当前位置:文档之家› 正态分布习题与详解 (1)

正态分布习题与详解 (1)

正态分布习题与详解 (1)
正态分布习题与详解 (1)

1. 若x ~N (0,1),求(l)P 2). 解:(1)P

(2)P (x >2)=1-P (x <2)=1-?(2)==. 2利用标准正态分布表,求标准正态总体

(1)在N(1,4)下,求)3(F (2)在N (μ,σ2

)下,求F(μ-σ,μ+σ); 解:(1))3(F =)2

1

3(

-Φ=Φ(1)= (2)F(μ+σ)=)(σ

μ

σμ-+Φ=Φ(1)=

F(μ-σ)=)(

σ

μ

σμ--Φ=Φ(-1)=1-Φ(1)=1-= F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=-= 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π

21,求总体落入区

间(-,)之间的概率 Φ()=, Φ()=]

解:正态分布的概率密度函数是),(,21)(2

22)(+∞-∞∈=

--

x e

x f x σμσ

π,它是偶函数,

说明μ=0,)(x f 的最大值为)(μf =

σ

π21,所以σ=1,这个正态分布就是标准正态分

布 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)

内的概率不少于,则a 至少有多大?[Φ()=, Φ()=] 解:设ξ表示此县农民年平均收入,则)200,500(~2

N ξ 520500500500

(500520)(

)()(0.1)(0)0.53980.50.0398200200

P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200

a a a

P a a μξμ-<<+=Φ-Φ-=Φ-≥,

查表知: 1.96392200a

a ≥?≥ 1设随机变量

(3,1),若,,则P(2

( B)l —p

C .l-2p

D .

【答案】 C 因为,所以

P(2

,选 C .

奎屯王新敞新疆

2.(2010·新课标全国理)某种种子每粒发芽的概率都为,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )

A .100

B .200

C .300

D .400[答案] B

[解析] 记“不发芽的种子数为ξ”,则ξ~B (1 000,,所以E (ξ)=1 000×=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.

3.设随机变量ξ的分布列如下:

其中a ,b ,c 成等差数列,若E (ξ)=1

3,则D (ξ)=( )

B .-1

9

[答案] D

[解析] 由条件a ,b ,c 成等差数列知,2b =a +c ,由分布列的性质知a +b +c =1,又E (ξ)=-a +c =13,解得a =16,b =13,c =12,∴D (ξ)=16×?

???-1-132+13????0-132+12????1-132=59. 4.(2010·上海松江区模考)设口袋中有黑球、白球共7个,从中任取2个球,已知取到白球个数的数学期望值为6

7

,则口袋中白球的个数为( )A .3 B .4 C .5 D .2

[答案] A

[解析] 设白球x 个,则黑球7-x 个,取出的2个球中所含白球个数为ξ,则ξ取值0,1,2, P (ξ=0)=C 7-x 2C 72=?7-x ??6-x ?42,

P (ξ=1)=x ·?7-x ?C 72=x ?7-x ?

21,

P (ξ=2)=C x 2C 72=x ?x -1?

42

∴0×?7-x ??6-x ?42+1×x ?7-x ?21+2×x ?x -1?42=6

7,

∴x =3.

5.小明每次射击的命中率都为p ,他连续射击n 次,各次是否命中相互独立,已知命中次数ξ的期望值为4,方差为2,则p (ξ>1)=( )

[答案] C

[解析] 由条件知ξ~B (n ,P ),

∵????? E ?ξ?=4,D ?ξ?=2,∴?

???

?

np =4np ?1-p ?=2,

解之得,p =1

2

,n =8,

∴P (ξ=0)=C 80×????120×????128=????128

, P (ξ=1)=C 81×????121×????127=????125, ∴P (ξ>1)=1-P (ξ=0)-P (ξ=1) =1-????128-????125=247256.

5已知三个正态分布密度函数φi (x )=12πσi

e -?x -μi ?22σi 2(x ∈R ,i =1,2,3)的图象如图所示,

则( )

A .μ1<μ2=μ3,σ1=σ2>σ3

B .μ1>μ2=μ3,σ1=σ2<σ3

C .μ1=μ2<μ3,σ1<σ2=σ3

D .μ1<μ2=μ3,σ1=σ2<σ3 [答案] D

[解析] 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.

6①命题“”的否定是:“”;

②若

,则的最大值为4;

③定义在R 上的奇函数满足

,则

的值为0; ④已知随机变量

服从正态分布

,则

;

其中真命题的序号是________(请把所有真命题的序号都填上).

【答案】①③④ ①命题“”的否定是:“”;所以

①正确. ②若

,则

,即.所以

,即

,解得

,则

的最小值为4;

所以②错误.③定义在R 上的奇函数

满足

,则,且

,即函数的周期是4.所以

;所

以③正确.

④已知随机变量服从正态分布,则

,所以;所以

④正确,所以真命题的序号是①③④.

