、习题及自学要求

无机刚性粒子增韧机理

无机刚性粒子增韧机理 刚性粒子增韧技术是制备兼具高刚性和高韧性的聚合物复合体系的有效手段 ,不仅具有重要的理论研究价值 ,而且具有广阔的应用前景和商业价值。 刚性粒子增韧聚合物的实现来源于两方面的贡献 其一是刚性粒子的引入所导致的局部应力状态的改变。通过脱粘、空化、三维应力约束的解除 ,为基体的剪切屈服提供应力条件。 其二是刚性粒子对基体的结晶行为产生影响 ,使晶粒尺寸变小 ,完善程度降低 ,甚至在界面附近形成择优取向的滑移阻力较小的结晶层 ,从而促进基体发生屈服变形。 基于大量的研究结果:最佳的增韧效果是适当的界面粘结强度 ,足够高的填料含量 ,基体较低的结晶度和屈服应力等因素所决定的。 有也有人理解: (a)聚合物受力变形时,刚性无机粒子的存在产生应力集中效应,引发其周围的基体屈服〔空穴、银纹、剪切带〕,这种基体的屈服将吸收大量变形功,产生增靭作用; (b)刚性无机粒子的存在能阻碍裂纹的扩展或钝化、终止裂纹。刚性无机粒子阻碍裂纹扩展的原因是普遍所接受的钉扎效应,即无论是裂纹遇到无机粒子时的钉扎攀越,还是钉扎-裂纹二次引发效应,都将使裂纹扩展的阻力增大,消耗变形功。 而无机粒子钝化或终止裂纹的原因是两相界面的部分受力脱黏形成空穴,从而使裂纹钝化而不致发展成破坏性开裂。众多的研究结果表明,只有超细的分散良好的无机填料才能对塑料基体进行有效的增韧。 如果还是不好理解,就当成炭黑能增韧增强橡胶就可以了。当然碳酸钙和这个效果差一些,到底差多少就和各家的技术有关了。 南京塑泰无机刚性粒子增韧母改性PPJ340性能 序号 1 2 3 4 母料品种及用量/ % 0 10 20 30 悬臂梁缺口冲击强度/(kJ/m2) 10.5 53.7 58.3 65.1 简支梁缺口冲击强度/(kJ/m2) 16.9 18.8 21.6 23.3 注:材料组份经简单混合后直接注射制样,模具温度50~60℃,PPJ340为扬子石化产共聚PP注塑料----当然其它PP以及聚乙烯都是可以的,上面只是以J340为例测试的数据。

复合材料工艺与设备复习材料

复合材料工艺与设备 增强纤维(CF,GF)的生产工艺与设备(表面处理工艺与设备) 玻璃纤维在生产过程中辅助材料的作用:浸润剂的种类,作用 种类:增强型浸润剂和纺织型浸润剂; 作用:1、润滑-保护作用;2、粘结-集束作用; 3、防止玻璃纤维表面静电荷的积累;4、为玻璃纤维提供进一步加工和应用所需要的特性;5、使玻璃纤维获得与基材有良好的相容性及界面化学结合或化学吸附等性能 C纤维生产工艺中,惰性气体和张力的作用 惰性气体作用:①保护新生产的纤维不受氧化②作为传热介质③排除裂解产物(非C元素)。张力的作用:①使分子取向②使分子结构规整③产生轴向拉伸应力 增强纤维在表面处理工艺中的影响因素 玻璃纤维表面处理的影响因素:①处理剂的种类;②偶联剂的用量1~%;③处理方法(前处理法、后处理法、迁移法);④烘焙温度与时间(偶联剂与GF的硅层结构的最佳结合程度); ⑤偶联剂溶液的配制(PH值的调节,一般用5%的氨水)。 手糊成型工艺与设备 手糊工艺的特点:优点:1、守护成型不受产品尺寸和形状的限制,适宜尺寸大、批量小、形状复杂产品的生产;2、设备简单、投资少、设备折旧费低;3、工艺简单;4、易于满足产品设计要求,可以在产品不同部位任意增补增强材料;5、制品树脂含量高,耐腐蚀性好;缺点:1、生产效率低,劳动强度大,劳动卫生条件差;2、产品质量不易控制,性能稳定性不高;3、产品力学性能较低。 原材料选择原则:1、产品设计的性能要求;2、手糊成型工艺要求;3、价格便宜,材料容易取得。聚合物基体的选择原则:1、能在室温下凝胶、固化。并在固化过程中无低分子物得产生。2、能配制成粘度适当的胶液,适宜手糊成型的胶液粘度为。3、无毒或低毒;4、价格便宜。增强纤维的选择原则:以玻璃纤维为例,工艺特点:1、很好的疏松性;2、铺覆的变形性;3、纤维的均匀性。 先进手糊法的种类:喷射成型、热压釜、树脂传递模塑与反应注射模塑。 RTM(树脂传递模塑)基本工艺过程:将液态热固性树脂及固化剂,由计量设备分别从储桶

