当前位置:文档之家› 高中物理竞赛——动量、能量习题

高中物理竞赛——动量、能量习题

高中物理竞赛——动量、能量习题
高中物理竞赛——动量、能量习题

高中物理竞赛——动量、能量习题

一、动量定理还是动能定理?

物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n 颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v 飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。

模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。

先用动量定理推论解题。

取一段时间Δt ,在这段时间内,飞船要穿过体积ΔV = S ·v Δt 的空间,遭遇n ΔV 颗太空垃圾,使它们获得动量ΔP ,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。

F = t P ?? = t v M ??? = t v V n m ???? = t v t nSv m ???? = nmSv 2

如果用动能定理,能不能解题呢?

同样针对上面的物理过程,由于飞船要前进x = v Δt 的位移,引擎推力F 须做功W = F x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的ΔE k 为零,所以:

W = 2

1

ΔMv 2

即:F v Δt = 2

1

(n m S ·v Δt )v 2 得到:F =

2

1

nmSv 2 两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I =

F t ,由此推出的F = t

P

??必然是飞船对垃圾的平

均推力,再对飞船用平衡条件,F 的大小就是引擎推力大小了。这个解没有毛病可挑,是正确的。

(学生活动)思考:如图1所示,全长L 、总质量为M 的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v 将绳子拉直。忽略地面阻力,试求手的拉力F 。

解:解题思路和上面完全相同。

答:L

Mv 2

二、动量定理的分方向应用

物理情形:三个质点A 、B 和C ,质量分别为m 1 、m 2和m 3 ,用拉直且不可伸长的绳子AB 和BC 相连,静止在水平面上,如图2所示,AB 和BC 之间的夹角为(π-α)。现对质点C 施加以冲量I ,方向沿BC ,试求质点A 开始运动的速度。

模型分析:首先,注意“开始运动”的理解,它指绳子恰被拉直,有作用力和冲量产生,但是绳子的方位尚未发生变化。其二,对三个质点均可用动量定理,但是,B 质点受冲量不在一条直线上,故最为复杂,可采用分方向的形式表达。其三,由于两段绳子不可伸长,故三质点的瞬时速度可以寻求到两个约束关系。

下面具体看解题过程——

绳拉直瞬间,AB 绳对A 、B 两质点的冲量大小相等(方向相反),设为I 1 ,BC 绳对B 、C 两质点的冲量大小相等(方向相反),设为I 2 ;设A 获得速度v 1(由于A 受合冲量只有I 1 ,方向沿AB ,故v 1的反向沿AB ),设B 获得速度v 2(由

于B 受合冲量为1I +2I

,矢量和既不沿AB ,也不沿BC 方向,可设v 2与AB 绳夹角为〈π-β〉,如图3所示),设C 获得速度

v 3(合冲量I +2I

沿BC 方向,故v 3沿BC 方向)。

对A 用动量定理,有:

I 1 = m 1

v 1

B 的动量定理是一个矢量方程:1I +2I = m 22v

,可化为两个分方向的标量式,即:

I 2cos α

I 1

=

m 2

v 2cos

β

I 2sin α= m 2 v 2sin β ③ 质点C 的动量定理方程为:

I - I 2 = m 3 v 3 ④ AB 绳不可伸长,必有v 1 = v 2cos β ⑤ BC 绳不可伸长,必有v 2cos(β-α) = v 3 ⑥

六个方程解六个未知量(I 1 、I 2 、v 1 、v 2 、v 3 、β)是可能的,但繁复程度非同一般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤——

1、先用⑤⑥式消掉v 2 、v 3 ,使六个一级式变成四个二级式: I 1 = m 1 v 1 ⑴ I 2cos α-I 1 = m 2 v 1 ⑵

I 2sin α= m 2 v 1 tg β ⑶ I - I 2 = m 3 v 1(cos α+ sin αtg β) ⑷ 2、解⑶⑷式消掉β,使四个二级式变成三个三级式:

I 1 = m 1 v 1 ㈠ I 2cos α-I 1 = m 2 v 1 ㈡

I = m 3 v 1 cos α+ I 22232m sin m m α

+ ㈢

3、最后对㈠㈡㈢式消I 1 、I 2 ,解v 1就方便多了。结果为: v 1 =

α

+++α

2

3132122sin m m )m m m (m cos Im (学生活动:训练解方程的条理和耐心)思考:v 2的方位角β等于多少? 解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消I 1 ,得I 2的表达式,将I 2的表达式代入⑶就行了。

答:β= arc tg (

α+tg m m m 2

2

1)

。 三、动量守恒中的相对运动问题

物理情形:在光滑的水平地面上,有一辆车,车内有一个人和N 个铅球,系统原来处于静止状态。现车内的人以一定的水平速度将铅球一个一个地向车外抛出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为v ,直到将球抛完;第二过程,保持每次相对车子抛球速率均为v ,直到将球抛完。试问:哪一过程使车子获得的速度更大?

模型分析:动量守恒定律必须选取研究对象之外的第三方(或第四、第五方)为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对“第二过程”的铅球动量表达,就形成了难点,必须引进相对速度与绝对速度的关系。至于“第一过程”,比较简单:N 次抛球和将N 个球一次性抛出是完全等效的。

设车和人的质量为M ,每个铅球的质量为m 。由于矢量的方向落在一条直线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且第一过程获得的速度大小为V 1 第二过程获得的速度大小为V 2 。

第一过程,由于铅球每次的动量都相同,可将多次抛球看成一次抛出。车子、人和N 个球动量守恒。

0 = Nm(-v) + MV 1

得:V 1 = M

Nm

v ①

第二过程,必须逐次考查铅球与车子(人)的作用。

第一个球与(N –1)个球、人、车系统作用,完毕后,设“系统”速度为u 1 。

值得注意的是,根据运动合成法则地车车球地球→→→+=v v v

,铅球对地的速度并不是(-v ),而是(-v + u 1)。它们动量守恒方程为:

0 = m(-v + u 1) +〔M +(N-1)m 〕u 1

得:u 1 =

v Nm

M m

+

第二个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u 2 。它们动量守恒方程为:

〔M+(N-1)m 〕u 1 = m(-v + u 2) +〔M+(N-2)m 〕u 2

得:u 2 =

v Nm M m + + v m

)1N (M m

-+

第三个球与(N -2)个球、人、车系统作用,完毕后,设“系统”速度为u 3 。

铅球对地的速度是(-v + u 3)。它们动量守恒方程为:

〔M+(N-2)m 〕u 2 = m(-v + u 3) +〔M+(N-3)m 〕u 3

得:u 3 =

v Nm M m + + v m )1N (M m -+ + v m

)2N (M m

-+

以此类推(过程注意:先找u N 和u N-1关系,再看u N 和v 的关系,不要急于化

简通分)……,u N 的通式已经可以找出:

V 2 = u N =

v Nm M m + + v m )1N (M m -+ + v m

)2N (M m

-+ + … +

v m M m + 即:V 2 = ∑

=+N

1

i v im

M m

我们再将①式改写成: V 1 = ∑

=N

1i v M

m

①′ 不难发现,①′式和②式都有N 项,每项的分子都相同,但①′式中每项的分母都比②式中的分母小,所以有:V 1 > V 2 。

结论:第一过程使车子获得的速度较大。

(学生活动)思考:质量为M 的车上,有n 个质量均为m 的人,它们静止在光滑的水平地面上。现在车上的人以相对车大小恒为v 、方向水平向后的初速往车下跳。第一过程,N 个人同时跳下;第二过程,N 个人依次跳下。试问:哪一次车子获得的速度较大?