7、在区间上任取两数m和n,则关于x的方程有两不相等实根的概

率为___________.

【答案】由题意知要使方程有两不相等

实根,则,即.作出对应的可行域,如图直线

,,当时,,所以

,所以方程有两不相等实根的概率为

.

8、下列命题:

` (1);

(2)不等式恒成立,则;

(3)随机变量X服从正态分布N(1,2),则

(4)已知则.其中正确命题的序号为____________.

【答案】(2)(3) (1),所以(1)错误.(2)不等式

的最小值为4,所以要使不等式成立,则,所以(2)正确.(3)正确.(4)

,所以(4)错误,所以正

确的为(2)(3).

2已知某篮球运动员2012年度参加了40场比赛,现从中抽取5场,用茎叶图统计该运动员5场中的得分如图所示,则该样本的方差为

()A.26 B.25 C.23 D.18

【答案】D样本的平均数为23,所以样本方差为

,选D.

3有一个容量为的样本,其频率分布直方图如图所示,据图估计,样本数据在内的频数为

()A.B.C.D.

【答案】C 样本数据在之外的频率为,

所以样本数据在内的频率为,所以样本数据在的频数为

,选C.

4.(2013年临沂市高三教学质量检测考试理科数学)如图所示,在边长为l的正方形OABC中

任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.

【答案】【答案】B根据积分的应用可知所求阴影部分的面积为

,所以由几何概型公式可得点P恰好取自阴影部分的概率为,选B.

1,2,3,4,5中随机选取3个不同的数,这个数可以构成等差数列的概率为______.

5从集合{}

【答案】

25

从集合{}1,2,3,4,5中随机选取3个不同的数有3

510C =种.则3个数能构成等差数列的

有,1,2,3;2,3,4;3,4,5;1,3,5;有4种,所以这个数可以构成等差数列的概率为

42

105

=.

正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P 2). 解:(1)P 2)=1-P (x <2)=1-(2)==. 奎屯王新敞新疆 2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2)下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)= (2)F(μ+σ)=)(σ μ σμ-+Φ=Φ(1)= F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-= F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=-= 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π 21,求总体落入区 间(-,)之间的概率 [Φ()=, Φ()=] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 (1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,)内 的概率不少于,则a 至少有多大[Φ()=, Φ()=] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ 520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200 a ∴Φ≥ 查表知: 1.96392200a a ≥?≥

(完整版)正态分布习题与详解(非常有用-必考点)

1. 若x ~N (0,1),求(l)P (- 2.322). 解:(1)P (-2.322)=1-P (x <2)=1-Φ(2)=l-0.9772=0.0228. 2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2 )下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)=0.8413 (2)F(μ+σ)=)(σ μ σμ-+Φ=Φ(1)=0.8413 F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-0.8413=0.1587 F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=0.8413-0.1587=0.6826 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为 π 21,求总体落入区 间(-1.2,0.2)之间的概率 Φ(0.2)=0.5793, Φ(1.2)=0.8848] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布 ( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布 1)求此县农民年平均收入在500:520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,) 内的概率不少于0.95,则a 至少有多大?[Φ(0.1)=0.5398, Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ 520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200 a ∴Φ≥ 查表知: 1.96392200a a ≥?≥ 奎屯王新敞新疆

正态分布讲解(含标准表)

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 总体密度曲线 b 单位 O 频率/组距 a 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a,b)内取值的概率等于总体密度曲线,直线x=a,x=b及x轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 2 2 () 2 , 1 (),(,) 2 x x e x μ σ μσ ? πσ - - =∈-∞+∞ 式中的实数μ、)0 (> σ σ是参数,分别表示总体的平均数与标准差,, ()x μσ ? 的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2 σ μN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

正态分布分析

正态分布 以平均值为中心呈对称分布的钟形曲线。正态分布是最常见的统计分布,因为许多物理、生物和社会方面的测量值都自然近似于正态。许多统计分析均要求数据来自正态分布总 体。 例如,居住在宾夕法尼亚州的所有成年男性的身高近似于正态分布。因此,大多数男性的身高都将接近于 69 英寸的平均身高。高于和矮于 69 英寸的男性的数量相近。只有一小部分身材特别高或特别矮。 平均值 (μ) 和标准差 (σ) 是定义正态分布的两种参数。平均值是钟形曲线的波峰或中心。标准差决定数据的散布情况。大约有 68% 的观测值与平均值相差不到 +/- 1 个标准差;95% 与平均值相差不到 +/- 2 个标准差;而 99% 的观测值与平均值相差不到 +/- 3 个标准差。 就宾夕法尼亚州男性的身高而言,平均身高为 69 英寸,标准差为 2.5 英寸。 大约68% 的宾夕法尼亚男性身高介于66.5 (μ- 1σ) 和71.5 (μ+ 1σ) 英寸之间。 大约95% 的宾夕法尼亚男性身高介于64 (μ- 2σ) 和74 (μ+ 2σ) 英寸之间。 大约99% 的宾夕法尼亚男性身高介于61.5 (μ- 3σ) 和76.5 (μ+ 3σ) 英寸之间。 过程能力

