当前位置:文档之家› 第8讲导数应用的题型与方法(4课时)

第8讲导数应用的题型与方法(4课时)

第8讲导数应用的题型与方法(4课时)
第8讲导数应用的题型与方法(4课时)

高三数学第二轮复习教案

第8讲导数应用的题型与方法

一、考试内容

导数的概念,导数的几何意义,几种常见函数的导数

两个函数的和、差、积、商的导数,复合函数的导数,基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值

二、考试要求

⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。

x的导数)。掌

⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, log

a

握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。

⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。

三、复习目标

1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.

x的导数)。

2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, log

a

掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用. 3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。

4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。

四、双基透视

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等方法精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

4.曲线的切线

在初中学过圆的切线,直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的概念推广为一段曲线的切线,即直线和曲线有惟一公共点时,直线叫做曲线过该点的切线,显然这种推广是不妥当的.如图3—1中的曲线C 是我们熟知的正弦曲线y=sinx .直线1l 与曲线C 有惟一公共点M ,但我们不能说直线1l 与曲线C 相切;而直线2l 尽管与曲线C 有不止一个公共点,我们还是说直线2l 是曲线C 在点N 处的切线.因此,对于一般的曲线,须重新寻求曲线的切线的定义.所以课本利用割线的极限位置来定义了曲线的切线.

5.瞬时速度

在高一物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先

指出:运动物体经过某一时刻(或某一位置)的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度.

6.导数的定义

导数定义与求导数的方法是本节的重点,推导导数运算法则与某些导数公式时,都是以此为依据.

对导数的定义,我们应注意以下三点:

(1)△x 是自变量x 在 0x 处的增量(或改变量).

(2)导数定义中还包含了可导或可微的概念,如果△x →0时,x

y

??有极限,那么函数y=f(x)在点0x 处可导或可微,才能得到f(x)在点0x 处的导数.

(3)如果函数y=f(x)在点0x 处可导,那么函数y=f(x)在点0x 处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x|在点x=0处连续,但不可导.

由导数定义求导数,是求导数的基本方法,必须严格按以下三个步骤进行: (1)求函数的增量)()(00x f x x f y -?+=?; (2)求平均变化率

x

x f x x f x y ?-?+=??)()(00; (3)取极限,得导数x

y

x f x ??=→?00lim )('。

7.导数的几何意义

函数y=f(x)在点0x 处的导数,就是曲线y=(x)在点))(,(00x f x P 处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:

(1)求出函数y=f(x)在点0x 处的导数,即曲线y=f(x)在点))(,(00x f x P 处的切线的斜率;

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为 ))(('000x x x f y y -=-

特别地,如果曲线y=f(x)在点))(,(00x f x P 处的切线平行于y 轴,这时导数不存,根据切线定义,可得切线方程为0x x =

8.和(或差)的导数

上一节我们学习了常见函数的导数公式,那么对于函数23)(x x x f +=的导数,又如何求呢?我们不妨先利用导数的定义来求。

x x x x x x x x x f x x f x f x x ?+-?++?+=?-?+=→?→?)

()()(lim

)()(lim )('232300 x

x x x x x x x x

x x x x x x x x x x 23)

)(323(lim )(2)()(33lim 2

2

20

23220+=?+?+??++=??+??+?+?+??=→?→?

我们不难发现)'()'(23)'(2

3

2

2

3

x x x x x x +=+=+,即两函数和的导数等于这两函数的导数的和。

由此我们猜测在一般情况下结论成立。事实上教材中证明了我们的猜想,这就是两个函数的和(或差)的求导法则。 9.积的导数

两个函数的积的求导法则的证明是本节的一个难点,证明过程中变形的关键是依据导数定义的结构形式。(具体过程见课本P120) 说明:

(1)'')'(v u uv ≠;

(2)若c 为常数,则(cu) ′=cu ′。 10.商的导数

两个函数的商的求导法则,课本中未加证明,只要求记住并能运用就可以。现补充证明如下: 设)

()

()(x v x u x f y =

=

[][])

()()()()()()()()

()()

()()()()()()()u (x y x v x x v x v x x v x u x v x u x x u x v x x v x x v x u x v x x u x v x u x x v x ?+-?+--?+=

?+?+-?+=

-?+?+=

?

)

()()

()()

()()()(x v x x v x x v x x v x u x v x x u x x u x y ?+?-?+-?-?+=??

因为v(x)在点x 处可导,所以它在点x 处连续,于是△x →0时,v(x+△x)→v(x),从而

[]20)()(')()()('lim

x v x v x u x v x u x y x -=??→? 即2'

'''v uv v u v u y -=??? ??=。 说明:(1)'''v u v u ≠

???

??; (2)2'''v uv v u v u -=??