解:第二过程结论和上面的模型完全相同,第一过程结论为V 1 =

∑=+n

1i v nm

M m

。 答:第二过程获得速度大。

四、反冲运动中的一个重要定式

物理情形:如图4所示,长度为L 、质量为M 的船停止在静水中(但未抛锚),船头上有一个质量为m 的人,

也是静止的。现在令人在船

上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?

(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L 吗?本系统选船为参照,动量守恒吗?

模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的,运动学的规律应选择S = v t 。为寻求时间t ,则要抓人和船的位移约束关系。

对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V ),令指向船头方向为正向,则矢量关系可以化为代数运算,有:

0 = MV + m(-v) 即:mv = MV

由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:

m v

= M V

设全程的时间为t ,乘入①式两边,得:m v t = M V t

设s 和S 分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S ②

受船长L 的约束,s 和S 具有关系:s + S = L

解②、③可得:船的移动距离 S =

m

M m

+L (应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)

另解:质心运动定律

人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x 表达。根据力矩平衡知识,得:

x =

)

M m (2mL

+),又根据,末态的质量分布与初态比较,相对整

体质心是左右对称的。弄清了这一点后,求解船的质心位移易如反掌。

(学生活动)思考:如图5所示,在无风的天空,人抓住气球下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m 和M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要人充分安全地着地,绳索至少要多长?

解:和模型几乎完全相同,此处的绳长对应模型中的“船的长度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。

答:M

M m +h 。

(学生活动)思考:如图6所示,两个倾角相同的斜面,互相倒扣着放在光

滑的水平地面上,小斜面在大斜面的顶端。将它们无初速释放后,小斜面下滑,大斜面后退。已知大、小斜面的质量分别为M 和m ,底边长分别为a 和 b ,试求:小斜面滑到底端时,大斜面后退的距离。

解:水平方向动量守恒。解题过程从略。

答:m

M m

+(a -b )。

进阶应用:如图7所示,一个质量为M ,半径为R 的光滑均质半球,静置于光滑水平桌面上,在球顶有一个质量为m 的质点,由静止开始沿球面下滑。试求:质点离开球面以前的轨迹。

解说:质点下滑,半球后退,这个物理情形和上面的双斜面问题十分相似,仔细分析,由于同样满足水平方向动量守恒,故我们介绍的“定式”是适用的。定式解决了水平位移(位置)的问题,竖直坐标则需要从数学的角度想一些办法。

为寻求轨迹方程,我们需要建立一个坐标:以半球球心O 为原点,沿质点滑下一侧的水平轴为x 坐标、竖直轴为y 坐标。

由于质点相对半球总是做圆周运动的(离开球面前),有必要引入相对运动中半球球心O ′的方位角θ来表达质点的瞬时位置,如图8所示。

由“定式”,易得:

x = m

M M

+Rsin θ ①

而由图知:y = Rcos θ ②

不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的性质,我们可以将参数θ消掉,使它们成为:

22)R m

M M (x + + 22

R y = 1

这样,特征就明显了:质点的轨迹是一个长、短半轴分别为R 和m

M M

+R 的椭圆。

五、功的定义式中S 怎么取值?

在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体(质心)

的位移呢?我们先看下面一些事例。

1、如图9所示,人用双手压在台面上推讲台,

结果双手前进了一段位移而讲台未移动。试问:人

是否做了功?

2、在本“部分”第3页图1的模型中,求拉

力做功时,S是否可以取绳子质心的位移?

3、人登静止的楼梯,从一楼到二楼。楼梯是

否做功?

4、如图10所示,双手用等大反向的力F压固

定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?

在以上四个事例中,S若取作用点位移,只有第1、

2、4例是做功的(注意第3例,楼梯支持力的作用点并

未移动,而只是在不停地交换作用点),S若取物体(受

力者)质心位移,只有第2、3例是做功的,而且,尽

管第2例都做了功,数字并不相同。所以,用不同的判

据得出的结论出现了本质的分歧。

面对这些似是而非的“疑难杂症”,我们先回到“做

功是物体能量转化的量度”这一根本点。

第1例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;

第2例,求拉力的功,在前面已经阐述,S取作用点位移为佳;

第3例,楼梯不需要输出任何能量,不做功,S取作用点位移;

第4例,气体内能的增加必然是由人输出的,压力做功,S取作用点位移。

但是,如果分别以上四例中的受力者用动能定理,第1例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2时的值——物体质心位移;第4例,气体宏观动能无增量,S取质心位移。(第3例的分析暂时延后。)以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。

而且,我们不难归纳:求广义的功,S取作用点的位移;求狭义的功,S取物体(质心)位移。

那么我们在解题中如何处理呢?这里给大家几点建议: 1、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。

当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3例,就相对复杂一些。如果认为所求为狭义的功,S取质心位移,是做了功,但结论仍

然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11所示),人每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。

这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出

能量(生物能)的机构,也是得到能量(机械能)的机构——这里

的物理情形更象是一种生物情形。本题所求的功应理解为广义功为

宜。

以上四例有一些共同的特点:要么,受力物体情形比较复杂(形

变,不能简单地看成一个质点。如第2、第3、第4例),要么,施

力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械

能以外的形式。如第1例)。以后,当遇到这样的问题时,需要我们慎重对待。

(学生活动)思考:足够长的水平传送带维持匀速v运转。将一袋货物无初速地放上去,在货物达到速度v之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?

解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点”的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S 。(另解:求货物动能的增加和与皮带摩擦生热的总和。)

答:否。

(学生活动)思考:

如图12所示,人站在船

上,通过拉一根固定在铁

桩的缆绳使船靠岸。试问:

缆绳是否对船和人的系统

做功?