生产或提供满足根据客户需要定义的规格的产品或服务的能力。例如,影印机制造商要求橡胶辊筒的宽度必须介于 32.523 cm 与 32.527 cm 之间,才能避免卡纸。能力分析揭示了制造过程满足这些规格的程度,并提供有关如何改进该过程和维持改进的见解。 在评估过程能力之前,必须确保过程是稳定的。不稳定的过程是无法预测的。如果过程稳定,则可以预测将来的性能并改进其能力。 应定期测量并分析过程的能力。能力分析有助于回答以下问题: ?过程是否满足客户规格? ?过程将来的性能如何? ?过程是否需要改进? ?过程是保持了这些改进还是回复到了原来的未改进状态? 可使用过程指标(如 Cp、Pp、Cpk 和 Ppk)来分析过程能力。 潜在(组内)能力和整体能力 大多数能力评估都可以分组为两种类别中的一种:潜在(组内)能力和整体能力。每种能力都表示对过程能力的唯一度量。潜在能力通常称为过程的“权利”:它忽略子组之间的差异并表示当消除了子组之间的偏移和漂移时执行过程的方法。另一方面,整体能力是客户所体验到的;它考虑了子组之间的差异。评估潜在能力的能力指标包括 Cp、CPU、CPL 和 Cpk。评估整体能力的能力指标包括 Pp、PPU、PPL、Ppk 和 Cpm。 例如,您检查某一糖果厂的设备,其中包括将特定重量的糖果装入容器的机器。糖果每周从工厂出货一次。为评估此过程的能力,在一周内的每天,对袋子样本进行称重;每个样本在分析中表示一个子组。观察发现,每个子组内的变异性很小,但由于子组平均值每天都有偏移,因此袋子重量的总体变异性很大。因此,整个一周的出货在袋子重量上与给定日期内生产的袋子重量之间存在较大的变异性。在下图中,较小的分布表示连续七天内每天的袋子重量的分布。最上面的分布表示整周的出货,它是子组的合计。

正态分布习题与详解(非常有用-必考点)

1. 若 x ?N (0,1), 求(I) P (-2.32< x <1.2) ; (2) P ( x >2). 解:(1) P (-2.32< x <1.2)= (1.2)- (-2.32) =(1.2)-[1- (2.32)]=0.8849-(1-0.9898)=0.8747. (2) P (x >2)=1- P (x <2)=1- (2)=1-0.9772=0.0228. i 2利用标准正态分布表,求标准正态总体 (1) 在 N(1,4)下,求 F(3). 2 , (2)在 N(^,b )下,求F (卩一6,卩+6) ; 3 1 解: (1) F (3) = ( ) =0( 1)= 0.8413 2 (2) F(y+b)= ( ------------- ) =0( 1)= 0.8413 F(u —c)= ( ------------ ) =0 (— 1 )=1—0 ( 1 )= 1 - 0.8413 = 0.1587 F(u —b,a+b)=F(a+b)—F(a —b)= 0.8413 — 0.1587 = 0.6826 3某正态 总体函数的概率密度函数是偶函数,而且该函数的最大值为 间(—1.2 , 0.2 )之间的概率 J 0 ( 0.2 ) =0.5793, 0 ( 1.2 ) =0.8848] (X 上 「X (, 1 说明” 0, f(x)的最大值为f() =亍,所以" 1 =,求总体落入区 ),它是偶函数, 解:正态分布的概率密度函数是 f(x) 1,这个正态分布就是标准正态分 P( 1.2 x 0.2) (0.2) ( 1.2) (0-2) [1 (1.2)] (0.2) (1.2) 1 0.5793 0.8848 1 0.4642 4.某县农民年平均收入服从 =500 入在500: 520元间人数的百分比; 内的 概率不少于 0.95,则a 至少有多大? 元, (2) =200元的正态分布?( 1)求此县农民年平均收 如 果要使此县农民年平均收入在( a, a ) [0 ( 0.1 ) =0.5398, 0 ( 1.96 ) =0.975] 解:设 表示此县农民年平均收入, ~ N(500,2002). P(500 520) (520 500 P( a) 200 ) (盘) (500 500、 )(0.1) (0) 0.5398 0.5 0.0398 ( 2 ) 200 a a ( )2( )1 0.95, 200 200 a ( 200) 查表知:— 0.975 - 1.96 200 a 392

正态分布习题与详解(非常有用-必考点)