环氧树脂增韧途径与机理

环氧树脂增韧途径与机理 环氧树脂(EP)是一种热固性树脂,因其具有优异的粘结性、机械强度、电绝缘性等特性,而广泛应用于电子材料的浇注、封装以及涂料、胶粘剂、复合材料基体等方面。由于纯环氧树脂具有高的交联结构,因而存在质脆、耐疲劳性、耐热性、抗冲击韧性差等缺点,难以满足工程技术的要求,使其应用受到一定限制。因此对环氧树脂的共聚共混改性一直是国内外研究的热门课题。 一、序言 目前环氧树脂增韧途径,据中国环氧树脂行业协会专家介绍,主要有以下几种:用弹性体、热塑性树脂或刚性颗粒等第二相来增韧改性; 用热塑性树脂连续地爨穿于热固性树脂中形成互穿网络米增韧改性; 通过改变交联网络的化学结构以提高网链分子的活动能力来增韧; 控制分子交联状态的不均匀性形成有利于塑性变形的非均匀结构来实现增韧。 近年来国内外学者致力于研究一些新的改性方法,如用耐热的热塑性工程塑料和环氧树脂共混;使弹性体和环氧树脂形成互穿网络聚合物(I PN)体系;用热致液晶聚合物对环氧树脂增韧改性;用刚性高分子原位聚合增韧环氧树脂等。这些方法既可使环氧捌脂的韧性得到提高,同时又使其耐热性、模量不降低,甚至还略有升高。 随着电气、电子材料及其复合材料的飞速发展,环氧树脂正由通用型产品向着高功能性、高附加值产品系列的方向转化。中国环氧树脂行业协会专家表示,这种发展趋势使得对其增韧机理的研究H益深入,增韧机理的研究对于寻找新的增韧方法提供了理论依据,因此可以预测新的增韧方法及增韧剂将会不断出现。 采用热塑性树脂改性环氧树脂,其研究始于20世纪80年代。使用较多的有聚醚砜(P ES)、聚砜(P S F)、聚醚酰亚胺(P EI)、聚醚醚酮(PE EK)等热塑性工程塑料,人们发现它们对环氧树脂的改性效果显著。据中国环氧树脂行业协会专家介绍,这些热塑性树脂不仪具有较好的韧性,而且模量和耐热性较高,作为增韧剂加入到环氧树脂中同样能形成颗粒分散相,它们的加入使环氧树脂的韧性得到提高,而且不影响环氧固化物的模量和耐热性。 二、热塑性树脂增韧环氧树脂 1、热塑性树脂增韧方法 未改性的PE S对环氧的增韧效果不明显,后来实验发现两端带有活性反应基团的P ES 对环氧树脂改性效果显著。如苯酚、羟基封端的P E S可使韧性提高100%;双氨基封端、双羟基封端的P E S也是有效的改性剂;环氧基封端的PE S由于环氧基能促进相互渗透,因而也提高了双酚A型环氧树脂的韧性。以二氨基二苯砜为固化剂,P E S增韧的环氧树脂

复合材料工艺与设备复习

0常用的增强材料 0常用的树脂基体(包括热塑性、热固性) 0常用的成型工艺 典型的液体成型:树脂传递模塑(RTM)、树脂膜渗透(RFI)、VARTM、VARI、SCRIMP、RLI 典型的热固性树脂成型:模压、喷射、RTM、RIM、拉挤、缠绕… 典型的热塑性成型:挤出、GMT、LFT、注射… 0工艺流程及其特点 0成型工艺参数及其控制 CM 复合材料 FRP 纤维增强塑料 FRTP 纤维增强热塑性塑料 SMC 片状模塑料 DMC 团状模塑料 BMC 块状模塑料 RTM 树脂传递模塑 RIM 反应注射模塑 RRIM 增强反应注射模塑 GMT 热塑性片状模塑料 AS AS树脂,丙烯腈—苯乙烯共聚物 CM是指由两种或两种以上的不同材料,通过一定的工艺复合而成的,性能优于原单一材料的多相固体材料。 高性能:高强度、高模量、耐高温、低密度、轻质高强、力学性能好、耐热性好、介电性能好。有些热防护功能、透波功能、吸波功能、阻尼功能等。 高性能树脂基复合材料的制备: 1)选材好,选用耐热性能、力学性能好的树脂基体; 2)选材好,选用力学性能比较好的碳纤维或者高性能的玻璃纤维; 3)成型方法要选择合适; 4)关键的成型设备要选择好; 5)成型工艺控制好,通过优化成型工艺条件,可以大幅提升材料性能。