? ?? 学习了函数的和、差、积、商的求导法则后,由常函数、幂函数及正、余弦函数经加、

减、乘、除运算得到的简单的函数,均可利用求导法则与导数公式求导,而不需要回到导数的定义去求。

11. 导数与函数的单调性的关系

㈠0)(>'x f 与)(x f 为增函数的关系。

0)(>'x f 能推出)(x f 为增函数,但反之不一定。如函数3)(x x f =在),(+∞-∞上单

调递增,但0)(≥'x f ,∴0)(>'x f 是)(x f 为增函数的充分不必要条件。

㈡0)(≠'x f 时,0)(>'x f 与)(x f 为增函数的关系。

若将0)(='x f 的根作为分界点,因为规定0)(≠'x f ,即抠去了分界点,此时)(x f 为增函数,就一定有0)(>'x f 。∴当0)(≠'x f 时,0)(>'x f 是)(x f 为增函数的充分必要条件。

㈢0)(≥'x f 与)(x f 为增函数的关系。

)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定,因为0)(≥'x f ,即为0)(>'x f 或0)(='x f 。当函数在某个区间内恒有0)(='x f ,则)(x f 为常数,函数不具

有单调性。∴0)(≥'x f 是)(x f 为增函数的必要不充分条件。

函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。

㈣单调区间的求解过程,已知)(x f y =

(1)分析 )(x f y =的定义域; (2)求导数 )(x f y '='

(3)解不等式0)(>'x f ,解集在定义域内的部分为增区间 (4)解不等式0)(<'x f ,解集在定义域内的部分为减区间

我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数)(x f y =在某个区间内可导。

㈤函数单调区间的合并

函数单调区间的合并主要依据是函数)(x f 在),(b a 单调递增,在),(c b 单调递增,又知函数在b x f =)(处连续,因此)(x f 在),(c a 单调递增。同理减区间的合并也是如此,即相邻区间的单调性相同,且在公共点处函数连续,则二区间就可以合并为以个区间。

12. )(x f y = ],[b a x ∈

(1)0)(>'x f 恒成立 ∴)(x f y =为),(b a 上↑

∴ 对任意),(b a x ∈ 不等式 )()()(b f x f a f << 恒成立 (2)0)(<'x f 恒成立 ∴ )(x f y =在),(b a 上↓ ∴ 对任意),(b a x ∈不等式)()()(b f x f a f >> 恒成立

五、注意事项

1.导数概念的理解.

2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.

复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

对于复合函数,以前我们只是见过,没有专门定义和介绍过它,课本中以描述性的方式对复合函数加以直观定义,使我们对复合函数的的概念有一个初步的认识,再结合以后的例题、习题就可以逐步了解复合函数的概念。 3.要能正确求导,必须做到以下两点:

(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

4.求复合函数的导数,一般按以下三个步骤进行: (1)适当选定中间变量,正确分解复合关系;

(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导); (3)把中间变量代回原自变量(一般是x )的函数。

也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然

后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ?,并将中间变量代回为自变量的函数。整个过程可简记为分解——求导——回代。熟练以后,可以省略中间过程。若遇多重复合,可以相应地多次用中间变量。

六、范例分析

例1.??

?>+≤==1

1

)(2

x b ax x x x f y 在1=x 处可导,则=a =b 思路:??

?>+≤==1

1

)(2

x b

ax x x x f y 在1=x 处可导,必连续1)(lim 1=-

→x f x b a x f x +=+

→)(l i m 1 1)1(=f ∴ 1=+b a

2lim 0

=??-

→?x y x a x

y

x =??+→?0lim ∴ 2=a 1-=b

例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:

(1)h h a f h a f h 2)

()3(lim 0--+→?; (2)h

a f h a f h )()(lim 20-+→?

分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。利用函数f(x)在a x =处可导的条件,可以将已给定的极限式恒等

变形转化为导数定义的结构形式。 解:(1)h

h a f a f a f h a f h h a f h a f h h 2)

()()()3(lim 2)()3(lim

00

--+-+=--+→→ b a f a f h a f h a f h a f h a f h h a f a f h a f h a f h h h h 2)('2

1

)('23)()(l i m

213)()3(l i m 232)

()(l i m 2)()3(l i m 0000=+=---+-+=--+-+=→→→→

(2)??

????-+=-+→→h h a f h a f h a f h a f h h 22020)()(lim )

()(lim 00)('l i m )

()(l i m

02

20=?=?-+=→→a f h h a f h a f h h 说明:只有深刻理解概念的本质,才能灵活应用概念解题。解决这类问题的关键是等

价变形,使极限式转化为导数定义的结构形式。

例3.观察1)(-='n n nx x ,x x cos )(sin =',x x sin )(cos -=',是否可判断,可导的奇函数的导函数是偶函数,可导的偶函数的导函数是奇函数。

解:若)(x f 为偶函数 )()(x f x f =- 令)()

()(lim

0x f x

x f x x f x '=?-?+→?

x

x f x x f x x f x x f x f x x ?+-?-=?+--?+-=-'→?→?)

()(lim )()(lim )(00

)()

()(lim 0x f x f x x f x '-=?

--?--

=→? ∴ 可导的偶函数的导函数是奇函数

另证:)()()(])([x f x x f x f f '-='-?+'='-='

∴ 可导的偶函数的导函数是奇函数

例4.(1)求曲线1

22+=

x x

y 在点(1,1)处的切线方程; (2)运动曲线方程为2

221t t

t S +-=,求t=3时的速度。

分析:根据导数的几何意义及导数的物理意义可知,函数y=f(x)在0x 处的导数就是曲线y=f(x)在点),(00y x p 处的切线的斜率。瞬时速度是位移函数S(t)对时间的导数。

解:(1)22

2222)

1(22)1(22)1(2'+-=+?-+=x x x x x x y , 04

2

2|'1=-==x y ,即曲线在点(1,1)处的切线斜率k=0 因此曲线1

22+=x x

y 在(1,1)处的切线方程为y=1

(2))'2('1'2

2

t t t S +??

?