; 1. 若x ~N (0,1),求(l)P 2). 解:(1)P 2)=1-P (x <2)=1-2利用标准正态分布表,求标准正态总体 (1)在N(1,4)下,求)3(F (2)在N (μ,σ2 )下,求F(μ-σ,μ+σ); 解:(1))3(F =)2 1 3( -Φ=Φ(1)= ` (2)F(μ+σ)=)( σ μ σμ-+Φ=Φ(1)= F(μ-σ)=)( σ μ σμ--Φ=Φ(-1)=1-Φ(1)=1-= F(μ-σ,μ+σ)=F(μ+σ)-F(μ-σ)=-= 3某正态总体函数的概率密度函数是偶函数,而且该函数的最大值为π 21,求总体落入区 间(-,)之间的概率Φ()=, Φ()=] 解:正态分布的概率密度函数是),(,21)(2 22)(+∞-∞∈= -- x e x f x σμσ π,它是偶函数, 说明μ=0,)(x f 的最大值为)(μf =σ π21,所以σ=1,这个正态分布就是标准正态分 布( 1.20.2)(0.2)( 1.2)(0.2)[1(1.2)](0.2)(1.2)1 P x -<<=Φ-Φ-=Φ--Φ=Φ+Φ- 0.57930.884810.4642=+-= 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布1)求此县农民年平均收入在500520元间人数的百分比;(2)如果要使此县农民年平均收入在(a a +-μμ,) 内的概率不少于,则a 至少有多大[Φ()=, Φ()=] ] 解:设ξ表示此县农民年平均收入,则)200,500(~2 N ξ520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵()()()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, ()0.975200a ∴Φ≥ 奎屯王新敞新疆

正态分布的前世今生(完整版)

正态分布的前世今生
一、正态分布,熟悉的陌生人
学过基础统计学的同学大都对正态分布非常熟悉。这个钟型的分布曲线不但形状优雅, 其密度函数写成数学表达式
12π??√σexp(?(x?μ)22σ2)
也非常具有数学的美感。其标准化后的概率密度函数
12π??√exp(?x22) 更加的简洁漂亮,两个最重要的数学常量 π,e 都出现在了公式之中。在我个人的审美之中,
它也属于 top-N 的最美丽的数学公式之一, 如果有人问我数理统计领域哪个公式最能让人感觉 到上帝的存在,那我一定投正态分布的票。因为这个分布戴着神秘的面纱,在自然界中无处不 在,让你在纷繁芜杂的数据背后看到隐隐的秩序。
【正态分布曲线】
正态分布又通常被称为高斯分布,在科学领域,冠名权那是一个很高的荣誉。早年去 过德国的兄弟们还会发现,德国的钢镚和 10 马克的纸币上都留有高斯的头像和正态密度 曲线。正态分布被冠名高斯分布,我们也容易认为是高斯发现了正态分布,其实不然,不 过高斯对于正态分布的历史地位的确立是起到了决定性的作用。
1

【德国马克上的高斯头像和正态分布曲线】 正态曲线虽然看上去很美,却不是一拍脑袋就能想到的。我们在本科学习数理统计的 时候,课本一上来介绍正态分布就给出密度分布函数,却从来不说明这个分布函数是通过 什么原理推导出来的。所以我一直搞不明白数学家当年是怎么找到这个概率分布曲线的, 又是怎么发现随机误差服从这个奇妙的分布的。我们在实践中大量的使用正态分布,却对 这个分布的来龙去脉知之甚少,正态分布真是让人感觉既熟悉又陌生。直到我读研究生的 时候,我的导师给我介绍了陈希儒院士的《数理统计学简史》这本书,看了之后才了解了 正态分布曲线从发现到被人们重视进而广泛应用,也是经过了几百年的历史。 正态分布的这段历史是很精彩的,我们通过讲一系列的故事来揭开她的神秘面纱。
二、邂逅,正态曲线的首次发现
第一个故事和概率论的发展密切相关,主角是棣莫弗(De Moivre)和拉普拉斯 (Laplace)。拉普拉斯是个大科学家,被称为法国的牛顿;棣莫弗名气可能不算很大,不 过大家应该都熟悉这个名字,因为我们在高中数学学复数的时候我们都学过棣莫弗定理
(cosθ+isinθ)n=cos(nθ)+isin(nθ). 古典概率论发源于赌博,惠更斯、帕斯卡、费马、贝努利都是古典概率的奠基人,他们那
会研究的概率问题大都来自赌桌上,最早的概率论问题是赌徒梅累在 1654 年向帕斯卡提出的 如何分赌金的问题。 统计学中的总体均值之所以被称为期望(Expectation), 就是源自惠更斯、 帕斯卡这些人研究平均情况下一个赌徒在赌桌上可以期望自己赢得多少钱。
棣莫弗(De Moivre)
拉普拉斯 (Laplace)
2