解:分析同上面的“第

3例”。

答:否。

六、机械能守恒与运动合

成(分解)的综合

物理情形:如图13所示,直角形的刚性杆被固定,水平和竖直部分均足够

长。质量分别为m

1和m

2

的A、B两个有孔小球,串在杆上,且被长为L的轻绳相

连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态。现无初速地将系统释放,忽略一切摩擦,试求B球运动L/2时的速度v

2

模型分析:A、B系统机械能守恒。A、B两球的瞬时速度不等,其关系可据“第三部分”知识介绍的定式(滑轮小船)去

寻求。

(学生活动)A球的机械能是否守恒?B

球的机械能是否守恒?系统机械能守恒的理

由是什么(两法分析:a、“微元法”判断两个

W

T

的代数和为零;b、无非弹性碰撞,无摩擦,

没有其它形式能的生成)?

由“拓展条件”可以判断,A、B系统机械

能守恒,(设末态A球的瞬时速率为v

1

)过程

的方程为:

m 2g 2

L = 211v m 21 + 222v m 21 ①

在末态,绳与水平杆的瞬时夹角为30°,设绳子的瞬时迁移速率为v ,根据“第三部分”知识介绍的定式,有:

v 1 = v/cos30°, v 2 = v/sin30°

两式合并成:v 1 = v 2 tg30°= v 2/3 ② 解①、②两式,得:v 2 =

2

12m m gL

m 3

七、动量和能量的综合(一)

物理情形:如图14所示,两根长度均为L 的刚性轻杆,一端通过质量为m 的球形铰链连接,另一端分别与质量为m 和2m 的小球相连。将此装置的两杆合拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动,但两杆始终保持在竖直平面内。忽略一切摩擦,试

求:两杆夹角为90°时,质量为2m 的小球的速度v 2 。

模型分析:三球系统机械能守恒、水平方向动量守恒,并注意约束关系——两杆不可伸长。

(学生活动)初步判断:左边小球和球形铰链的速度方向会怎样?

设末态(杆夹角90°)左边小球的速度为v 1(方向:水平向左),球形铰链的速度为v (方向:和竖直方向夹θ角斜向左),

对题设过程,三球系统机械能守恒,有:

mg( L-2

2L) = 21m 2

1v + 21mv 2 + 212m 22v ① 三球系统水平方向动量守恒,有:

mv 1 + mvsin θ= 2mv 2 ②

左边杆子不形变,有:

v 1cos45°= vcos(45°-θ) ③

右边杆子不形变,有:

vcos(45°+θ) = v 2cos45° ④

四个方程,解四个未知量(v 1 、v 2 、v 和θ),是可行的。推荐解方程的步骤如下——

1、③、④两式用v 2替代v 1和v ,代入②式,解θ值,得:tg θ= 1/4

2、在回到③、④两式,得:

v 1 = 35v 2 , v = 3

17v 2

3、将v 1 、v 的替代式代入①式解v 2即可。结果:v 2 =

20

)

22(gL 3-

(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是多少?

解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足以解题。

答:0 、gL 2 、0 。

(学生活动)思考:当两杆夹角为90°时,右边小球的位移是多少? 解:水平方向用“反冲位移定式”,或水平方向用质心运动定律。 答:

L 8

2

3 。 进阶应用:在本讲模型“四、反冲……”的“进阶应用”(见图8)中,当质点m 滑到方位角θ时(未脱离半球),质点的速度v

的大小、方向怎样?

解说:此例综合应用运动合成、动量守恒、机械能守恒知识,数学运算比较繁复,是一道考查学生各种能力和素质的难题。

据运动的合成,有: 半球点→v = 地点→v + 半球地→v = 地点→v

-

地半球→v

其中地半球→v

必然是沿地面向左的,为了书写方

便,我们设其大小为v 2 ;半球点→v

必然是沿半球瞬时位置切线方向(垂直瞬时半径)的,设大小为v 相 。根据矢量减法的三角形法则,可以得到地点→v

(设大小为v 1)的示意图,如图16所示。同时,我们将v 1的x 、y 分量v 1x 和v 1y 也描绘在图中。

由图可得:v 1y =(v 2 + v 1x )tg θ ① 质点和半球系统水平方向动量守恒,有:Mv 2 = mv 1x ②

对题设过程,质点和半球系统机械能守恒,有:mgR(1-cos θ) = 21

M 22v + 2

1m 21v ,即: mgR(1-cos θ) = 21M 22v + 2

1m (2x 1v + 2

y 1v ) ③ 三个方程,解三个未知量(v 2 、v 1x 、v 1y )是可行的,但数学运算繁复,推荐步骤如下——

1、由①、②式得:v 1x =

m

M v 2 , v 1y = (m M m +tg θ) v 2

2、代入③式解v 2 ,得:v 2 =θ

+++θ-2

222tg )m M (Mm M )

cos 1(gR m 2 3、由

21

v =

2x

1v +

2

y

1v 解v 1 ,得:v 1

+++θ+θ+θ-222222sin )m M (m Mm M )

sin m sin Mm 2M )(cos 1(gR 2

v 1的方向:和水平方向成α角,α= arctg x

1y 1v v = arctg (

θ+tg M

m

M ) 这就是最后的解。

〔一个附属结果:质点相对半球的瞬时角速度 ω =

R

v 相 =

)

sin m M (R )

cos 1)(M m (g 22θ+θ-+ 。〕

八、动量和能量的综合(二)

物理情形:如图17所示,在光滑的水平面上,质量为M = 1 kg 的平板车左端放有质量为m = 2 kg 的铁块,铁块与车之间的摩擦因素μ= 0.5 。开始时,车和铁块以共同速度v = 6 m/s 向右运动,车与右边的墙壁发生正碰,且碰撞是弹性的。车身足够长,使铁块不能和墙相碰。重力加速度g = 10 m/s 2 ,试求:1、铁块相对车运动的总路程;2、平板车第一次碰墙后所走的总路程。

模型分析:本模

型介绍有两对相互作用时的处理常规。能量关系介绍摩擦生热定式的应用。由于过程比较复杂,动量分析还要辅助以动力学分析,综合程度较高。

由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的,当两对作用同时发生时,通常处理成“让短时作用完毕后,长时作用才开始”(这样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与车的作用尚未发生,而是在车与墙作用完了之后,才开始与铁块作用。