??-=

t t

t t t t t t 42

14)1(232

42++-=+--= 27

26111227291|'3=++-==t S 。

例5. 求下列函数单调区间 (1)522

1)(2

3

+--

==x x x x f y (2)x x y 1

2-=

(3)x x

k y +=2

)0(>k (4)αln 22-=x y

解:(1)232

--='x x y )1)(23(-+=x x )3

2

,(-

-∞∈x ),1(∞+ 时0>'y )1,32(-

∈x 0<'y ∴ )32,(--∞,),1(∞+↑ )1,3

2

(-↓ (2)2

21x x y +=' ∴ )0,(-∞,),0(∞+↑ (3)22

1x

k y -=

∴ ),(k x --∞∈),(∞+k 0>'y ),0()0,(k k x -∈ 0<'y ∴ ),(k --∞,↑∞+),(k )0,(k -,),0(k ↓

(4)x x x x y 1

4142-=-=' 定义域为),0(∞+

)21,0(∈x 0<'y ↓ ),2

1

(∞+∈x 0>'y ↑

例6.求证下列不等式

(1))

1(2)1ln(22

2x x x x x x +-

<+<- ),0(∞+∈x (2)π

x

x 2sin >

)2

,

0(π

∈x

(3)x x x x -<-tan sin )2

,

0(π

∈x

证:(1))2()1ln()(2x x x x f --+= 0)0(=f 01

1

111)(2>+-=+-+='x x x x x f ∴ )(x f y =为),0(∞+上↑ ∴ ),0(∞+∈x 0)(>x f 恒成立

∴ 2)1ln(2x x x ->+ )1l n ()

1(2)(2

x x x x x g +-+-= 0)0(=g

0)1(4211)

1(42441)(2

2

222>+=+-+-+-='x x x x x x x x g ∴ )(x g 在),0(∞+上↑ ∴ ),0(∞+∈x 0)1ln()

1(22

>+-+-x x x x 恒成立

(2)原式π

2

sin >?

x x 令 x x x f /sin )(= )2

,

0(π

∈x 0cos >x 0t a n <-x x

∴ 2

)tan (cos )(x

x x x x f -=' ∴ )2,0(π∈x 0)(<'x f )2,0(π

↓ ππ2)2(=f ∴ π

x x 2sin >

(3)令x x x x f sin 2tan )(+-= 0)0(=f

x

x x x x x x f 222

cos )sin )(cos cos 1(cos 2sec )(+-=+-='

)2

,

0(π

∈x 0)(>'x f ∴ ↑)2

,

0(π

∴ x x x x sin tan ->-

例7.利用导数求和:

(1);

(2)

分析:这两个问题可分别通过错位相减法及利用二项式定理来解决。转换思维角度,由求导公式1)'(-=n n nx x ,可联想到它们是另外一个和式的导数,利用导数运算可使问题的解决更加简捷。 解:(1)当x=1时,

当x ≠1时,

两边都是关于x 的函数,求导得

(2)∵

两边都是关于x 的函数,求导得。

令x=1得

例8.求满足条件的a

(1)使ax x y +=sin 为R 上增函数 (2)使a ax x y ++=3

为R 上…… (3)使5)(2

3

-+-=x x ax x f 为R 上↑

解:(1)a x y +='cos ∴ 1>a

1=a 时 x x y +=s i n 也成立 ∴ ),1[∞+∈a

(2)a x y +='23 0>a 0=a 时 3x y =也成立 ∴ ),0[∞+∈a (3)),3

1

[∞+∈a

例9.(1)),0(∞+∈x 求证

x x x x 11ln 11<+<+ (2)N n ∈ 2≥n 求证 1

1

211ln 13121-+++<<+++n n n

(1)证:令t x =+11 0>x ∴ 1>t 11

-=t x

原不等式1ln 11-<<-?t t t 令 t t t f ln 1)(--= ∴ t

t f 1

1)(-='

),1(∞+∈t 0)(>'t f ∴ ),1(∞+∈t ↑)(t f ∴ 0)1()(=>f t f

∴ t t ln 1>- 令 t t t g 1

1ln )(+-= ∴ 22111)(t

t t t t g -=-=

' ),1(∞+∈t 0)(>'t g ∴),1(∞+∈t ↑)(t g

∴ 0)1()(=>g t g ∴ t t 1

1ln -> ∴ x

x x x 11ln 11<+<+ (2)令12,1-=n x 上式也成立

将各式相加 1

1

2111lg 23ln 12ln 13121-+++<-+++<+++n n n n 即 1

1211ln 13121-+++<<+++n n n

例10.(2003年普通高等学校招生全国统一考试(天津卷,理工农医类19)) 设0>a ,求函数),0()(ln()(+∞∈+-=

x a x x x f 的单调区间.

分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力. 解:

)0(1

21)(>+-

=

'x a

x x

x f . 当0,0>>x a 时 0)42(0)(22>+-+?>'a x a x x f .

0)42(0)(22<+-+?<'a x a x x f

(i )当1>a 时,对所有0>x ,有0)42(22>+-+a a x .

0)(>'x f ,此时)(x f 在),0(+∞内单调递增.

(ii )当1=a 时,对1≠x ,有0)42(22>+-+a x a x ,

0)(>'x f ,此时)(x f 在(0,1)内单调递增,又知函数)(x f 在x=1处连续,因此, 函数

)(x f 在(0,+∞)内单调递增

(iii )当10

<'x f ,即0)42(22>+-+a x a x .

解得a a x a a x -+->---<122,122或.

因此,函数

)(x f 在区间)122,0(a a ---内单调递增,在区间),122(+∞-+-a a

内也单调递增. 令

0)42(,0)(22<+-+<'a x a x x f 即,

解得a a x a a -+-<<---122122.