河北省张家口一中选修2-3 2.4 正态分布 教案

教学目标: 知识与技能:掌握正态分布在实际生活中的意义和作用 。 过程与方法:结合正态曲线,加深对正态密度函数的理理。 情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质 。 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。 教学难点:通过正态分布的图形特征,归纳正态曲线的性质。 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积.即总体密度曲线在区间(a ,b )上得定积分。 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 22()2,(),(,)2x x x μσμσ?πσ--=∈-∞+∞ 式中的实数μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ?的图象为正态分布密度曲线,简称正态曲线. 讲解新课:

1.一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X b x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2 σμN . 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2σμN )是由均值μ和标准差σ唯一决定的分布 通过固定其中一个值,讨论均值与标准差对于正态曲线的影响

正态分布教案导学案

2.4.1正态分布 【教学目标】 1. 了解正态分布的意义,掌握正态分布曲线的主要性质及正态分布的简单应用。 2. 了解假设检验的基本思想,会用质量控制图对产品的质量进行检测,对生产过程进行控制。 【教学重难点】 教学重点:1.正态分布曲线的特点; 2.正态分布曲线所表示的意义. 教学难点:1.在实际中什么样的随机变量服从正态分布; 2.正态分布曲线所表示的意义. 【教学过程】 一、 设置情境,引入新课 这是一块高尔顿板,让一个小球从高尔顿板上方的通道口落下,小球在下落的过程中与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内。 问题1.在投放小球之前,你能知道这个小球落在哪个球槽中吗? 问题2.重复进行高尔顿板试验,随着试验次数的增加,掉入每个球槽中小球的个数代表什么? 问题3.为了更好的研究小球分布情况,对各个球槽进行编号,以球槽的编号为横坐标,以小球落入各个球槽的频率值为纵坐标,你能画出它的频率分布直方图吗? 问题4.随着试验次数的增加,这个频率直方图的形状会发生什么样的变化? 二、合作探究,得出概念 随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线 . 这条曲线可以近似下列函数的图像: 22 ()2,1(),(,),2x x e x μσμσ?πσ --= ∈-∞+∞ 其中实数(0)μσσ>和为参数,我们称,()x μσ?的图像为正态分布密度曲线,简称正态曲

线。 问题5.如果在高尔顿板的底部建立一个水平坐标轴,其刻度单位为球槽的宽度,X 表示一个随机变量,X 落在区间(,]a b 的概率为什么?其几何意义是什么? 一般地,如果对于任何实数a b <,随机变量X 满足 ,(

正态分布讲解含标准表

正态分布讲解含标准表 Revised by Jack on December 14,2020

2.4正态分布 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线. 它反映了总体在各个范围内取值的概率.根据这条曲线,可求出总体在区间(a ,b )内取值的概率等于总体密度曲线,直线x =a ,x =b 及x 轴所围图形的面积. 观察总体密度曲线的形状,它具有“两头低,中间高,左右对称”的特征,具有这种特征的总体密度曲线一般可用下面函数的图象来表示或近似表示: 式中的实数 μ、)0(>σσ是参数,分别表示总体的平均数与标准差,,()x μσ ?的图象为正态分布密度曲 线,简称正态曲线. 讲解新课: 一般地,如果对于任何实数a b <,随机变量X 满足 ,()()b a P a X B x dx μσ?<≤=?, 则称 X 的分布为正态分布(normal distribution ) .正态分布完全由参数μ和σ确定,因此正态分布常记作 ),(2σμN .如果随机变量 X 服从正态分布,则记为X ~),(2σμN . 经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.例如,高尔顿板试验中,小球在下落过程中要与众多小木块发生碰撞,每次碰撞的结果使得小球随机地向左或向右下落,因此小球第1次与高尔顿板底部接触时的坐标 X 是众多随机碰撞的结果,所以它近似服从正态分布.在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布.因此,正态分布广泛存在于自然现象、生产和生活实际之中.正态分布在概率和统计中占有重要的地位. 说明:1参数μ是反映随机变量取值的平均水平的特征数,可以用样本均值去佑计;σ是衡量随机变量总体波动大小的特征数,可以用样本标准差去估计. 2.早在 1733 年,法国数学家棣莫弗就用n !的近似公式得到了正态分布.之后,德国数学家高斯在研究测量误差时从另一个角度导出了它,并研究了它的性质,因此,人们也称正态分布为高斯分布. 2.正态分布),(2 σ μN )是由均值μ和标准差σ唯一决定的分布 3.通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、左右对称 正态曲线的作图,书 中没有做要求,教师也不必补上 讲课时教师可以应用几何画板,形象、美观地画出三条正态曲线的图形,结合前面 均值与标准差对图形的影响,引导学生观察总结正态曲线的性质 4.正态曲线的性质: (1)曲线在x 轴的上方,与x (2)曲线关于直线x=μ对称 (3)当x=μ时,曲线位于最高点

正态分布推导72927

正态分布的推导 斯特林(Stirling)公式的推导 斯特林(Stirling)公式: 这个公式的推导过程大体来说是先设一个套,再兜个圈把结果套进来,同时把公式算出来。Stirling太强了。 1,Wallis公式 证明过程很简单,分部积分就可以了。 由x的取值可得如下结论: 即 化简得 当k无限大时,取极限可知中间式子为1。所以