规定向右为正向,将矢量运算化为代数运算。 车第一次碰墙后,车速变为-v ,然后与速度仍为v 的铁块作用,动量守恒,

作用完毕后,共同速度v 1 = M m )v (M mv +-+ = 3

v

,因方向为正,必朝墙运动。

(学生活动)车会不会达共同速度之前碰墙?动力学分析:车离墙的最大位

移S = a 2v 2

,反向加速的位移S ′= 1

21a 2v ,其中a = a 1 = M mg μ,故S ′< S ,所

以,车碰墙之前,必然已和铁块达到共同速度v 1 。

车第二次碰墙后,车速变为-v 1 ,然后与速度仍为v 1的铁块作用,动量守恒,作用完毕后,共同速度v 2 = M m )v (M mv 11+-+ = 3v 1 = 23

v

,因方向为正,必朝墙

运动。

车第三次碰墙,……共同速度v 3 =

3v 2 = 33

v

,朝墙运动。 ……

以此类推,我们可以概括铁块和车的运动情况——

铁块:匀减速向右→匀速向右→匀减速向右→匀速向右……

平板车:匀减速向左→匀加速向右→匀速向右→匀减速向左→匀加速向右→匀速向右……

显然,只要车和铁块还有共同速度,它们总是要碰墙,所以最后的稳定状态是:它们一起停在墙角(总的末动能为零)。

1、全程能量关系:对铁块和车系统,-ΔE k =ΔE 内 ,且,ΔE 内 = f 滑 S 相 ,

即:2

1

(m + M )v 2 = μmg ·S 相

代入数字得:S 相 = 5.4 m

2、平板车向右运动时比较复杂,只要去每次向左运动的路程的两倍即可。而向左是匀减速的,故

第一次:S 1 = a

2v 2

第二次:S 2 = a

2v 21 = a 2122

3v

第三次:S 3 = a

2v 22

= a 214

23v ……

n 次碰墙的总路程是:

ΣS = 2( S 1 + S 2 + S 3 + … + S n )= a v 2

( 1 + 231 + 431 + … + )

(1n 231- ) = M

mg v 2μ( 1 + 231 + 431 + … + )(1n 23

1

- ) 碰墙次数n →∞,代入其它数字,得:ΣS = 4.05 m

(学生活动)质量为M 、程度为L 的木板固定在光滑水平面上,另一个质量为m 的滑块以水平初速v 0冲上木板,恰好能从木板的另一端滑下。现解除木板的固定(但无初速),让相同的滑块再次冲上木板,要求它仍能从另一端滑下,其初速度应为多少?

解:由第一过程,得滑动摩擦力f = L

2mv 20

第二过程应综合动量和能量关系(“恰滑下”的临界是:滑块达木板的另

一端,和木板具有共同速度,设为v ),设新的初速度为0v '

m 0v ' =( m + M )v

21m 2

0v ' - 2

1( m + M )v 2 = fL 解以上三式即可。

答:0v '=

M

M

m +v 0 。

高中物理-动量守恒与能量守恒经典题目资料

专题四 动能定理与能量守恒 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《大纲》对本部分考点要求为Ⅱ类有五个, 功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常与牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。 二、重点剖析 1、理解功的六个基本问题 (1)做功与否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。 (2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 (3)关于求功率问题:①t W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力与速度间的夹角。一般用于求某一时刻的瞬时功率。 (4)一对作用力和反作用力做功的关系问题:①一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零;②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。1 (5)了解常见力做功的特点:①重力做功和路径无关,只与物体始末位置的高度差h 有关:W=mgh ,当末位置低于初位置时,W >0,即重力做正功;反之重力做负功。②滑动摩擦力做功与路径有关。当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路

高中物理公式大全(全集) 八、动量与能量

八、动量与能量 1.动量 2.机械能 1.两个“定理” (1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p ) (2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化. 例如,质量为m 的小球以速度v 0与竖直方向成θ角 打在光滑的水平面上,与水平面的接触时间为Δt ,弹起 时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则 在Δt 内: 以小球为研究对象,其受力情况如图所示.可见小球 所受冲量是在竖直方向上,因此,小球的动量变化只能在 竖直方向上.有如下的方程: F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ) 小球水平方向上无冲量作用,从图中可见小球水平方向动量不变. 综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方 面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =0 2.两个“定律” (1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零 公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′ (2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功 公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k 3.动量守恒定律与动量定理的关系 一、知识网络 二、画龙点睛 规律

高中物理动量和能量知识点

学大教育设计人:马洪波 高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a)F=ma 、运动状态发生变化牛顿第二定律 时间积累效应( 冲量)I=Ft 、动量发生变化动量定理 空间积累效应( 做功)w=Fs 动能发生变化动能定理 2.动量观点:动量:p=mv= 2mE 冲量:I = F t K 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---= p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:' p p ;p 0;p1 - p 2 P=P′(系统相互作用前的总动量P 等于相互作用后的总动量P′) ΔP=0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P1+P2=P1′+P2′(系统相互作用前的总动量等于相互作用后的总动量) m1V 1+m2V 2=m1V 1′+m2V2′ ΔP=-ΔP'(两物体动量变化大小相等、方向相反) 实际中应用有:m1v1+m2v2= ' ' m1v m v ;0=m1v1+m2v2 m1v1+m2v2=(m1+m2)v 1 2 2 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢 量运算简化为代数运算。 相对性: 所有速度必须是相对同一惯性参照系。 同时性:表达式中v1 和v2 必须是相互作用前同一时刻的瞬时速度,v ’和v ’必须是相互作用后同一时刻 1 2 的瞬时速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t ( p= w t = F S t =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = Fv (F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率;V 为平均速度时,P 为平均功率;P 一定时,F 与V 成正比) 动能:E K= 1 2 mv 2 2 p 2m 重力势能E p = mgh (凡是势能与零势能面的选择有关)

高中物理动量大题(含答案)

高中物理动量大题与解析1.(2017?平顶山模拟)如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b 两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求: (1)物块a与b碰后的速度大小; (2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.解:(1)对物块a,由动能定理得:,代入数据解得a与b碰前速度:v1=2m/s; ^ a、b 碰撞过程系统动量守恒,以a的初速度方向为正方向, 由动量守恒定律得:mv1=2mv2,代入数据解得:v2=1m/s; (2)当弹簧恢复到原长时两物块分离,a以v2=1m/s在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:mv2=(M+m)v3,代入数据解得:v3=s, 对小车,由动能定理得:, 代入数据解得,同速时车B端距挡板的距离:=; (3)由能量守恒得:, 解得滑块a与车相对静止时与O点距离:; ) 答:(1))物块a与b碰后的速度大小为1m/s; (2)当物块a相对小车静止时小车右端B到挡板的距离为 (3)当物块a相对小车静止时在小车上的位置到O点的距离为.