因此,函数

)(x f 在区间)122,12-2a a a a -+---(内单调递减.

说明:本题用传统作差比较法无法划分函数的单调区间,只有用导数才行,这是教材新

增的内容。其理论依据如下(人教版试验本第三册P148):

设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果

0)(<'x f ,则)(x f 为减函数。如果0)(='x f ,则)(x f 为常数。

例11.已知抛物线42

-=x y 与直线y=x+2相交于A 、B 两点,过A 、B 两点的切线分别为1l 和2l 。

(1)求A 、B 两点的坐标; (2)求直线1l 与2l 的夹角。

分析:理解导数的几何意义是解决本例的关键。

解 (1)由方程组

?

??+=-=,2,42x y x y

解得 A(-2,0),B(3,5)

(2)由y ′=2x ,则4|'2-=-=x y ,6|'3==x y 。设两直线的夹角为θ,根据两直线的夹角公式, 23

10

6)4(164tan =

?-+--=

θ 所以23

10arctan

=θ 说明:本例中直线与抛物线的交点处的切线,就是该点处抛物线的切线。注意两条直线的夹角公式有绝对值符号。

例12.(2001年天津卷)设0>a ,x

x e a

a e x f +=

)(是R 上的偶函数。 (I )求a 的值;

(II )证明)(x f 在),0(+∞上是增函数。

解:(I )依题意,对一切R x ∈有)()(x f x f =-,即x x x x ae ae e a a e +=+--1

, ∴0)1

)(1(=--

x x e

e a a 对一切R x ∈成立, 由此得到01=-a

a ,12

=a ,

又∵0>a ,∴1=a 。

(II )证明:由x

x

e e x

f -+=)(,得x x e e x f --=')()1(2-=-x

x e e ,

当),0(+∞∈x 时,有0)1(2>--x x

e

e ,此时0)(>'x

f 。

∴)(x f 在),0(+∞上是增函数。

例13.(2000年全国、天津卷)设函数ax x x f -+=1)(2,其中0>a 。

(I )解不等式1)(≤x f ;

(II )证明:当1≥a 时,函数)(x f 在区间),0[+∞上是单调函数。 解1:(I )分类讨论解无理不等式(略)。

(II )作差比较(略)。 解2:a x x x f -+=

'1

)(2

(i )当1≥a 时,有

a x x ≤<+11

2

,此时0)(<'x f ,函数)(x f 在区间),(+∞-∞上是单

调递减函数。但1)0(=f ,因此,当且仅当0≥x 时,1)(≤x f 。 (ii )当10<

1a

a x -<,)(x f 在区间]

1,

(2

a

a --∞上是单调递减函数。

解方程1)(=x f ,得0=x 或2

12a

a x -=

∵2

2

1210a

a a

a -<

-<

∴当且仅当2

120a

a x -≤

≤时,1)(≤x f ,

综上,(I )当10<

??-≤≤2

120|a a x x ; 当1≥a 时,所给不等式的解集为:{}0|≥x x 。

(II )当且仅当1≥a 时,函数)(x f 在区间),0[+∞上时单调函数。

例14.(2002年普通高等学校招生全国统一考试(新课程卷理科类20)) 已知0>a ,函数),,0(,1)(+∞∈-=

x x ax x f 设a

x 2

01<<,记曲线)(x f y =在点))(,(11x f x M 处的切线为l 。

(Ⅰ)求l 的方程;

(Ⅱ)设l 与x 轴的交点为)0,(2x ,证明:①a x 102≤<②若a x 11<,则a

x x 1

21<< 解:(1))(x f 的导数21

)(x

x f -

=',由此得切线l 的方程 )(1

1121

11x x x x ax y --=--

, (2)依题得,切线方程中令0=y ,得

1112)1(x ax x x +-=)2(11ax x -=,其中a

x 2

01<

<, (ⅰ)由a x 201<

<,)2(112ax x x -=,有02>x ,及a a x a x 1)1(212+--=, ∴a x 102≤<,当且仅当a x 11=时,a x 1

2=。

(ⅱ)当a x 11<时,11-=,且由(ⅰ),a x 1

2<,

所以a

x x 1

21<<。

例15.(2003年普通高等学校招生全国统一考试(江苏卷21)) 已知n a ,0>为正整数.

(Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;

(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意

分析:本小题主要考查导数、不等式证明等知识,考查综合运用所数学知识解决问题的能力。 证明:(Ⅰ)因为n

k k

n

n

C a x 0)

(=∑=-k k n x a --)(, 所以1

)

(--=-=

'∑k k

n n

k k

n

x

a kC

y n

k n 0

=∑=.)()(11

11------=-n k k n k n a x n x a C (Ⅱ)对函数

n n n a x x x f )()(--=求导数:

n

n n n n n n n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nx x f )()1()1(,,.)()(,.

0)(,0].

)([)(,

)()(1111-->-+-+≥--=≥∴>'

>≥--='

--='

----时当因此的增函数是关于时当时当所以

))()(1(])1()1)[(1()1(1n n n n n a n n n a n n n n f --+>-+-++=+'

+

).()1())()(1(1n f n a n n n n n n n '

+=--+>-

即对任意).()1()1(,1n f n n f a n

n n '

+>+'≥+

七、强化训练

1.设函数f(x)在0x 处可导,则x

x f x x f x ?-?-→?)

()(lim

000

等于 ( )

A .)('0x f

B .)('0x f -

C .)('0x f --

D .)(0x f -- 2.若13)

()2(lim

000

=?-?+→?x

x f x x f x ,则)('0x f 等于 ( )

A .