第三章夹层结构 由高强度的蒙皮(表层)与轻质芯材组成的一种结构材料。 弥补玻璃钢弹性模量低、刚度差的不足。在同样承载能力下,大大减轻结构的自重。 加芯材的目的:维持两面板之间的距离,使夹层面板截面的惯矩和弯曲刚度增大。 优缺点 泡沫:质量轻、刚度大、保温隔热性能好、强度不高 蜂窝:质量轻、强度大、刚度大//应用:构件尺寸较大、强度要求较高的部件 波板:制作简单,节省材料,但不适用于曲面形状的制品,质量轻、刚度大。 第四章模压成型 ?什么是模压?将一定量的模压料放入金属对模中,在一定温度、压力作用下,固化成型制品的方法。 加热加压的作用:使模压料塑化、流动,充满空腔,并使树脂发生固化反应 模压料的工艺性:流动性、收缩性、压缩性。 流动性。在一定温度和压力下模压料充满模腔的能力。如流动性好,可用较低成型温度、压力,较容易成型复杂制品。过大,会导致树脂流失或纤维局部聚集,制品性能下降。过小,物料不能充满模腔或局部缺料,无法成型。 成型压力↑,剪切速率↑,流动性↑。在较低温度范围内T↑,η↓,流动性↑,T继续升高,流动性↓。在开始一段时间内t↑,流动性↑,继续延长t,流动性↓。分子结构压缩性原材料、模具结构和制品形状、成型工艺条件 ?模压料的组成:短纤维增强材料、树脂基体材料、辅助材料 控制:树脂溶液浓度,纤维长度,浸渍时间,烘干条件 制备:预混、预浸,浸毡法 与质量控制 ?短纤维模压料质量控制指标:树脂含量;挥发物含量;不溶性树脂含量SMC基本组成:不饱和聚酯树脂、增稠剂、引发剂、交联剂、低收缩添加剂、填料、内脱模剂、着色剂等混合物浸渍短切玻纤粗纱或玻纤毡,两表面加上保护膜(聚乙烯或聚丙烯薄膜)形成的片状模压成型材料。 SMC的增稠、低收缩作用、 SMC生产工艺:树脂糊制备,上糊操作,纤维切割沉降、浸渍、稠化 及其控制、模压工艺参数 第六章层压成型

陶瓷基复合材料增韧机制的研究现状及展望

陶瓷基复合材料增韧机制的研究现状及展望 现代陶瓷材料具有耐高温、硬度高、耐磨损、耐腐蚀及相对密度轻等许多优良的性能。但它同时也具有致命的弱点,即脆性,这一弱点正是目前陶瓷材料的使用受到很大限制的主要原因。因此,陶瓷材料的强韧化问题便成了研究的一个重点问题。陶瓷不具备像金属那样的塑性变形能力,在断裂过程中除了产生新的断裂表面需要吸收表面能以外,几乎没有其他吸收能量的机制,这就是陶瓷脆性的本质原因。人们经过多年努力,已探索出若干韧化陶瓷的途径包括纤维增韧、晶须增韧、相变增韧、颗粒增韧、纳米复合陶瓷增韧、自增韧陶瓷等。这些增韧方法的实施,使陶瓷材料的韧性得到了较大的提高,使陶瓷材料在高温结构材料领域显示出较强劲的竞争潜力。 一陶瓷基复合材料增韧技术 1、纤维增韧 为了提高复合材料的韧性,必须尽可能提高材料断裂时消耗的能量。任何固体材料在载荷作用下(静态或冲击),吸收能量的方式无非是两种:材料变形和形成新的表面。对于脆性集体和纤维来说,允许变形吸收的断裂能也很少。为了提高这类材料的吸能,只能增加断裂表面,即增加裂纹的扩展路径。 纤维的引入不仅提高了陶瓷材料的韧性,更重要的是使陶瓷材料断裂行为发生了根本性变化,由原来的脆性断裂变成了非脆性断裂。纤维增强陶瓷基复合材料的增韧剂之包括基体预压缩应力、裂纹扩展受阻、纤维拔出、纤维桥联、裂纹偏转、相变增韧等。 能用于增强陶瓷基复合材料的纤维种类较多,包括氧化铝系列(包括莫来石)、碳化硅系列、氮化硅系列、碳纤维等,除了上述系列纤维外,目前正在开发的还有BN、TiC、B 4 C等复相纤维。韩桂芳等用浆疗法结合真空浸渗工艺。制备了二维石英纤 维增强多孔Si 3N 4 ·2SiO 2 基复合材料,增加浸渗次数虽不能有效提高复合材料强度, 但却使裂纹偏转因子变小,断裂模式由韧性断裂向脆性断裂转变,断口形貌由纤维成束拔出变成多级拔出。尹洪峰等利用LPCVI技术制备了三维连续纤维增韧碳化硅基复合材料,实验表明复合材料界面相厚度为119mm时,体积密度为2101~2105g/cm3时,用碳纤维T300增韧后的复合材料的弯曲强度为459MPa,断裂韧性为2010MPa/m1/2,断裂功为25170J/m2.国外学者也研究了纤维增强陶瓷材料,并显著的提高了其断裂韧性。 纤维拔出是纤维复合材料的主要增韧机制,通过纤维拔出过程的摩擦耗能,使复合材料的断裂功增大,纤维拔出过程的耗能取决于纤维拔出长度和脱粘面的滑移阻力,滑移阻力过大,纤维拔出长度较短,增韧效果不好,如果滑移阻力过小,尽管纤维拔出长度较长,但摩擦做功较小,增韧效果也不好,反而强度较低。因此,在构组纤维增韧陶瓷基复合材料时,应该考虑:纤维的强度和模量高于基体,同时要求纤维强度具有一定的Weibull分布;纤维与基体之间具有良好的化学相容性和物理性能匹配;界面结合强度适中,既能保证载荷传递,又能在裂纹扩展中适当解离,又能有较长的纤维拔出,达到理想的增韧效果。 2、晶须增韧 陶瓷晶须是具有一定长径比且缺陷很少的陶瓷小单晶,因而具有很高的强度,是一种非常理想的陶瓷基复合材料的增韧增强体。陶瓷晶须目前常用的有SiC晶须, Si 3N 4 晶须和Al 2 O 3 晶须。基体常用的有ZrO 2 ,Si 3 N 4 ,SiO 2 ,Al 2 O 3 和莫来石等。黄政人等采 用30﹪(体积分数)SiC晶须增强莫来石,在SPS烧结条件下材料强度比热压高10﹪