2.(2017?肇庆二模)如图所示,在光滑的水平面上有一长为L的木板B,上表面粗糙,在其左端有一光滑的圆弧槽C,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B、C静止在水平面上.现有滑块A以初速V0从右端滑上B,并以V0滑离B,恰好能到达C的最高点.A、B、C的质量均为m,试求: (1)木板B上表面的动摩擦因素μ; (2)圆弧槽C的半径R ; (3)当A滑离C时,C的速度. > 解:(1)当A在B上滑动时,A与BC整体发生作用,规定向左为正方向,由于水平面光滑,A与BC组成的系统动量守恒,有:mv0=m×v0+2mv1 得:v 1=v0 由能量守恒得知系统动能的减小量等于滑动过程中产生的内能,有: Q=μmgL=m﹣m﹣×2m 得:μ= (2)当A滑上C,B与C分离,A 与C发生作用,设到达最高点时速度相等为V2,规定向左为正方向,由于水平面光滑,A与C 组成的系统动量守恒,有: m×v0+mv1=(m+m)V2, ^ 得:V 2= A与C组成的系统机械能守恒,有: m+m=×(2m)+mgR 得:R= (3)当A滑下C时,设A的速度为V A,C的速度为V C,规定向

高中物理-动量和能量的综合

动量和能量的综合 一、大纲解读 动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查. 二、重点剖析 1.独立理清两条线:一是力的时间积累——冲量——动量定理——动量守恒;二是力的空间移位积累——功——动能定理——机械能守恒——能的转化与守恒.把握这两条主线的结合部:系统.. 。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。 2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统弹力做 功就看是否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律. 3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加. 三、考点透视 考点1、碰撞作用 碰撞类问题应注意:⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,碰后系统总动能小于或等于碰前总动能,即1212k k k k E '+E 'E +E ≤;⑶速度要符合物理情景:如果碰前两物体同向运动,则后面的物体速度一定大于前面物体的速度,即v v 后前>,碰撞后,原来在前面的物体速度一定增大,且≥v v 后前;如果两物体碰前是相向运动,则碰撞后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。

高中物理《动量能量》专题复习

《动量、能量》二轮复习方案 一、命题趋向及热点情景 从04到08高考题演变来看,动量、能量知识在09高考中应表现为选择题一道,实验题无,25题为动量与能量的压轴题,这种布局可能性很高. 因为压轴情形大增故此板块我市二轮备考应有重点突破. 选择题通常借助一幅不太复杂的情景考查学生对动量能量主要知识初步理解能力,特别地近些年来能图像式的选项来影响考生的判断…… 计算题则以生活中或从实际中抽象出来的理想的相对复杂情景,考查学生物理理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 通常考查对象通常两个或以上,考查情景中的全程或局部,对象的全部或局部含有能量和动量变化或守恒.考查的情形有关碰撞的问题、滑块问题、传送带、绳杆管轨道类等问题…… 二、重难点突破意义及对策 得综合者得高考,得物理者得理综,物理中有关热点主干知识重难点突破者得物理.物理题目是否顺手关键在于选择中一两道、设计型实验、压轴题的突破.这几个方面解决得好会对理综成绩提升会有乘数效应,相反就会是一种伤心的痛. 通常一道题学生做得如何在于对题的情景感知程度和对情景的把握.这里面有属于学生层面的千差万别的个体因素,还有属于教师层面的引导传授的群体因素.前者我们很多时候无法把握,后者正要我们作为教者对症下药. 【对策1】创设丰富的情景引导学生分析研究 老师应手头上必备近些年来高考和模拟题库,最好是分成板快的,还要借助学校及本组教师的资源优势从网上、从来往学校组织题源,老师多做多探索结合本校学生过去和现在的训练,把那些学生没有经历的相对新颖有代表性最能本板块新题型、新情景及时补充到课堂、训练和考试中.除此外在二轮复习中还应把学生过去分散感受过经典爱错的老情景集中呈现,增强学生实考中快速切入的能力. 【对策2】形成分类专题突破 要精讲一道题要像学生刚做该题那样,分析题目已知条件,建立此情景全局画面,寻找连结各画面的逻辑连结关系,建立学生最熟悉的模型,用最恰当定理公式建立物理量的关系. 一类题要精讲一道,学生最需要的是如何切入,整体把握以及提醒关键细节的易错点. 做好这方面的事老教师往往在自己头脑里有一套成熟的题集,但也要结合集体智慧不断结合高考和学生实际推陈出新. 专题目标形成一类题的解题方法和套路,进一步提高学生理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力. 【对策3】强化必要的物理思维定势 动量和能量的综合题注定要呈现两个及以上物体分析的优势;相对复杂的情景也注定有大过程中包含许多子过程,大过程和子过程有着复杂的连接关系;相对复杂的情景也注定耗时较多,解这类题很注重效率. A. 用动量、能量观解题优先级别高于牛顿运动定律。 B.尽可能列出动量、能量转化始末的全程方程。 列方程中,要关注公式定理及守恒条件,做到粗中有细. 特别是涉及有碰撞或爆炸类动能定理方程时类情形时则应在撞前撞后分别列方程而不应该列出贯穿大过程始末的方程,这并不是全程方程有什么问题而是像碰撞中能量转化涉及作用力,作用时间位移小,这些力的作功在方程中无法呈现的缘故。 C. 两个及以上物体系的优先系统分析法 系统分析法在牛顿运动定律和动量定理中获取了极大的成功,但在动能定理中却受到了极大的压制,但系统分析法从来就是一种优化的解题观念。这里最难办的就是系统内力作功问题,关于内力作功大量的选择题来强化学生的认识,不是无的放矢。系统动能定理不是不能用,但不可滥用。系统动能定量完全可表述为:多物体构成的系统中所有系统外力作功和所有系统内力作功的代数和等于系统内各物体动能变化的总和。但这样一个结论下了和没下没什么差别,因为它在很多时候不能给我们带来便利。

高中物理运用动量和能量观点解题的思路

运用动量和能量观点解题的思路 动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。 冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对空间的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。 应用动量定理和动能定理时,研究对象一般是单个物体,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。 2.要能视情况对研究过程进行恰当的理想化处理。 3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。 4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。 确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是:1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。 2.若是多个物体组成的系统,优先考虑两个守恒定律。 3.若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。 例1图1中轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处于原长状态。另一质量与B相同的滑块A,从导轨上的P点以某一初速度向B滑行。当A 滑过距离时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好回到出发点P并停止。滑块A和B与导轨的摩擦因数都为,运动过程中弹簧最大形变量为,重力加速度为。求A从P点出发时的初速度。 解析:首先要将整个物理过程分析清楚,弄清不同阶段相互作用的物体和运动性质,从而为正确划分成若干阶段进行研究铺平道路。即A先从P点向左滑行过程,受摩擦力作用做 匀减速运动。设A刚接触B时的速度为,对A根据动能定理,有