32 B .2

3

C .3

D .2 3.曲线x x y 33

-=上切线平行于x 轴的点的坐标是 ( )

A .(-1,2)

B .(1,-2)

C .(1,2)

D .(-1,2)或(1,-2)

4.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的倾斜角为( ) A .90° B .0° C .锐角 D .钝角

5.函数512322

3

+--=x x x y 在[0,3]上的最大值、最小值分别是 ( )

A .5,-15

B .5,-4

C .-4,-15

D .5,-16

6.一直线运动的物体,从时间t 到t+△t 时,物体的位移为△s ,那么t

s

t ??→?0lim 为( )

A .从时间t 到t+△t 时,物体的平均速度

B .时间t 时该物体的瞬时速度

C .当时间为△t 时该物体的速度

D .从时间t 到t+△t 时位移的平均变化率

7.关于函数762)(23+-=x x x f ,下列说法不正确的是 ( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数

D .在区间(∞-,0)),2(+∞?内,)(x f 为增函数

8.对任意x ,有34)('x x f =,f(1)=-1,则此函数为 ( )

A .4)(x x f =

B .2)(4-=x x f

C .1)(4+=x x f

D .2)(4+=x x f 9.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )

A.5 , -15

B.5 , 4

C.-4 , -15

D.5 , -16 10.设f(x)在0x 处可导,下列式子中与)('0x f 相等的是 ( ) (1)x x x f x f x ??--→?2)2()(lim

000

; (2)x x x f x x f x ??--?+→?)

()(lim 000;

(3)x x x f x x f x ??+-?+→?)()2(lim

000

(4)x x x f x x f x ??--?+→?)2()(lim 000。

A .(1)(2)

B .(1)(3)

C .(2)(3)

D .(1)(2)(3)(4)

11.(2003年普通高等学校招生全国统一考试(上海卷理工农医类16))

f (x )是定义在区间[-c,c]上的奇函数,其图象如图所示:令

g (x )=af (x )+b ,则下 列关于函数g (x )的叙述正确的是( )

A .若a <0,则函数g (x )的图象关于原点对称.

B .若a =-1,-2

C .若a ≠0,b=2,则方程g (x )=0有两个实根.

D .若a ≥1,b<2,则方程g (x )=0有三个实根.

12.若函数f(x)在点0x 处的导数存在,则它所对应的曲线在点))(,(00x f x 处的切线方程是_____________。

13.设x

x x f 1

)(-

=,则它与x 轴交点处的切线的方程为______________。 14.设3)('0-=x f ,则=---→h

h x f h x f h )

3()(lim

000

_____________。

15.垂直于直线2x-6y+1=0,且与曲线5323-+=x x y 相切的直线的方程是________. 16.已知曲线x

x y 1+

=,则==1|'x y _____________。

17.y=x 2e x 的单调递增区间是

18.曲线3213+=x y 在点)4,1(3处的切线方程为____________。 19.P 是抛物线2x y =上的点,若过点P 的切线方程与直线12

1

+-=x y 垂直,则过P 点处的切线方程是____________。

20.在抛物线2x y =上依次取两点,它们的横坐标分别为11=x ,32=x ,若抛物线上过点P 的切线与过这两点的割线平行,则P 点的坐标为_____________。

21.曲线3)(x x f =在点A 处的切线的斜率为3,求该曲线在A 点处的切线方程。 22.在抛物线2x y =上求一点P ,使过点P 的切线和直线3x-y+1=0的夹角为4

π。 23.判断函数??

?<-≥=)

0()

0()(x x x x x f 在x=0处是否可导。

24.求经过点(2,0)且与曲线x

y 1

=相切的直线方程。 25.求曲线y=xcosx 在2

π

=

x 处的切线方程。

26.已知函数f(x)=x 2+ax+b ,g(x)=x 2+cx+d. 若f(2x+1)=4g(x),且f'x=g'(x),f(5)=30,求g(4).

27.已知曲线21

:x y C =与22)2(:--=x y C 。直线l 与1C 、2C 都相切,求直线l 的方程。

28.设f(x)=(x-1)(x-2)…(x-100),求f ′(1)。

29.求曲线2

2)

3(1

x x y +=

在点)161,1(处的切线方程。 30.求证方程1lg =?x x 在区间)3,2(内有且仅有一个实根 31. a 、b 、x 、y 均为正数 且1=+b a N n ∈ 1>n

求证:n n n by ax by ax )(+≥+ 32.(1)求函数x y =

在x=1处的导数;

(2)求函数b ax x y ++=2(a 、b 为常数)的导数。

33.证明:如果函数y=f(x)在点0x 处可导,那么函数y=f(x)在点0x 处连续。 34.(2002年普通高等学校招生全国统一考试(新课程卷文史类21))

已知,0>a 函数),0[,)(3+∞∈-=x a x x f ,设01>x ,记曲线)(x f y =在点

))(,(11x f x M 处的切线为l 。

(Ⅰ)求l 的方程;

(Ⅱ)设l 与x 轴的交点为)0,(2x ,证明:①3

1

2a x >

;②若311a x >

,则123

1

x x a <<。

八、参考答案

1-5 CBDCA ; 6-10 BDBAB ; 11 B

12.))((')(000x x x f x f y -=- 13.y=2(x-1)或y=2(x+1) 14.-6 15.3x+y+6=0 16.2

1

17.(-∞,-2)与(0,+ ∞) 18.0123=+-y x 19.2x-y-1=0 20.(2,4) 21.由导数定义求得2

3)('x x f =,

令332

=x ,则x=±1。

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

高三导数压轴题题型归纳

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-1 0+m =0?m =1, 定义域为{x |x >-1},f ′(x )=e x -1 x +m = e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x -1 x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1 x +22>0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-1 2,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1 t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1 t +2+t = 1+t 2 t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)121 1()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f =

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. 1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. ()2 21 ()ln ,R x f x a x x a x -=-+ ∈()f x 1a =()3 ()'2 f x f x +>[]1,2x ∈

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.