复合材料学复习

1.复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种 多相固体材料 2.(1)按基体材料的类型分:金属基复合材料,聚合物基复合材料,无机非金 属基复合材料 (2)按增强材料的种类分:玻璃纤维复合材料,碳纤维复合材料,有机纤维复合材料,金属纤维复合材料,陶瓷纤维复合材料 (3)按用途分:结构复合材料,功能复合材料 3.结构复合材料是由基体、增强体和两者之间的界面组成,复合材料的性能则 取决于增强体与基体的比例以及三个组成部分的性能 4. 5.RMC中聚合物基体的主要作用是: a.把纤维粘接在一起; 》 b.分配纤维间的荷载; c.保护纤维不受环境影响。 6.无机凝胶材料主要包括水泥、石膏、菱苦土和水玻璃等 7.复合材料的增强体作用:增加强度、改善性能 8.界面是复合材料的特征 9.复合材料的增强体按其几何形状和尺寸主要有三种形式:颗粒、纤维和晶须。 与之对应的增强机理可分颗粒增强原理、纤维增强原理、短纤维增强原理和颗粒与纤维混杂增强原理。 10.颗粒增强原理分为: (1)弥散增强原理: ) 承力:基体弥散颗粒:阻碍位错 颗粒尺寸越小,体积分数越高,强化效果越好 (2)颗粒增强原理: 承力:基体(主),颗粒(次)大颗粒:阻碍位错;承受载荷

颗粒尺寸越小,体积分数越高,颗粒对复合材的增强效果越好。 11.混合法则:纤维、基体对复合材料平均性能的贡献正比于它们各自的体 积分数 % 对于单向连续纤维增强复合材料弹性模量、抗张强度、泊松比、剪切强度等性能均符合混合法则。 12.平行于纤维方向称为“纵向”,垂直于纤维方向为“横向” 12.复合材料初始变形后的行为: 四个阶段:1)纤维与基体均为线弹性变形;2)纤维继续线弹性变形,基体为非线性变形;3)纤维与基体都是非线性变形;4)随着纤维断裂,复合材料断裂 金属基复合材料的第二阶段占比较大的比例,而脆性纤维复合材料未观察到第三阶段。 13.短纤维一般指长径比小于100的各种增强纤维。 14.复合材料的界面是指一层具有一定厚度(纳米以上)、结构随基体和增强体而异的、与基体有明显差别的新相 复合材料的界面虽然很小,但它是有尺寸的,约几个纳米到几个微米,是一个区域,或一个带、一层,它的厚度呈不均匀分布状态 ; 15. 聚合物基复合材料界面及改性方法: 在聚合物基复合材料的设计中: (1)首先应考虑如何改善增强材料与基体间的浸润性; (2)还要保证有适度的界面结合强度; (3)同时还要减少复合材料成型中形成的残余应力; (4)调节界面内应力和减缓应力集中 浸润不良将会在界面产生空隙,易产生应力集中而使复合材料发生开裂。 在复合材料成型过程中形成的界面残余应力,会使界面传递应力的能力下降,最终导致复合材料的力学性能降低。 — 在增强纤维与基体之间引入一层可产生变形的界面层,在应力作用下吸收导致

