当前位置:文档之家› 离散制造系统建模与仿真技术的研究现状与发展趋势分析

离散制造系统建模与仿真技术的研究现状与发展趋势分析

离散制造系统建模与仿真技术的研究现状与发展趋势分析
离散制造系统建模与仿真技术的研究现状与发展趋势分析

制造系统建模与仿真知识点1

知识点1 1. 在查阅资料的基础上,了解系统建模与仿真技术在经济建设、新品研发、企业运作以及 社会发展中的功能与作用,包括: ①系统建模与仿真技术在制造企业规划与运营中的应用,如企业选址、车间布局、生产线 平衡、瓶颈分析等。 ②系统建模与仿真技术在工程开发中的应用,如三峡大坝建设、机场选址、城市及区域规 划、大型体育设施建设等。 ③系统建模与仿真技术在工业产品研制中的应用,如长征火箭、神舟飞船、军用及民用飞 机研制、高铁列车开发、汽车产品研制等。 ④系统建模与仿真技术在社会服务系统中的作用,如商业服务企业选址、医院选址与布局、 商业设施的布局规划、游乐设施规划布局、公交线路布点及班次优化等。 ⑤系统建模与仿真技术在物流系统中的应用,如物流企业选址、配送中心选址与布局、物 流系统规划开发、物流设备研制等。 ⑥围绕具体产品(如汽车)或系统(如载人航天工程),分析系统建模与仿真技术的具体应 用。 2.什么是系统,它有哪些特点?结合具体的制造系统、物流系统或服务系统,分析系统的组成要素、功能和边界。 3. 什么是制造系统?它有哪些特点?常见的制造系统有哪些类型? 4. 什么是机械制造系统,它具有哪些特点?简要分析机械制造系统的运行过程。 5. 以机械制造系统为例,分析此类系统运作的基本特点,系统与环境之间存在哪些交互作 用? 6. 在查阅资料的基础上,以汽车整车制造企业为例,分析此类系统中物料流、能量流和信 息流涵盖的内容。 7. 以家用电气产品(如电视机、冰箱、手机等)制造系统为例,分析此类系统在设计及运 行过程可能存在的各类动态和随机性因素。 8.什么是连续系统和离散系统,它们存在哪些区别。结合具体案例,分析连续系统和离散系统分别具有哪些特点。 9.分析系统、模型与仿真三者之间的关系。对系统而言,建模与仿真技术具有哪些作用?10.对制造系统而言,哪些方法能够分析此类系统的性能,它们各具有什么特点?为什么计算机仿真技术的应用越来越普遍? 11. 与实物试验相比,基于模型的试验具有哪些优点? 12. 总体上,系统模型可以分为哪些类型?简要分析每类模型的特点,并给出具体案例。13.制造系统的建模与仿真具有哪些特点? 14. 对制造系统而言,仿真研究的目标可以分为哪几种类型? 15. 分别从“设计决策”和“运行决策”的角度出发,分析仿真技术可以为制造系统设计及运行 提供决策支持。 16. 仿真技术本身具有优化系统设计的功能吗?为什么?试解释之。 17. 在查阅资料的基础上,比较仿真技术与运筹学方法的异同之处。 18. 从建模和仿真研究的角度,机械制造系统建模和仿真时通常涉及哪些类型的建模元素? 19. 以制造系统及物流系统为对象,在查阅资料的基础上,了解下列术语在系统性能评估中 的作用,分析仿真技术与它们之间的关系。 ⑴系统(system)

离散系统频域分析及matlab实现

《数字信号处理》 课程设计报告 离散系统的频域分析及matlab实现 专业:通信工程 班级:通信11级 组次: 姓名及学号: 姓名及学号:

离散系统的频域分析及matlab 实现 一、设计目的 1.熟悉并掌握matlab 软件的使用; 2.掌握离散系统的频域特性; 3.学会分析离散系统的频域特性的方法; 二、设计任务 1.设计一个系统函数系统的频率响应进行分析; 2.分析系统的频域响应; 3.分析系统的因果稳定性; 4.分析系统的单位脉冲响应; 三、设计原理 1. 系统函数 对于离散系统可以利用差分方程,单位脉冲响应,以及系统函数对系统进行描述。 在本文中利用系统函数H(z)进行描述。若已知一个差分方程为 ∑∑==---=M i N i i i i n y a i n x b n 0 1 )()()(y ,则可以利用双边取Z 变换,最终可以得到系统函数的一 般式H(z),∑∑=-=-== N i i i M i i i z a z b z X z z H 0 0) () (Y )(。若已知系统的单位脉冲响应,则直接将其进行Z 变换就可以得到系统函数H(z)。系统函数表征系统的复频域特性。 2.系统的频率响应: 利用Z 变化分析系统的频率响应:设系统的初始状态为零,系统对输入为单位脉冲序列 ) (n δ的响应输出称为系统的单位脉冲响应h (n )。对h(n)进行傅里叶变换,得到: ∑∞ ∞∞-==-)(jw n j |)(|)(e H w j n n j e e H e n h ?ω) (