例3.(本小题满分12分) 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数,函数 (Ⅰ)讨论在区间 上的单调性; (Ⅱ)若存在两个极值点且 求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足21 2 1)0()1(')(x x f e f x f x + -=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例7已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)如果当,且时,,求的取值范围。 ln ()1a x b f x x x = ++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k f x x x >+-k

[数学]导数应用的题型与方法

导数应用的题型与方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数 两个函数的和、差、积、商的导数,复合函数的导数,基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值 二、考试要求 (1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。 x (2)熟记基本导数公式(c,x m (m为有理数),sin x, cos x, e x, a x,ln x, log a 的导数)。掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。 (3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。 三、复习目标 1.了解导数的概念,能利用导数定义求导数。掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。了解曲线的切线的概念。在了解瞬时速度的基础上抽象出变化率的概念。 x 2.熟记基本导数公式(c,x m (m为有理数),sin x, cos x, e x, a x, ln x, log a 的导数)。掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。 四、双基透视 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导

高考导数压轴题题型

高考导数压轴题题型 远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+ ; (1)求()f x 的解析式及单调区间; 【解析】 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1e x x m -+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1e 1x x - +. 函数f ′(x )=1e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.

导数压轴题7大题型归类总结

导数压轴题7大题型归类总结,逆袭140+ 一、导数单调性、极值、最值的直接应用 设a> 0,函数g(x)= (a A2 + 14)e A x + 4?若E 1、E 2 € [0 , 4],使得|f( E 1) - g( E 2)| v 1 成立, 求a 的取值范围.

二、交点与根的分布 三、不等式证明 (一)做差证明不等式 LL期嗨敕门划=1扣 M】求的单调逼减区创! <2)^7 I >-1 r求证1 I ----- + x+ 1 W;的宦义域为(一4 +—=—-1 = ■―? x + 1 T t 4-1 I ■丈0 山厂w" 阳=」耳+ 1?二的中说逆减区簡为①,车呵一 ⑵国小由⑴得_虫(一1, ?时” /r Ct)>O f *庄曰① #8)时./'(XXO ?II /+(0) = 0 z.t>- 1 时.f骑)Wf(Qh ?〔耳口仇in(.T + h t T, I I x >X<^> = lnU + 1)+ ------ 1 t则K C<)* ----- -------- =------- -| r+1 立*1 {x+1)- G + I广/. — !< c<0时.X W Y O T ?A0时., JJ x F?h = <) 」?T A—l时、* S) (0)t UP \a(j[ + I M---------- 1MQ X + 1 ;.+1) ) ------- ,:心一1时t I------------- < ln{x + n^j. (二)变形构造函数证明不等式

Ehl&£ /I U li 故)白 )替换构造不等式证明不等式 >=/U ) “川理k C 1;/< <6 N 实出氓I:的崗散丿I + 20> I 沟申求齡./i (2JfiF(x) = /(.r)r-g(x> nt,护订} > 0 3r hH(f > [}). I J J //(:>- 2/0-^ . ft Injr". tl 中 i 堆fiU |他①5)的必人饥为hie' * = m 叫z ?削灯育公共恵?且在谆戍坯的也皱丹匸, %、b 、曲求占的E 大fh /(X) K (r K ). v = /Ol 存佥共C <^ r ()i 牡的岗绥翎同 ;In u J - 3

导数应用的题型与方法82888

导数应用的题型与方法 一.复习目标: 1.⑴了解导数的概念,能利用导数定义求导数. ⑵掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念. ⑶了解曲线的切线的概念. ⑷在了解瞬时速度的基础上抽象出变化率的概念. 2.熟记基本导数公式(c,x m (m 为有理数),sin x, cos x, e x , a x , lnx, log a x 的导数)。掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用. 3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用 函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握 复合函数的求导法则,并会用法则解决一些简单问题。 二.教学过程: 1.曲线的切线 在初中学过圆的切线,直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的概念推广为一段曲线的切线,即直线和曲线有惟一公共点时,直线叫做曲线过该点的切线,显然这种推广是不妥当 的.如图3—1中的曲线C 是我们熟知的正弦曲线y=sinx .直线1l 与曲线C 有惟一公共点M ,但我们不能说直线1l 与曲线C 相切;而直线2l 尽管与曲线C 有不止一个公共点,我们还是说直线2l 是曲线C 在点N 处的切线.因此,对于一般的曲线,须重新寻求曲线的切线的定义.所以课本利用割线的极限位置来定义了曲线的切线. 2.瞬时速度 在高一物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出: 运动物体经过某一时刻(或某一位置)的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度. 3.导数的定义 导数定义与求导数的方法是本节的重点,推导导数运算法则与某些导数公式时,都是以此为依据. 对导数的定义,我们应注意以下三点: (1)△x 是自变量x 在 0x 处的增量(或改变量). (2)导数定义中还包含了可导或可微的概念,如果△x →0时,x y ??有极限,那么函数y=f(x)在点0x 处可导或可微,才能得到f(x)在点0x 处的导数. (3)如果函数y=f(x)在点0x 处可导,那么函数y=f(x)在点0x 处连续(由连续函数定义可知).反之不一定成立.例如函数y=|x|在点x=0处连续,但不可导. 由导数定义求导数,是求导数的基本方法,必须严格按以下三个步骤进行: (1)求函数的增量)()(00x f x x f y -?+=?; (2)求平均变化率 x x f x x f x y ?-?+=??)()(00; (3)取极限,得导数x y x f x ??=→?00lim )('。 4、导数的几何意义 函数y=f(x)在点0x 处的导数,就是曲线y=(x)在点))(,(00x f x P 处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步: (1)求出函数y=f(x)在点0x 处的导数,即曲线y=f(x)在点))(,(00x f x P 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为 ))(('000x x x f y y -=- 特别地,如果曲线y=f(x)在点))(,(00x f x P 处的切线平行于y 轴,这时导数不存,根据切 线定义,可得切线方程为0x x =