陶瓷基复合材料增强机制机理

陶瓷基复合材料增强机制、机理的研究现状及展望 陶瓷基复合材料(CMC),一般是指相变增韧、颗粒增韧陶瓷和纤维及晶须增韧陶瓷材料。这是目前备受重视的新型耐高温结构材料。本文将介绍陶瓷基复合材料这种新型复合材料的机理和研究现状及展望。 与常规材料和非陶瓷复合材料相比,陶瓷材料具有耐高温、抗腐蚀、超硬度抗氧化和抗烧结等优异性能。作为高温结构材料,尤其作为航空航天飞行器需要承受极高温度的特殊部位结构用材料具有很大的潜力。因此世界各国都把结构陶瓷看作是对未来工业革命有重大作用的高技术新材料而给以重点研究和发展并相继开展了陶瓷汽车发动机、柴油机和航空发动机等大规模高温陶瓷热机研究计划,出现了陶瓷热,然而,常规结构陶瓷还存在缺陷和问题,主要是材料的脆性,可靠性不高等,应用于现在科技领域还有许多问题急需研究解决。陶瓷基复合材料引起人们关注的重要原因就在于他可以改善陶瓷基材料的力学性能,特别是脆性,因此陶瓷基复合材料的发展和研究将成为陶瓷大规模应用计划取得成功的关键。 陶瓷基复合材料是在陶瓷基体中引入第二相材料,使之增强、增韧的多相材料,又称为多相复合陶瓷或复相陶瓷。陶瓷基复合材料是2O世纪8O年代逐渐发展起来的新型陶瓷材料,包括纤维(或晶须)增韧(或增强)陶瓷基复合材料、异相颗粒弥散强化复相陶瓷、原位生长陶瓷复合材料、梯度功能复合陶瓷及纳米陶瓷复合材料。其因具有耐高温、耐磨、抗高温蠕变、热导率低、热膨胀系数低、耐化学腐蚀、强度高、硬度大及介电、透波等特点,在有机材料基和金属材料基不能满足性能要求的工况下可以得到广泛应用,成为理想的高温结构材料。 连续纤维增强复合材料是以连续长纤维为增强材料,金属、陶瓷等为基体材料制备而成。金属基复合材料是以陶瓷等为增强材料,金属、轻合金等为基体材料而制备的。从20世纪60年代起各国都相继对金属基复合材料开展了大量的研究,因其具有高比强度、高比模量和低热膨胀系数等特点而被应用于航天航空及汽车工业。陶瓷材料具有熔点高、密度低、耐腐蚀、抗氧化和抗烧蚀等优异性能,被广泛用于航天航空、军事工业等特殊领域。但是陶瓷材料的脆性大、塑韧性差导致了其在使用过程中可靠性差,制约了它的应用范围。而纤维增强陶瓷基复合材料方面克服了陶瓷材料脆性断裂的缺点,另一方面保持了陶瓷本身的优点。 1.材料的选择 基体选择 用于连续纤维增强陶瓷基复合材料的基体材料有很多种, 与纤维之间的面相容性是衡量其好坏的重要指标之一, 此外还应考虑其弹性模量、挥发性、抗蠕变和抗氧化等性能。基体材料主要有以下3类: 第1类是玻璃及玻璃陶瓷基体:此类基体的优点是可以在较低温度下制备纤维( 特别是N-icalon纤维) 不会受到热损伤, 因而具有较高的强度保留率; 同时, 在制备过程中可通过基体的粘性流动来进行致密化, 增韧效果好。但其致命的缺点是

增韧理论

增韧理论: 塑料共混改性的一个重要内容是提高一种塑料的韧性,使其满足使用场合和环境对材料韧性的要求。比较成熟的是橡胶增韧技术,但近几年与发展了非弹性体增韧技术,如无机刚性粒子增韧塑料等。 ⑴弹性体直接吸收能量理论:当试样受到冲击时会产生微裂纹,这时橡胶颗粒跨越裂纹两岸,裂纹要发展就必须拉伸橡胶,橡胶形变过程要吸收大量能量,从而提高了塑料的冲击强度。 ⑵屈服理论:橡胶增韧塑料高冲击强度主要来源于基体树脂发生了很大的屈服形变,基体树脂产生很大屈服形变的原因,是橡胶的热膨胀系数和泊松比均大于塑料的,在成型过程中冷却阶段的热收缩和形变过程中的横向收缩对周围基体产生静水张应力,使基体树脂的自由体积增加,降低其玻璃化转变温度,易于产生塑性形变而提高韧性。另外是橡胶粒子的应力集中效应引起的。 ⑶裂纹核心理论:橡胶颗粒充作应力集中点,产生了大量小裂纹而不是少量大裂纹,扩展众多的小裂纹比扩展少数大裂纹需要较多的能量。同时,大量小裂纹的应力场相互干扰,减弱了裂纹发展的前沿应力,从而,会减缓裂纹发展并导致裂纹的终止。 ⑷多重银纹理论:由于增韧塑料中橡胶粒子数目极多,大量的应力集中物引发大量银纹,由此可以耗散大量能量。较大的橡胶粒子还是银纹终止剂,小粒子不能终止银纹。 ⑸银纹-剪切带理论:是普遍接受的一个重要理论。大量实验表明,聚合物形变机理包括两个过程:一是剪切形变过程,二是银纹化过程。剪切过程包括弥散性的剪切屈服形变和形成局部剪切带两种情况。剪切形变只是物体形状的改变。分子间的内聚能和物体的密度基本不变。银纹化过程则使物体的密度大大下降。一方面,银纹体中有空洞。说明银纹化造成了材料一定的损伤,是次宏观断裂破坏的先兆;另一方面,银纹在形成、生长过程中消耗了大量能量,约束了裂纹的扩展,使材料的韧性提高,是聚合物增韧的力学机制之一,所以,正确认识银纹化现象,是认识高分子材料变形和断裂过程的核心,是进行共混改性塑料,尤其是增韧塑料设计的关键之一。银纹的一般特征如下:①银纹是在拉伸力场中产生的,银纹面总是与拉伸力方向垂直;在压力场中不会产生银纹;在纯剪切力场中银纹也能扩展。②银纹在玻璃态、结晶态聚合物中都能产生、发展。③银纹能在聚合物表面、内部单独引发、生长,也可在裂纹端部形成。在裂纹端部形成的银纹,是裂纹端部塑性屈服的一种形式。④在单一应力作用下引发的银纹,称为应力银纹。在短时大应力作用下可以引发银纹,在长期应力作用下,即蠕变过程中也能引发银纹,在交变应力作用下也可引发银纹。受应力和溶剂联合作用引发的银纹,称为应力-溶剂银纹。溶剂能加速银纹的引发和生长。 ⑤银纹的外形与裂纹相似,但与裂纹的结果明显不同:裂纹体中是空的,而银纹是由银纹质和空洞组成的。空洞的体积分数50%~70%。银纹质取向的高分子和/或高分子微小聚集体组成的微纤,直径和间距约为几到几十纳米,其大小与聚合物的结构、环境温度、施力速度、应力大小等因素有关;银纹主微纤与主应力方向呈某一角度取向排列,横系的存在使银纹微纤也构成连续相,与空洞连续相交织在一起成为一个复杂的网络结构;横系结构使得银纹有一定横向承载能力,银纹微纤之间可以相互传递应力;这种结构的形成是由于强度较高的缠结链段被同时转入两相邻银纹微纤的结果。 银纹引发的原因是聚合物中以及表面存在的应力集中物,拉伸应力作用下产生应力集中效应。首先在局部应力集中处产生塑性剪切变形,由于聚合物应变软化的特性,局部塑性变形量迅速增大,在塑性变形区内逐渐积累足够的横向应力分量。这是因为沿拉伸应力方向伸长时,聚合物材料必然在横向方向收缩,就产生低抗这种收缩倾向的等效于作用在横向的应力场。当横向张力增大到某一临界值时,局部塑性变形区内聚合物中被引发微空洞; 随后,微空洞间的高分子和/或高分子微小聚集体继续伸长变形,微空洞长大并彼此复合,最终形成银纹中椭圆空洞。银纹体形成时所消耗的能量称为银纹生成能,包括消耗的 4 种