第一部分到此结束,k!被引入一个等式之中。 2,Stirling公式的求解 继续兜圈。 关于lnX的图像的面积,可以有三种求法,分别是积分,内接梯形分隔,外切梯形分隔。分别是: 显然, 代入第一部分最后公式得

(注:上式中第一个beta为平方) 所以得公式: 正态分布推导 在一本俄国的概率教材上看到以下一段精彩的推导,才知道原来所谓正态分布并不是哪位数学家一拍脑门想起来的。记得大学时的教材上只告诉了我们在抽样实验中当样本总量很大时,随机变量就服从正态分布,至于正态分布是怎么来的一点都不提。大学之前,我始终坚信数学是世界上最精致的艺术。但是上了大学之后,发现很多数学上很多问题教材中都是语焉不详,而且很多定义没有任何说明的就出来了,就像一致连续,一致收敛之类的,显得是那么的突兀。这时候数学就像数学老师一样蛮横,让我对数学极其反感,足足有四年之久。只到前些日子,在CSDN上读到孟岩的一篇并于矩阵的文章,才重新对数学发生兴趣。最近又读到了齐民友所写的《重温微积分》以及施利亚耶夫所写的《概率》,才知道原来每一个定义,和每一个定理都有它的价值和意义。 前几天在网上遇到老文,小小的探讨了一下这个问题,顺便问起他斯特林公式的证明过程。他说碰巧最近很是在研究这个公式,就写出来放在百度上以供来者瞻仰吧。于是就有了这篇文章: 斯特林(Stirling)公式的推导 如果哪位在读本篇之前想要知道斯特林公式是怎么来的,请阅读之。 本来是想和老文一块发的,怎奈一个小小的公式编辑器让我费了两个晚上才搞定。于是直至今日,方才有这篇小文字。 本篇是斯特林公式的一个应用。本篇的推导全部抄自施利亚耶夫著《概率》,本文的证明完成了棣莫弗——拉普拉斯定理推导的前半部分,后半部分以及其与伯努利大数定律的关系在以后再往上贴吧。其实也不是很难,自己动动手也是能推出来的。 这次推导可以说是“连续性随机变量”第一次出现在该书中,作为理解连续性随机变量的基础,正态分布是十分重要的。 斯特林公式: 根据斯特林公式,

多维高斯分布讲解

多维高斯分布讲解 高斯分布 高斯分布:1维高斯分布公式: 多维高斯分布公式: 对于1维的来说是期望,是方差;对于多维来说D表示X的维数,表示D*D的协方差矩阵,定义为 ,为该协方差的行列式的值。 代码如下: m=[0 1]'; S=eye(2); x1=[0.2 1.3]'; x2=[2.2 -1.3]'; pg1=comp_gauss_dens_val(m,S,x1) pg2=comp_gauss_dens_val(m,S,x2) 其中comp_gauss_dens_val函数文件的代码如下: function [z]=comp_gauss_dens_val(m,S,x) [l,c]=size(m); z=(1/( (2*pi)^(l/2)*det(S)^0.5) )*exp(-0.5*(x-m)'*inv(S)*(x-m));

题目大致意思就是判断x是属于w1还是w2? 代码如下: P1=0.5; P2=0.5; m1=[1 1]'; m2=[3 3]'; S=eye(2); x=[1.8 1.8]'; p1=P1*comp_gauss_dens_val(m1,S,x) p2=P2*comp_gauss_dens_val(m2,S,x) 题目大致意思就是给出正态分布的期望和方差构造出一些服从这个分布的数据点代码如下:

% Generate the first dataset (case #1) randn('seed',0); m=[0 0]'; S=[1 0;0 1]; N=500; X = mvnrnd(m,S,N)'; % Plot the first dataset figure(1), plot(X(1,:),X(2,:),'.'); figure(1), axis equal figure(1), axis([-7 7 -7 7]) % Generate and plot the second dataset (case #2) m=[0 0]'; S=[0.2 0;0 0.2]; N=500; X = mvnrnd(m,S,N)'; figure(2), plot(X(1,:),X(2,:),'.'); figure(2), axis equal figure(2), axis([-7 7 -7 7]) % Generate and plot the third dataset (case #3) m=[0 0]'; S=[2 0;0 2]; N=500; X = mvnrnd(m,S,N)'; figure(3), plot(X(1,:),X(2,:),'.'); figure(3), axis equal figure(3), axis([-7 7 -7 7]) % Generate and plot the fourth dataset (case #4) m=[0 0]'; S=[0.2 0;0 2]; N=500; X = mvnrnd(m,S,N)'; figure(4), plot(X(1,:),X(2,:),'.'); figure(4), axis equal figure(4), axis([-7 7 -7 7]) % Generate and plot the fifth dataset (case #5) m=[0 0]'; S=[2 0;0 0.2]; N=500; X = mvnrnd(m,S,N)'; figure(5), plot(X(1,:),X(2,:),'.');