导数压轴题双变量问题题型归纳总结

导数应用之双变量问题 (一)构造齐次式,换元 【例】已知函数()2 ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =. (1)求实数,a b 的值; (2)设()()()()2 1212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x 的两个零点,求证:0F ' <. 【解析】(1)1,1a b ==-; (2)()2 ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x '=+- , 因为12,x x 分别是函数()F x 的两个零点,所以()()11 221ln 1ln m x x m x x +=???+=?? , 两式相减,得1212ln ln 1x x m x x -+=-, 1212ln ln 1x x F m x x -' =+=- 0F '< ,只需证 12 12ln ln x x x x -< -. 思路一:因为120x x << ,只需证 1122ln ln ln 0 x x x x -> ?>. 令()0,1t ,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()2 22 12110t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证1 2ln 0t t t -+>. 由上述分析可知0F ' <. 【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形 为齐次式,设12111222 ,ln ,,x x x x t t t x x t e x x -= ==-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x << ,只需证12ln ln 0x x -, 设( ))22ln ln 0Q x x x x x =-<<,则 () 21 10 Q x x x '= ==<, 所以函数()Q x 在()20,x 上单调递减,()() 20Q x Q x >=,即证2ln ln x x -. 由上述分析可知0F ' <. 【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.

高考数学导数应用的题型与方法

第17讲 导数应用的题型与方法 一、专题综述 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 二、知识整合 1.导数概念的理解. 2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值. 复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。 3.要能正确求导,必须做到以下两点: (1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。 (2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。 4.求复合函数的导数,一般按以下三个步骤进行: (1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x )的函数。 也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ?,并将中间变量代回为自变量的函数。整个过程可简记为分解——求导——回代。熟练以后,可以省略中间过程。若遇多重复合,可以相应地多次用中间变量。 三、例题分析 例1.?? ?>+≤==1 1 )(2 x b ax x x x f y 在1=x 处可导,则=a =b 思路:?? ?>+≤==1 1 )(2 x b ax x x x f y 在1=x 处可导,必连续1)(lim 1=-→x f x b a x f x +=+ →)(lim 1 1)1(=f ∴ 1=+b a 2lim 0 =??- →?x y x a x y x =??+→?0lim ∴ 2=a 1-=b 例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:

高三导数压轴题题型归纳

高三导数压轴题题型归 纳 This model paper was revised by LINDA on December 15, 2012.

导数压轴题题型 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(2013全国新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. (1)解 f (x )=e x -ln(x +m )f ′(x )=e x -1x +m f ′(0)=e 0 -10+m =0m =1, 定义域为{x |x >-1},f ′(x )=e x -1x +m =e x x +1-1 x +1 , 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2),则g ′(x )=e x - 1 x +2 (x >-2). h (x )=g ′(x )=e x - 1x +2(x >-2)h ′(x )=e x +1x +2?2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -13 2 <0,g ′(0)=1-1 2>0, 所以h (x )=g ′(x )=0的唯一实根在区间? ?? ?? -12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t - 1t +2=0? ?? ??-12

所以,e t =1 t +2 t +2=e -t , 当x ∈(-2,t )时,g ′(x )g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2 t +2 >0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0. 例2已知函数)(x f 满足2 12 1)0()1(')(x x f e f x f x + -=-(2012全国新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥ 2 2 1)(,求b a )1(+的最大值。 (1)1211 ()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 得:()f x 的解析式为21 ()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞

第25-29课时导数应用的题型与方法

第25-29 课时:导数应用的题型与方法 一.复习目标:1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念. m x x 2. 熟记基本导数公式(c,x (m为有理数),sin x, cos x, e , a , Inx, log a x的导数)。掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用. 3. 了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4. 了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。 二.考试要求: ⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点 处的导数的定义和导数的几何意义,理解导函数的概念。 ⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, log a x的导数)。掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。 ⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导 数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。 三.教学过程: (I )基础知识详析导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于 导数的学习,主要是以下几个方面: 1. 导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题 属于较难类型。 2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 4. 曲线的切线在初中学过圆的切线,直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, 惟一 的公共点叫做切点.圆是一种特殊的曲线,能不能将圆的切线的概念推广为一段曲线的切线,即直线和曲线有惟一公共点时,直线叫做曲线过该点的切线,显然这种推广是不妥当的.如图3—1中的曲线C 是我们熟知的正弦曲线y=sinx .直线l i与曲线C有惟一公共点M ,但我们不能说直线h与曲线C相切;而直线匚尽管与曲线C有不止一个公共点,我们还是说直线l2是曲线C在点N处的切线.因此,对于一般的曲线,须重新寻求曲线的切线的定义.所以课本利用割线的极限位置来定义了曲线的切线.