项目名称高分子复合材料增强增韧机理及表征完成单位

项目名称:高分子复合材料增强增韧机理及表征 完成单位:华南理工大学 推荐单位:华南理工大学 项目简介: 增强增韧是当今材料科学研究的热点和重点之一。无机粒子填充是常用的聚合物改性方法。以往有关高分子复合材料增强增韧机理的研究尚不深入,一些关键性的进展未见诸报道,如界面粘合状态与拉伸强度的关系(尤其是非球形无机粒子填充高分子复合体系)、断口形貌与冲击韧性的关系、冲击韧性与界面形态的相关性、以及脆-韧转变的定量描述等。项目完成人就此展开历时10多年的系统研究,取得如下创新性成果。 揭示高分子复合材料增强机理。引入界面粘合状态参数,建立预测球形和非球形无机粒子填充高分子复合材料拉伸模量数学模型。创造性地提出界面粘合角的概念,建立描述拉伸过程中界面脱粘的物理模型,进而导出球形和非球形无机粒子填充高分子复合材料拉伸强度公式。 揭示高分子复合材料增韧机理。考虑无机粒子在树脂基体中存在的积聚现象,构建描述复合材料脆-韧转变的物理模型,进而建立新的临界应力球体积分数的数学模型,可较好地描述复合体系发生脆-韧转变时的逾渗现象。 揭示试样断口形貌与材料冲击韧性之间的相关性。应用分形理论,构建了复合材料断口形貌与冲击韧性的定量关系。填料与基体之间界面层厚度与复合体系的力学性能密切相关。推导出估算无机粒子与树脂基体之间界面层厚度公式。提出了复合材料冲击韧性与其结晶特性相关性的新见解。 阐明无机粒子在树脂基体中分散状态与复合材料增强增韧效果及其他性能之间的相关性。基于热分析原理和分形理论,分别建立了描述无机粒子在树脂基体中分散的物理模型,进而提出评估无机粒子在树脂基体中宏观分散的简便方法。