其中|)(|jwn e H 称为系统的幅频特性函数,)(ω?称为系统的相位特性函数。)(jw e H 表示的是系统对特征序列jwn e 的响应特性。对于一个系统输入信号为n )(ωj e n x =,则系统的输出信号为jwn e )(jw e H 。由上可以知道单频复指数信号jwn e 通过频率响应函数为)(jw e H 后,输出仍为单频复指数信号,其幅度放大了|)(|jw e H ,相移为)(ω?。 对于系统函数H(z)与H(w)之间,若系统函数H(z)的收敛域包含单位圆|z|=1,则有 jw e z jw z H e H ==|)()(,在MATLAB 中可以利用freqz 函数计算系统的频率响应。 (1)[h,w]=freqz(b,a,n) 可得到n 点频率响应,这n 个点均匀地分布在上半单位圆(即 ),并将这n 点频率记录在w 中,相应的频率响应记录在h 中。n 最好能取2的幂次方,如果缺省,则n=512。 (2)[h,w]=freqz(b,a,n,'whole') 在 之间均匀选取n 个点计算频率响应。 (3)[h,w]=freqz(b,a,n,Fs) Fs 为采样频率(以Hz 为单位),在0~Fs/2频率范围内选取n 个频率点,计算相应的频率响应。 (4)[h,w]=freqz(b,a,n,'whole',Fs) 在0~Fs 之间均匀选取n 个点计算频率响应。 (5)freqz(b,a) 可以直接得到系统的幅频和相频特性曲线。其中幅频特性以分贝的形式给出,频率特性曲线的横轴采用的是归一化频率,即Fs/2=1。 3.系统的因果性和稳定性 3.1因果性 因果系统其单位脉冲响应序列h(n)一定是一个因果序列,其z 域的条件是其系统函数H(z)的收敛域一定包含∞,即∞点不是极点,极点 分布在某个圆内,收敛域在某个圆外。 3.2稳定性 系统稳定就要求∞<∑∞ ∞-|h(n)|,由序列的)(jw e H 存在条件和jw e z jw z H e H ==|)()(可以知道 系统稳定的z 域条件就是H(z)的收敛域包含单位圆,即极点全部分布在单位圆内部。 由上3.1和3.2可知,利用系统的零极点分布图可以判断系统的因果性和稳定性。 若在零极点分布图中,若系统的极点都分布在单位圆内,则此系统是因果系统,若有极点分布在单位圆 外,则此系统是非因果系统。在MATLAB 中可以利用zplane 函数画出系统的零极点分布图。系统函数的零极点图的绘制:zplane(b,a)。其中b 为系统函数的分子,a 为系统函数的分母。 4.系统的单位脉冲响应 设系统的初始状态为零,系统对输入为单位脉冲序列)(n δ的响应输出称为系统的单位脉冲响应h (n )。对于离散系统可以利用差分方程,单位脉冲响应,以及系统函数对系统进行描述。单位脉冲响应是系统的一种描述方法,若已知了系统的系统函数,可以利用系统得出系统的单位脉冲响应。在MATLAB 中利用impz 由函数函数求出单位脉冲响应h(n)。

浅谈仿真现状和发展

浅谈系统仿真的现状和发展 一、系统仿真技术发展的现状 工程系统仿真作为虚拟设计技术的一部分,与控制仿真、视景仿真、结构和流体计算仿真、多物理场以及虚拟布置和装配维修等技术一起,在贯穿产品的设计、制造和运行维护改进乃至退役的全寿命周期技术活动中,发挥着重要的作用,同时也在满足越来越高和越来越复杂的要求。因此,工程系统仿真技术也就迅速地发展到了协同仿真阶段。其主要特征表现为: 1、控制器和被控对象的联合仿真:MATLAB+AMESIM,可以覆盖整个自动控制系统的全部要求。 2、被控对象的多学科、跨专业的联合仿真:AMESIM+机构动力学+CFD +THERMAL+电磁分析 3、实时仿真技术 实时仿真技术是由仿真软件与仿真机等半实物仿真系统联合实现的,通过物理系统的实时模型来测试成型或者硬件控制器。 4、集成进设计平台 现代研发制造单位,尤其是设计研发和制造一体化的大型单位,引进 PDM/PLM系统已经成为信息化建设的潮流。在复杂的数据管理流程中,系统仿真作为CAE工作的一部分,被要求嵌入流程,与上下游工具配合。 5、超越仿真技术本身 工程师不必是精通数值算法和仿真技术的专家,而只需要关注自己的专业对象,其他大量的模型建立、算法选择和数据前后处理等工作都交给软件自动完成。