导数压轴题双变量问题题型归纳总结

导数压轴题双变量问题题型 归纳总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

导数应用之双变量问题 (一)构造齐次式,换元 【例】已知函数()2 ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =. (1)求实数,a b 的值; (2)设()()()()2 1212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x 的两个零点,求证:0F ' <. 【解析】(1)1,1a b ==-; (2)()2 ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x '=+- , 因为12,x x 分别是函数()F x 的两个零点,所以()()11 221ln 1ln m x x m x x +=???+=?? , 两式相减,得1212ln ln 1x x m x x -+=-, 1212ln ln 1x x F m x x -' =+=- 0F '< ,只需证 12 12ln ln x x x x -< -. 思路一:因为120x x << ,只需证 1122ln ln ln 0 x x x x -> ?>. 令()0,1t = ,即证12ln 0t t t -+>. 令()()1 2ln 01h t t t t t =-+<<,则()()2 22 121 10t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证1 2ln 0t t t -+>. 由上述分析可知0F ' <. 【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形 为齐次式,设12111222 ,ln ,,x x x x t t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x << ,只需证12ln ln 0x x -, 设( ))22ln ln 0Q x x x x x =-<<,则 () 2 21 10Q x x x '= ==<, 所以函数()Q x 在()20,x 上单调递减,()()2 0Q x Q x >=,即证2ln ln x x -. 由上述分析可知0F ' <.

(完整版)高中数学导数经典题型解题技巧(运用方法)

高中数学导数经典题型解题技巧(运用方法)高中数学导数及其应用是高中数学考试的必考内容,而且是这几 年考试的热点跟增长点,无论是期中·期末还是会考·高考,都是高 中数学的必考内容之一。因此,针对这两各部分的内容和题型总结归 纳了具体的解题技巧和方法,希望能够帮助到高中的同学们有更多·更好·更快的方法解决高中数学问题。好了,下面就来讲解常用 逻辑用语的经典解题技巧。 第一·认识导数概念和几何意义 1.导数概念及其几何意义 (1)了解导数概念的实际背景。 (2)理解导数的几何意义。 2.导数的运算

(1)能根据导数定义求函数 的导数。 (2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。 (3)能求简单的复合函数(仅限于形如的复合函数)的导数。 3.导数在研究函数中的应用 (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。 (2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。 4.生活中的优化问题 会利用导数解决某些实际问题 5.定积分与微积分基本定理 (1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。 (2)了解微积分基本定理的含义。 总结:先搞清楚导数概念以及几何意义,才能更好地运用其解题技巧! 231(),,,,,y C C y x y x y x y y x ======为常数()f ax b +

第二·导数运用和解题方法 一、利用导数研究曲线的切线 考情聚焦:1.利用导数研究曲线的切线是导数的重要应用,为近几年各省市高考命题的热点。 2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。 解题技巧:1.导数的几何意义 函数在处的导数的几何意义是:曲线在点 处的切线的斜率(瞬时速度就是位移函数对时间的导数)。 ()y f x =()y f x =0x ()f x '()y f x =00(,())P x f x ()s t t

全国高考导数压轴题总汇编

2016全国各地导数压轴题汇编 1、(2016年全国卷I理数) 已知函数2 )1()2()(-+-=x a e x x f x 有两个零点 (I )求a 的取值围 (II )设21,x x 是)(x f 的两个零点,求证:221<+x x

2、(2016年全国卷I文数) 已知函数2 )1()2()(-+-=x a e x x f x (I )讨论)(x f 的单调性 (II )若)(x f 有两个零点,求a 的取值围

3、(2016年全国卷II 理数) (I)讨论函数x x 2f (x)x 2 -=+e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈ 时,函数2 x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.

4、(2016年全国卷II 文数) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (II)若当()1,x ∈+∞时,()0f x >,求a 的取值围. 5、(2016年全国卷III 理数) 设函数)1)(cos 1(2cos )(+-+=x a x a x f 其中a >0,记错误!未找到引用源。的最大值为A (Ⅰ)求)(x f '; (Ⅱ)求A ; (Ⅲ)证明错误!未找到引用源。A x f 2)(≤'

6、(2016年全国卷III 文数) 设函数()ln 1f x x x =-+. (Ⅰ)讨论()f x 的单调性; (Ⅱ)证明当(1,)x ∈+∞时,11ln x x x -<<; (Ⅲ)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.

导数压轴题题型归纳

导数压轴题题型归纳 1. 高考命题回顾 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例2已知函数f(x)=x 2+ax +b ,g(x)=e x (cx +d),若曲线y =f(x)和曲线y =g(x)都过点P(0,2),且 在点P 处有相同的切线y =4x+2(新课标Ⅰ卷) (Ⅰ)求a ,b ,c ,d 的值 (Ⅱ)若x ≥-2时, ()()f x kg x ≤,求k 的取值范围。 例3已知函数)(x f 满足21 2 1 )0()1(')(x x f e f x f x +-=-(新课标) (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例4已知函数ln ()1a x b f x x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。(新课标) (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x > +-,求k 的取值范围。 例5设函数2 ()1x f x e x ax =---(新课标) (1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围 例6已知函数f(x)=(x 3+3x 2+ax+b)e - x . (1)若a =b =-3,求f(x)的单调区间; (2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明β-α>6. 2. 在解题中常用的有关结论※

相关主题
文本预览
相关文档 最新文档