上述数学模型中所含的参数易于确定,便于高分子复合材料的实验研究及其研发中应用。应用实验测量数据对相关数学模型进行了验证。结果表明,理论计算值与实测值有良好的一致性。 研究成果含130篇学术论文及2部学术专著,其中论文被SCI收录79篇,EI收录11篇。论著受到国内外同行广泛关注,获引用或正面评价1798次。其中,SCI他引1043次,单篇论文最高SCI他引为203次。8篇代表作他引145次,SCI他引114次。成果丰富和发展了高分子基复合材料科学理论,对促进材料加工学科的发展具有积极的意义。成果可用于指导聚合物/无机粒子复合材料设计与制备,以及材料性能及形态的表征。 完成人情况 梁基照,教授,博士生导师。工作单位和完成单位均为华南理工大学。项目完成人。全面深入地考察了聚合物复合材料增强增韧机理及其主要影响因素,并应用扫描电镜观察试样断面形貌以及填料与基体之间的界面形态,提出新见解和定量表征。8篇代表作和2部学术专著均为单独作者,其余论文的单独作者、第一作者或通讯作者。 8篇代表作 1Liang J.Z.Reinforcement and quantitative description of inorganic particulate-filled polymer https://www.doczj.com/doc/c7398077.html,posites Part B.2013,51:224-232. 2Liang J.Z.Predictions of tensile strength of short inorganic fibre reinforced polymer composites.Polymer Testing,2011,30(7):749–752. 3Liang J.Z.Estimation of tensile strength of inorganic plate-like particulate reinforced polymer composites.Polym.Eng.Sci.,2013,53(9):1823-1827. 4Liang J.Z.Predictions of Young's modulus of short inorganic fiber reinforced polymer https://www.doczj.com/doc/c7398077.html,posites Part B.,2012,43:1763-1766. 5Liang J.Z.Quantitative description of interfacial strength in polypropylene/inorganic particle composites.Polymer Composites,2011, 32(5):821-828.. 6Liang JZ.Mechanical properties of PPS/PC/GF/Nano-CaCO3hybrid composites. Polym.Plast.Technol.Eng.2009,48(3):292-296.. 7Liang J.Z.Impact fracture toughness of hollow glass bead-filled polypropylene composites.J.Mater.Sci.,2007,42(3):841-846. 8Liang JZ.Evaluation of dispersion of nano-CaCO3particles in polypropylene matrix based on fractal method,Composites A,2007,38:1502-1506.

复合材料工艺与设备复习资料

《复合材料工艺与设备》简答与论述(▲为重点内容) 原材料、1生产工艺中,浸润剂分为哪几种类型?它们的作用是什么?)(1(概念题里有详解) ▲根据原丝的选择原则,生产常用的原丝种类有哪些?(聚)2(丙烯睛纤维,沥青纤维,粘胶纤维) 手糊成型工艺、2▲根据手糊成型的工艺特点,说明对增强纤维和基体树脂的)1(选择原则及常用制品和树脂的种类? P12-14高级模具的基本要求?如何制备高级模具?P17-19)(2▲手糊成型工艺对外脱模剂的基本要求?并举例说明外脱)(3模剂的主要类型及应用特点? P20-21 ▲分析手糊成型工艺制品常见缺陷的原因如:表面发粘、气)(4泡、流胶、胶衣层起皱、分层、固化不完全等。 P29-31 、喷射、热压釜工艺、3喷射成型有哪几种形式? P32)(1喷射成型中垂流与浸渍不良原因是什么?如何防治? P35(2)热压釜主要结构及装置有哪些? P41)3(▲与其他工艺相比,有哪些特点? P49(4)分别是反应注射模塑、增强型反应注射模、工艺?(何为、)5(. 塑、结构反应注射模塑) P51-54

夹层结构工艺 4、夹层结构的特点及应用。 P56-57 1()聚氨酯泡沫塑料夹芯材料的生产原理。 P66-68(2)金属蜂窝夹芯材料的生产流程。 P61(3)蜂窝夹层结构生产中常见问题和解决方法。 P64 4)(泡沫夹层结构通常有哪几种制造方法。 P66 5)(模压成型工艺、5▲树脂糊包括哪些基本组分? P83)(1中内脱模剂种类有哪些?作用机理如何? P91)(2▲常用增稠剂的化学增稠机理如何? P86)(3▲中低收缩添加剂的作用机理如何?P87(4) 6、层压成型工艺 (1)层压板的主要类型? P135 (2)▲胶布生产的工艺参数?质量指标?以及相互关系? P136-139 (3)▲在层压板热压曲线中,各个阶段的作用和目的? P148(4)如何解决层压板生产中出现的板材翘曲的问题? P151(5)卷管工艺原理及过程如何? P156 7、缠绕成型工艺 (1)缠绕成型工艺分为哪几类型? P159 (2)▲切点法分析缠绕规律的主要内容? P169 (3)▲纤维缠绕规律的实质是什么?何谓测地线缠绕、线性和发线性缠绕?(概念题型里有详解) (4)▲分析说明缠绕张力制度的内容及缠绕张力对制品性能的

复合材料增韧——从新概念到高技术产品

复合材料增韧——从新概念到高技术产品 益小苏

持续提高复合材料的性能是航空复合材料基础研究一个永恒的主题,一如“更高、更快、更强”的奥运会精神。几年前,空中客车公司就飞机复合材料技术的现状和发展方向指出,未来航空复合材料应该具有更高的韧性性质,体现在连续碳纤维增强的航空树脂基复合材料上,就是这些材料必须具备更高的压缩强度和冲击后压缩强度(CAI,Compression After Impact,图1),这样才能保证飞机的安全性。复合材料的压缩强度主要由碳纤维的性能决定,而复合材料的CAI性质则取决于树脂材料的韧性,特别是复合材料的多尺度、多层次结构等。 事实上,寸有所长,尺有所短,没有一种材料是“全才”,也没有一种材料是只有优点而没有弱点的。从总体上看,碳纤维增强材料作为航空复合材料产生优秀力学性能的基础,它本身的韧性就很低,导致用碳纤维增强的树脂基复合材料的韧性水平相对于许多金属材料也偏低,因此,提升结构材料、特别是先进的碳纤维增强树脂基复合材料的韧性性能当然也是航空复合材料领域永恒的研究主题。 增韧新概念的提出与实践 众所周知,玻璃易碎,但夹层防弹玻璃或车窗玻璃却不怕。为什么?就是因为在这些层状化“复合材料”的设计里,在两张薄玻璃层之间设置了一层柔性高分子的插层(如PVC胶膜),并保证两者之间良好黏结,这样,在弹击或撞击事件发生时,夹层玻璃一般不会发生粉碎性、穿透性的灾难性破坏(图2)。显然,夹层玻璃设计没有改变玻璃脆性的本质,但通过层间插入改变了整个系统对外部冲击的响应机