高中物理专题复习--动量及动量守恒定律

高中物理专题复习 动量及动量守恒定律 一、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离, 弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。 ⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹 性碰撞。由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:12 11 2 12 12 112,v m m m v v m m m m v +='+-='。 ⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能, 部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。 , ⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12 11 21v m m m v v += '='。在完全非弹性碰撞过程中,系统的动能损失最大,为:()() 2121212 2121122121m m v m m v m m v m E k +='+-=?。 例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运动。 / ~

高中物理动量和能量知识归纳

高考物理知识归纳(三) ---------------动量和能量 1.力的三种效应: 力的瞬时性(产生a )F=ma 、?运动状态发生变化?牛顿第二定律 时间积累效应(冲量)I=Ft 、?动量发生变化?动量定理 空间积累效应(做功)w=Fs ?动能发生变化?动能定理 2.动量观点:动量:p=mv= K mE 2 冲量:I = F t 动量定理:内容:物体所受合外力的冲量等于它的动量的变化。 公式: F 合t = mv ’ 一mv (解题时受力分析和正方向的规定是关键) I=F 合t=F 1t 1+F 2t 2+---=?p=P 末-P 初=mv 末-mv 初 动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =?;21p -p ?=? P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0 (系统总动量变化为0) 如果相互作用的系统由两个物体构成,动量守恒的具体表达式为 P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP ' (两物体动量变化大小相等、方向相反) 实际中应用有:m 1v 1+m 2v 2=' 22' 11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0 注意理解四性:系统性、矢量性、同时性、相对性 矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算 简化为代数运算。 相对性:所有速度必须是相对同一惯性参照系。 同时性:表达式中v 1 和v 2 必须是相互作用前同一时刻的瞬时速度,v 1 ’和v 2’ 必须是相互作用后同一时刻的瞬时 速度。 解题步骤:选对象,划过程;受力分析。所选对象和过程符合什么规律?用何种形式列方程;(先要规定正方向)求解并讨论结果。 3.功与能观点: 功W = Fs cos ? (适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度 W= P ·t (?p= t w =t FS =Fv) 功率:P = W t (在t 时间内力对物体做功的平均功率) P = F v

高考物理——动能与动量

动量与能量 测试时间:90分钟 满分:110分 第Ⅰ卷 (选择题,共48分) 一、选择题(本题共12小题,共48分。在每小题给出的四个选项中,第1~8小题只有一个选项正确,第9~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分) 1.[2017·河北冀州月考]在光滑的水平桌面上有两个在同一直线上运动的小球a 和b ,正碰前后两小球的位移随时间变化的关系如图所示,则小球a 和b 的质量之比为 ( ) A .2∶7 B .1∶4 C .3∶8 D .4∶1 答案 B 解析 由位移—时间图象的斜率表示速度可得,正碰前,小球a 的速度v 1= 1-41-0 m/s =-3 m/s ,小球b 的速度v 2=1-01-0 m/s =1 m/s ;正碰后,小球a 、b 的共同速度v =2-16-1 m/s =0.2 m/s 。设小球a 、b 的质量分别为m 1、m 2,正碰过程,根据动量守恒定律有m 1v 1+m 2v 2=(m 1+m 2)v ,得m 1m 2=v -v 2v 1-v =14 ,选项B 正确。 2.[2017·江西检测]如图所示,左端固定着轻弹簧的物块A 静止在光滑的水平面上,物块B 以速度v 向右运动,通过弹簧与物块A 发生正碰。已知物块A 、B 的质量相等。当弹簧压缩到最短时,下列说法正确的是( )

A.两物块的速度不同 B.两物块的动量变化等值反向 C.物块B的速度方向与原方向相反 D.物块A的动量不为零,物块B的动量为零 答案 B 解析物块B接触弹簧时的速度大于物块A的速度,弹簧逐渐被压缩,当两物块的速度相同时,弹簧压缩到最短,选项A、D均错误;根据动量守恒定律有Δp A+Δp B =0,得Δp A=-Δp B,选项B正确;当弹簧压缩到最短时,物块B的速度方向与原方向相同,选项C错误。 3.[2017·黑龙江模拟] 如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块。今让一质量为m的小球自左侧槽口A的正上方h 高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是() A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒 B.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量不守恒 C.小球在槽内运动的全过程中,小球、半圆槽和物块组成的系统动量守恒 D.若小球能从C点离开半圆槽,则其一定会做竖直上抛运动 答案 B 解析当小球在槽内由A到B的过程中,墙壁对槽有力的作用,小球与半圆槽组成的系统水平方向动量不守恒,故A、C错误,B正确。当小球运动到C点时,它的两个分运动的合速度方向是右上方,所以此后小球将做斜上抛运动,即C错误。 4.[2017·辽师大附中质检]质量相同的子弹a、橡皮泥b和钢球c以相同的初速度水平射向竖直墙,结果子弹穿墙而过,橡皮泥粘在墙上,钢球被以原速率反向弹回。关于它们对墙的水平冲量的大小,下列说法中正确的是() A.子弹、橡皮泥和钢球对墙的冲量大小相等 B.子弹对墙的冲量最小 C.橡皮泥对墙的冲量最小 D.钢球对墙的冲量最小 答案 B

高中物理竞赛动量角动量和能量

动量 角动量和能量 §4.1 动量与冲量 动量定理 4.1. 1.动量 在牛顿定律建立以前,人们为了量度物体作机械运动的“运动量”,引入了动量的概念。当时在研究碰撞和打击问题时认识到:物体的质量和速度越大,其“运动量”就越大。物体的质量和速度的乘积mv 遵从一定的规律,例如,在两物体碰撞过程中,它们的改变必然是数值相等、方向相反。在这些事实基础上,人们就引用mv 来量度物体的“运动量”,称之为动量。 4.1.2.冲量 要使原来静止的物体获得某一速度,可以用较大的力作用较短的时间或用较小的力作用较长的时间,只要力F 和力作用的时间t ?的乘积相同,所产生的改变这个物体的速度效果就一样,在物理学中把F t ?叫做冲量。 4.1.3.质点动量定理 由牛顿定律,容易得出它们的联系:对单个物体: 01mv mv v m t ma t F -=?=?=? p t F ?=? 即冲量等于动量的增量,这就是质点动量定理。 在应用动量定理时要注意它是矢量式,速度的变化前后的方向可以在一条直线上,也可以不在一条直线上,当不在一直线上时,可将矢量投影到某方向上,分量式为: x tx x mv mv t F 0-=? y ty y mv mv t F 0-=? z tz z mv mv t F 0-=? 对于多个物体组成的物体系,按照力的作用者划分成内力和外力。对各个质点用动量定理: 第1个 1I 外+1I 内=10111v m v m t - 第2个 2I 外+2I 内=20222v m v m t - M M 第n 个 n I 外+n I 内=0n n nt n v m v m - 由牛顿第三定律: 1I 内+2I 内+……+n I 内=0 因此得到: 1I 外+2I 外+ ……+n I 外=(t v m 11+t v m 22+……+nt n v m )-(101v m +202v m +……0n n v m ) 即:质点系所有外力的冲量和等于物体系总动量的增量。 §4,2 角动量 角动量守恒定律 动量对空间某点或某轴线的矩,叫动量矩,也叫角动量。 它的求法跟力矩完全一样,只要把力F 换成动量P 即可,故B 点上的动量P 对原点O 的动量矩J 为 P r J ρ ρρ?= (r =) 以下介绍两个定理:

高中物理复习能量和动量经典习题例题含问题详解

专题研究二 能量和动量 清大师德教育研究院物理教研中心丽

1.功和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。例如2005年物理卷的第10题,要求学生能深刻理解功的概念,灵活地将变力分解。 2.动量、冲量及动量定理近年来单独出题不多,选择题中常考查对动量和冲量的概念及动量变化矢量性的理解。计算题常设置某个瞬时过程,计算该过程物体受到的平均作用力或物体状态的变化。要求学生能正确地对物体进行受力分析,弄清物体状态变化的过程。 3.动量守恒定律的应用,近几年单独命题以选择题为主,常用来研究碰撞和类碰撞问题,主要判定碰撞后各个物体运动状态量的可能值,这类问题也应该综合考虑能量及是否符合实际情况等多种因素。机械能守恒定律的应用常涉及多个物体组成的系统,要求学生能正确在选取研究对象,准确确定符合题意的研究过程。这类问题有时还设置一些临界态问题或涉及运用特殊数学方法求解,对学生的能力有一定的要求。如2004年物理卷的10题,涉及到两个小球组成的系统,并且要能正确地运用数学极值法求解小球的最大速度。 4.动量和能量的综合运用一直是高考考查的重点,一般过程复杂、难度大、能力要求高,经常是高考的压轴题。要求学生学会将复杂的物理过程分解成若干个子过程,分析每一个过程的始末运动状态量及物理过程中力、加速度、速度、能量和动量的变化。对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动

量定理及能量转化与守恒的方法解决实际问题。分析解答问题的过程中常需运用归纳、推理的思维方法。如: 2003年全国卷第20题、2004年理综全国卷第25题的柴油机打桩问题、2004年物理卷第18题、2004年物理卷第17题、2005年物理卷第18题、2005年物理卷第18题等。值得注意的是2005年物理卷的第18题把碰撞中常见的一维问题升级为二维问题,对学生的物理过程的分析及动量矢量性的理解要求更高了一个层次。 第5课时 做功、能量和动能定理 [例1](2005·10)如图5-1所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉绳,使滑块从A 点起由静止开始上升.若从A 点上升至B 点和从B 点上升至C 点的过程中拉力F 做的功分别为W 1、W 2,滑 块经B 、C 两点时的动能分别为E KB 、E Kc ,图中AB=BC ,则一定有 ( ) (A)W l >W 2 (B)W 1E KC (D)E KB W 2,所以A 正确。 根据动能定理:K K G F E E W -' =-W 因在两段中拉力做的功W F 与重力做的功W G 的大小关系不能确定,故无法比较E KB 与E Kc 的大小。 点评:解决该题的关键是能正确地理解功的定义,注意从不同的思维角度去分析问题。题中力F 为恒力,学生易从求力的作用点位移角度来比较两过程绳子缩短的长度,进而增加了思维难度,甚至造成错误。 [例2](2004·17)如图5-2所示, 轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。另一质量与B 相同滑块A ,从 导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰 精典考题反思 B A 图5-1

高中物理竞赛讲义动量和能量专题

高中物理竞赛讲义动量 和能量专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理竞赛讲义动量和能量专题 一、冲量 1.冲量的定义:力F和力的作用时间t的乘积Ft叫做力的冲量,通常用符号I表示冲量。 2.定义式:I=Ft 3.单位:冲量的国际单位是牛·秒(N·s)4.冲量是矢量,它的方向是由力的方向决定的。 如果力的方向在作用时间内不变,冲量的方向就跟力的方向相同。如果力的方向在不断变化,如 绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。 5、冲量的计算:冲量是表示物体在力的作用下经历一段时间的累积的物理量。 因此,力对物体有冲量作用必须具备力F和该力作用下的时间t两个条件。换句话说:只要有力并有作用一段时间,那么该力对物体就有冲量作用,可见,冲量是个过程量。 例:以初速度竖直向上抛出一物体,空气阻力不可忽略。关于物体受到的冲量,以下说法正确的是:() A、物体上升阶段和下落阶段受到的重力的冲量方向相反; B、物体上升阶段和下落阶段受到空气阻力冲量的方向相反; C、物体在下落阶段受到重力的冲量大于上升阶段受到重力的冲量; D、物体从抛出到返回抛出点, 所受各力冲量的总和方向向下。 二、动量 1.定义:质量m和速度v的乘积mv. 2.公式:p=mv 3.单位:千克?米/秒(kg?m/s),1N?m=1kg?m/s2?m=1kg?m/s 4.动量也是矢量:动量的方向与速度方向相同。 三、动量的变化 1.动量变化就是在某过程中的末动量与初动量的矢量差。即△P=P’-P。 例1:一个质量是0.2kg的钢球,以2m/s的速度水平向右运动,碰到一块竖硬的大理石后被弹回,沿着同一直线以2m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化变化了多少 例2:一个质量是0.2kg的钢球,以2m/s的速度斜射到坚硬的大理石板上,入射的角度是45o,碰撞后被斜着弹出,弹出的角度也是45o,速度大小仍为2m/s,用作图法求出钢球动量变化大小和方向? 2.动量是矢量,求其变化量可以用平行四边形定则 四、动量定理 1.物理意义:物体所受合外力的冲量等于物体的动量变化 2.公式:Ft=p’一p=mv'-mv 3.动量定理的适用范围:恒力或变力 (变力时,F为平均力) 例:质量2kg的木块与水平面间的动摩擦因数μ=0.2,木块在F=5N的水平恒力作用下由静止开始运动。g=10m/s2,求恒力作用木块上10s末物体的速度。 例:鸡蛋从某一高度下落,分别碰到石头和海绵垫,哪个更容易破,用动量有关知识解释? 例:一个人慢行和跑步时,不小心与迎面的一棵树相撞,其感觉有什么不同?请解释. 五、动量守恒定律 1.内容:相互作用的物体所组成的系统,如果不受外力作用,或它们所受外力之和为零。则系统的总动量保持不变。