知识讲解 正态分布

正态分布 【学习目标】 1. 了解正态分布曲线的特点及曲线所表示的意义。 2. 了解正态曲线与正态分布的性质。 【要点梳理】 要点诠释: 要点一、概率密度曲线与概率密度函数 1.概念: 对于连续型随机变量X ,位于x 轴上方,X 落在任一区间(a ,b]内的概率等于它与x 轴、直线x a =与直线x b =所围成的曲边梯形的面积(如图阴影部分),这条概率曲线叫做X 的概率密度曲线,以其作为图象的函数()f x 叫做X 的概率密度函数。 2、性质: ①概率密度函数所取的每个值均是非负的。 ②夹于概率密度的曲线与x 轴之间的“平面图形”的面积为1 ③()P a X b <<的值等于由直线x a =,x b =与概率密度曲线、x 轴所围成的“平面图形”的面积。 要点二、正态分布 1.正态变量的概率密度函数 正态变量的概率密度函数表达式为:22 ()2,()(R)2x x x μσμσ?πσ -- = ∈,(0,σμ>-∞<<+∞) 其中x 是随机变量的取值;μ为正态变量的期望;σ是正态变量的标准差. 2.正态分布 (1)定义 如果对于任何实数,()a b a b <随机变量X 满足:,()()b a P a X b x dx μσ?<≤=?, 则称随机变量X 服从正态分布。记为2 (,)X N μσ:。 (2)正态分布的期望与方差 若2 (,)X N μσ:,则X 的期望与方差分别为:EX μ=,2 DX σ=。 要点诠释: (1)正态分布由参数μ和σ确定。

参数μ是均值,它是反映随机变量取值的平均水平的特征数,可用样本的均值去估计。σ是 标准差,它是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计。 (2)经验表明,一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它 就服从或近似服从正态分布. 在现实生活中,很多随机变量都服从或近似地服从正态分布.例如长度测量误差;某一地区同年龄人群的身高、体重、肺活量等;一定条件下生长的小麦的株高、穗长、单位面积产量等;正常生产条件下各种产品的质量指标(如零件的尺寸、纤维的纤度、电容器的电容量、电子管的使用寿命等);某地每年七月份的平均气温、平均湿度、降雨量等;一般都服从正态分布. 要点三、正态曲线及其性质: 1. 正态曲线 如果随机变量X 的概率密度函数为22 ()21 ()(R)2x f x e x μσπσ -- = ∈,其中实数μ和σ为参数 (0,σμ>-∞<<+∞),则称函数()f x 的图象为正态分布密度曲线,简称正态曲线。 2.正态曲线的性质: ①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x μ=对称; ③曲线在μ=x 时达到峰值 2πσ ; ④当μx 时,曲线下降.并且当曲线向左、右两边无限延伸时,以x 轴为渐近线,向它无限靠近. ⑤曲线与x 轴之间的面积为1; ⑥μ决定曲线的位置和对称性; 当σ一定时,曲线的对称轴位置由μ确定;如下图所示,曲线随着μ的变化而沿x 轴平移。 ⑦σ确定曲线的形状; 当μ一定时,曲线的形状由σ确定。σ越小,曲线越“高瘦”,表示总体的分布越集中;σ越大,

正态分布 教案 ()

2.4正态分布 教学目标: 知识与技能:掌握正态分布在实际生活中的意义和作用。 过程与方法:结合正态曲线,加深对正态密度函数的理理。 情感、态度与价值观:通过正态分布的图形特征,归纳正态曲线的性质。 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 。 教学难点:通过正态分布的图形特征,归纳正态曲线的性质。 教学课时:2课时 教具准备:多媒体 教学设想:在总体分布研究中我们选择正态分布作为研究的突破口,正态分布在统计学中是最基本、最重要的一种分布。 内容分析: 1.在实际遇到的许多随机现象都服从或近似服从正态分布当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的 2 2 () 2 (),(,) x f x x μ σ - - =∈-∞+∞,(σ>0) 由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为) , (2 σ μ N 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的 4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征 5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过) ( ) ( σ μ - Φ = x x F转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为 2 2 1 2 1 ) (x e x F- = π ,x∈(-∞,+∞),从而使正态分布的研究得以简化6.结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助多媒体体现,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质 教学过程: 学生探究过程: 复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

搞定Cpk、理清与正态分布、六西格玛关系(最新整理)