制和破坏模式,因此就不怎么害怕冲击破坏了。 为了提升我国航空复合材料的韧性性质,特别是提高航空复合材料的冲击后压缩性质,在国家“973计划”项目等的支持下,北京航空材料研究院先进复合材料国防科技重点实验室的材料科学家提出了复合材料层间增韧和层内增刚的新概念,在2000年前后,在“离位”层间增韧方面,初步实现在保持复合材料比刚度和比强度的同时,大幅度提高复合材料的冲击分层损伤阻抗与容限,这其中,一个关键的概念就是“离位”层间增韧技术,这个技术的形象的理解可以比照夹层防弹玻璃:为了提高比较脆性的热固性复合材料的冲击损伤阻抗,可以在连续碳纤维的铺层之间放置高韧性的热塑性树脂铺层。 实践是检验真理的标准。通过国产双马来酰亚胺树脂基复合材料各3个试样“离位”层间增韧前后的冲击分层损伤超声波C扫描照片、冲击分层损伤的投影面积以及相应的冲击后压缩强度(CAI值)的对比,比较发现,“离位”层间增韧不仅提高了复合材料抗击冲击分层的能力(冲击损伤阻抗),减少了的分层投影面积,而且也提高了复合材料的冲击后剩余压缩强度(冲击损伤容限)。 同样,国产聚酰亚胺复合材料的研究和测试结果也表明,“离位”增韧方面也有力地提升了这种高温复合材料的冲击分层损伤阻抗和损伤容限,复合材料的CAI值提升显著。对国内外其他复合材料例如环氧树脂基以及聚苯并恶嗪基复合材料冲击损伤阻抗和损伤容限的研究与测试结果证实,“离位”层间增韧技术在合适的材料热力学和动力学条件下,均可以取得比较明显的复合材料增韧改性效果。 “离位”增韧的材料科学基础 基复合材料冲击损伤阻抗和损伤容限得到提高的材料学机制是什么呢?现代材料科学告诉我们,决定材料使用性能的关键不仅取决于组成这个材料体系的成分,而且取决于这个材料体系内部的多尺度、多层次的微结构,因此,根据“离位”层间增韧在连续碳纤维的铺层之间放置高韧性的热塑性树脂铺层是一回事,而得到什

复合材料成型工艺及设备

无机非金属复合材料的成型工艺—纤维增强水泥基复合材料 【摘要】纤维增强水泥基复合材料作为新型工程材料已在土木工程多领域中得到广泛地应用。目前在水泥复合材料中掺加一定量的纤维,可以改善并且提高水泥复合材料的物理、力学等性能指标。 【关键词】纤维增强复合材料水泥 1、发展及应用 自60年代开始,纤维增强水泥基复合材料的研究和开发有较大进展。1964年,丹麦科学家应用复合材料理论探讨纤维增强无机与有机凝胶材料的机理。1967年英国人试制成功抗碱玻璃纤维增强波特兰水泥砂浆。随后美、日等国也相继投产。我国进入80年代用抗碱玻璃纤维增强低碱铝硅酸盐水泥,现已取得一定成效。目前广泛用于各种建筑物中以及工程装备中。 2、特点 纤维增强水泥基复合材料与普通混土相比,其显著特点是轻质高强,具有良好的断裂韧性。其拉压比一般可达1/4~1/6(普通混凝土为1/10)。 3、复合材料的组成 1、纤维增强水泥原材料 3.1.增强材料 纤维加入脆性的水泥基体中,其作用是提高水泥集体的抗拉强度和韧性,改善其冲击强度和疲劳性能。增强水泥所用纤维按其化学组成可分为金属纤维,无机纤维和有机纤维三大类。 用于增强水泥的纤维可分为短切纤维、连续纤维或纤维织物等。目前国内外使用最多的为短切纤维。 2.水泥基体材料 硅酸盐水泥、氯氧镁水泥、高铝矿渣水泥等 4、成型工艺及设备 GRC的成型方法有喷射法、预拌法、注射法、铺网法、缠绕法等多种方法。其中玻璃纤维增强水泥复合材料使用最多的方法是喷射成型法。 1、成型工艺 A:直接喷射法 用人工手动或通过机械移动装置使切割喷射机在模型上方作往复移动,将纤维水泥砂浆喷在模型表面。

相关主题
文本预览
相关文档 最新文档