高中物理专项练习:动量和能量

高中物理专项练习:动量和能量 1.(广东广州天河区二模)如图所示,有一质量为M=2kg 的平板小车静止在光滑的水平地面上,现有质量均为m=1kg 的小物块A 和B(均可视为质点),由车上P 处开始,A 以初速度v 1=2m/s 向左运动,B 同时以ν2=4m/s 向右运动。最终A 、B 两物块恰好停在小车两端没有脱离小车。两物块与小车间的动摩擦因数都为μ=0.1,取g=10m/s 2。求: (1)物块A 开始运动至减速为零所用的时间t 及此减速过程的位移x 1; (2)小车总长L ; (3)从A 、B 开始运动计时,经6s 小车运动的路程x 。 【名师解析】 (1)物块A 和B 在小车上滑动,给小车的摩擦力等大反向,故A 运动至小车左端前,小车始终静止。 A mg ma μ= (2分) 11A v a t =(1分) 2111 2 A x a t = (1分) 联立可得12t s = 、12x m =(2分) (2)A 到左端后,小车与A 以共同的加速度从静止开始向右加速,最后三者共速,设共同速度为 v ,整个系统动量守恒、能量守恒: (2分) (2分) 解得:0.5/v m s = 9.5L m = (1分) (3)以B 为研究对象,设从开始到达到共速历时2t B mg ma μ=(1分) 22B v v a t =- (1分) 联立可得:2 3.5t s = (1分) 小车在1t 前静止,在1t 至2t 之间以a 向右加速: (1分) 小车向右走位移 (1分)

三者组成的系统以v 共同匀速运动了 S ’=v (6-t 2) (1分) 小车在6s 内向右运动总距离 (1分) 2.(安徽芜湖期末)如图所示,长为L 的轻绳竖直悬挂着一质量为m 的小球A ,恰好挨着放置在水平面上质量为m 的物块B 。现保持细绳绷直,把小球向左上方拉至细绳与竖直方向成60°角的位置,然后从静止释放小球。小球A 到达最低点时恰好与物块B 发生弹性碰撞,物块向右滑行了L 的距离停下。求: (1)物块与水平面间的动摩擦因数μ。 (2)若仅改变A 的质量,使物块B 与A 发生弹性碰撞后能向右滑行的距离为2L ,则小球A 的质量应该多大。 【名师解析】.(1)设小球与物块碰撞前瞬间的速度为v 0,由机械能守恒定律得: 解得:0v gL = 设碰撞后瞬间小球、物块的速度大小分别为v 1、v 2,由于碰撞是弹性的有:mv 0=mv 1+mv 2 解得: 对于物块向右滑行的过程,由动能定理有: μ=0.5 (2)设小球与物块碰撞前瞬间的速度为v ′0,由机械能守恒定律得: 解得:0 v gL '=设碰撞后瞬间有:Mv ′0=Mv ′1+mv ′2

高中物理竞赛动量能量习题

高中物理竞赛动量、能量习题 一、动量定理还是动能定理? 物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n 颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v 飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。 模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。 先用动量定理推论解题。 取一段时间Δ t ,在这段时间内,飞船要穿过体积Δ V = S·vΔt 的空间,遭遇nΔV 颗太空垃圾,使它们获得动量Δ P ,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。 P M v m n V v m nSv t v 2 F = = = = = nmSv t t t t 如果用动能定理,能不能解题呢? 同样针对上面的物理过程,由于飞船要前进x = vΔt 的位移,引擎推力 F 须做功W= F x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的Δ E k为零,所 以: W = 1ΔMv2 2 12 即: F vΔt =(n m S·vΔt )v2 2 得到: F = 1nmSv2 2 两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I = F t ,由此推出的 F = P P必然是飞船对垃圾的 平 t 均推力,再对飞船用平衡条件, F 的大小就是引擎

高中物理二级结论 动量

动量: 1、质量为m 的物体的动量P 和动能之间存在下列关系K mE p 2= 或者E K =P 2/2m 。 2、动量守恒是矢量守恒 (1)总动量的方向保持不变。 (2)矢量方程:注意规定好正方向,各动量代入正负号计算。 3、两物体m 1、m 2碰撞之后,总动量必须和碰前大小方向都相同,总动能小于或等于碰前总动能,碰后在没有其他物体的情况下,保证不再发生碰撞。 原来静止的系统,因其相互作用而分离,则m 1s 1+m 2s 2=0。 4、一维的两物体m 1、m 2以速度v 1、v 2发生弹性碰撞之后的速度分别变为: 若v 2≠0,m 1=m 2,则1221','v v v v ==,交换速度。 m 1>>m 2,则212112','v v v v v -==。 m 1<>m 2时,12112','v v v v ==。 m 1<

5、两物体发生弹性碰撞后,相对速度大小不变,方向相反,2211''v v v v -=-;也可以说两物体的速度之和保持不变,即''2121v v v v +=+ 6、反弹:动量变化量大小()?p m v v =+12 7、“弹开”(初动量为零,分成两部分):速度和动能都与质量成反比。 8、人船模型(反冲) 解决这种问题的前提条件是要两物体的初动量为零(或某方向上初动量为零),画出两物体的运动示意图有利于发现各物理量之间的关系,特别提醒要注意各物体的位移是相对于地面的位移(或该方向上相对于地面的位移)。 9、A 追上B 发生碰撞,则 (1)V A >V B (2)A 的动量和速度减小,B 的动量和速度增大 (3)动量守恒 (4)动能不增加 (5)A 不穿过B ('<'V V A B ) 。 10、碰撞的结果总是介于完全弹性与完全非弹性之间。 11、子弹打木块模型: ①子弹(质量为m ,初速度为0v )打入静止在光滑水平面上的木块(质量为M ),但未打穿。从子弹刚进入木块到恰好相对静止,子弹的位移子S 、木块的位移木S 及子弹射入的深度d 三者的比为)(M ∶∶)2(∶∶m m m M d S S ++=木子 ②子弹穿出了木块(相对位移等于木块厚度L x =相对),子弹速度大于木块速度。 12、弹簧模型:双弹簧振子在光滑直轨道上运动,弹簧为原长时一个振子速度最大,另一个振子速度最小; 弹簧最长和最短时(弹性势能最大)两振子速度一定相等。

相关主题
文本预览
相关文档 最新文档