CPK (Complex Process Capability index ):工序(过程)能力指数 在产品制造的过程中,工序是保证产品质量的最基本环节。所谓工序能力是指处于稳定状态下的实际加工能力,工序能够稳定地生产出产品的能力,也就是说在操作者、机器设备、原材料、操作方法、测量方法和环境等标准条件下,工序呈稳定状态时所具有的加工精度。工序能力分析是质量管理的一项重要的技术基础工作。它有助于掌握各道工序的质量保证能力,为产品设计、工艺、工装设计、设备的维修、调整、更新、改造提供必要的资料和依据。制程水平的量化反映;(用一个数值来表达制程的水平)制程力指数:是一种表示制程水平高低的方便方法,其实质作用是反映制程合格率的高低。 Cp:?不考虑偏移(均值μ是规格中心值M)时的短期过程能力指数,Cp反映的是能够达到的过程能力的最高水平,除非进行剔除普通原因的系统措施。 ?Cpk:考虑偏移(均值μ不是规格中心值M)时的短期过程能力指数,Cpk反映实际的过程能力,提高的途径是减少偏移,往往是采取一些剔除特殊原因的局部措施即可提高Cpk值。 (1)Cp的计算: 1、单侧规格:只有USL(Upper Specification Limit)或 LSL(Low Specification Limit)或C (Center Line)的规格; ①只有规格上限和规格中心的规格:Cpu=(USL-μ)/3σ(如形位公差、杂质等只需规定上限) 当USL≤μ时,规定Cpu=0。 ②只有规格下限和规格中心的规格:Cpl=(μ-LSL)/ 3σ(如强度、寿命等只需规定下限) 当LSL≥μ时,规定Cpl=0。 2、双侧规格:有上下限与中心值,而上下限与中心值对称的规格;此时数据越接近中心值越好。 Cp=(USL-LSL)/ 6σ=T/6σ (2)Cpk的计算: ①双边对称规格:Cpk = Cp * ( 1-|Ca|)=Cp- | M Cp Ca表示制程准确度 ②双边对称规格:Cpk = Cp * ( 1-K)=Cp*(1-2|M- K Cpk=Cp-|M-μ|/3σ,即 ③双边不对称规格:LSL)/ 3σ} Cpk= (3)Ca的的评级及处理原则: 等级Ca值处理原则 A|Ca|≤12.5%作业员遵守作业标准操作并达到要求,需继续保持。 B12.5%<|Ca|≤25%有必要将其改进为A级。 C25% <|Ca|≤50%作业员可能看错规格或不按作业标准操作。须检讨规格及作业标准。 D 50%<|Ca|应采取紧急措施全面检讨所有可能影响之因素,必要时得停止生产。

正态分布习题与详解(非常有用-必考点)

精心整理1.若x~N(0,1),求(l)P(-2.322). 解:(1)P(-2.322)=1-P(x<2)=1-?(2)=l-0.9772=0.0228.奎屯王新敞新疆 2 解: F( F( 3 明μ 布 4.某县农民年平均收入服从μ=500元,σ=200元的正态分布(1)求此县农民年平均收入在500520元间人数的百分比;(2)如果要使此县农民年平均收入在(a μ,) a+ -μ 内的概率不少于0.95,则a至少有多大?[Φ(0.1)=0.5398,Φ(1.96)=0.975] 解:设ξ表示此县农民年平均收入,则200 ξ N ~2 ( 500 ,

520500500500 (500520)( )()(0.1)(0)0.53980.50.0398200200 P ξ--<<=Φ-Φ=Φ-Φ=-=(2)∵ ()(()2()10.95200200200 a a a P a a μξμ-<<+=Φ-Φ-=Φ-≥, 查表知: 1.96200a a ≥?≥ 1设随机变量~X N (3,1),若(4)P X p >=,,则P(2

正态分布推导

正态分布的概率密度函数的推导 An interesting question was posed in a Statistics assignment which was to show that the standard normal distribution was valid - ie the integral from negative infinity to infinity equated to one and in doing so showed the derivation of the part of the normal pdf. A friend of mine and I decided to try to derive the normal pdf and the thinking went along the lines of the central limit theorem which states that the mean of any probability distribution becomes normal as the number of trials increases. The derivation of this is well known.but we asked ourselves how the normal distribution was first achieved.There is another 'normal' derivation which is the binomial approximation and it is through this direction that we wondered how to derive the normal distribution from the binomial as n gets large. So the general approach we will take is to take a binomial distribution, then increase the number of samples n. (提出一个有趣的问题是在统计分配,这是表明,标准正态分布是有效的- 即从负无穷到正无穷的积分等同于一个,并在这样做表明推导了部分正常的PDF 。 我,我的一个朋友决定尝试推导出正常的PDF和沿中心极限定理指出,任何概率分布的均值作为试验增加的正常思维。 这个推导是众所周知的。但我们问自己如何正态分布首次实现。有另一种“正常”的推导,这是二项式近似和它是通过这个方向,我们想知道如何从二项式正态分布为n变大。 因此,我们将采取的一般方法是一个二项分布,再增加样本N.的数量)

相关主题
文本预览
相关文档 最新文档