这一技术特点极大地提高了仿真的效率,降低了系统仿真技术的应用门槛,避免了因为不了解算法造成的仿真失败。 6、构建虚拟产品 在通过建立虚拟产品进行开发和优化过程中,关注以各种特征值为代表的系统性能,实现多方案的快速比较。 二、系统仿真技术的发展趋势 1、屏弃单专业的仿真 单一专业仿真将退出系统设计的领域,专注于单一专业技术的深入发展。作为总体优化的系统级设计分析工具,必要条件之一是跨专业多学科协同仿真。 2、跟随计算技术的发展 随着计算技术在软硬件方面的发展,大型工程软件系统开始有减少模型的简化、减少模型解藕的趋势,力争从模型和算法上保证仿真的准确性。更强更优化的算法,配合专业的库,将提供大型工程对象的系统整体仿真的可能性。 在高性能计算方面,将支持包括并行处理、网格计算技术和高速计算系统等技术。 3、平台化 要求仿真工具能够提供建模、运算、数据处理(包括二次开发后的集成和封装)、数据传递等全部仿真工作流程要求的功能,并且通过数据流集成在更大的PDM/PLM平台上。同时,在时间尺度上支持全开发流程的仿真要求,在空间尺度上支持不同开发团队甚至是交叉型组织架构间的协同工作以及数据的管理。 4、整合和细分市场

离散时间系统特性分析

实验五实验报告 实验名称:离散时间系统特性分析

一、实验目的: 1 。深入理解单位样值响应,离散系统的频率响应的概念; 2。 掌握通过计算机进行求得离散系统的单位样值响应,以及离散系统的频率 响应的方法。 二、实验原理: 对于离散系统的单位样值而言,在实际处理过程中,不可能选取无穷多项的取值。往往是选取有限项的取值,当然这里会产生一个截尾误差,但只要这个误差在相对小一个范围里,可以忽略不计。 另外,在一些实际的离散系统中,往往不是事先就能得到描述系统的差分方程的,而是通过得到系统的某些相应值,则此时系统的分析就需借助计算机的数值处理来进行,得到描述系统的某些特征,甚至进而得到描述系统的数学模型。 本实验首先给出描述系统的差分方程,通过迭代的方法求得系统的单位样值响应,进而求得该离散系统的频率响应。限于试验条件,虽然给出了系统方程,但处理的方法依然具有同样的实际意义。 具体的方法是: 1 在给定系统方程的条件下,选取激励信号为δ(n),系统的起始状态为零 状态,通过迭代法,求得系统的单位样值响应h(n)(n=0,…,N )。 2 利用公式 其中Ω的取值范围为0~2π 。计算系统的频率响应。 三、实验内容 1 已知系统的差分方程为 利用迭代法求得系统的单位样值响应,取N =10。 2 利用公式 其中

#include #include #define N 10 #define M 20 #define pi 3.1415926 struct pinlv{ double fu; double xiang;}; double h[N+1],x[N+1]; struct pinlv PL(double w) { double a=0, b=0,fu,xiang; int k; struct pinlv FX; for(k=0;k<=N;k++){ a=a+h[k]*cos(-k*w); b=b+h[k]*sin(-k*w);} fu=sqrt(a*a+b*b); xiang=atan(b/a); if((a<0)&(b>0)) xiang=xiang+pi; if((a<0)&(b<0)) xiang=xiang-pi; FX.fu=fu; FX.xiang=xiang; return(FX); } main() { int i,j; double w0; struct pinlv FX[M+1]; FILE *fp1,*fp2; fp1=fopen("H:\\单位样值响应.txt","w"); fp2=fopen("H:\\频率特性.txt","w"); h[-1]=0;h[-2]=0; for(i=-1;i<=N;i++) x[i]=0; x[0]=1; for(i=0;i<=N;i++) h[i]=1.3*h[i-1]-0.4*h[i-2]+x[i-1]; printf("系统的单位样值响应为\n"); fprintf(fp1,"系统的单位样值响应(从x[0]开始)为\n"); fprintf(fp1,"激励x[i] 响应y[i]\n"); for(i=0;i<=N;i++)

系统仿真技术发展现状

系统仿真技术发展现状和趋势 工程系统的仿真,起源于自动控制技术领域。从最初的简单电子、机械系统,逐步发展到今天涵盖机、电、液、热、气、电、磁等各个专业领域,并且在控制器和执行机构两个方向上飞速发展。 控制器的仿真软件,在研究控制策略、控制算法、控制系统的品质方面提供了强大的支持。随着执行机构技术的发展,机、电、液、热、气、磁等驱动技术的进步,以高可靠性、高精度、高反应速度和稳定性为代表的先进特征,将工程系统的执行品质提升到了前所未有的水平。相对控制器本身的发展,凭借新的加工制造技术的支持,执行机构技术的发展更加富于创新和挑战,而对于设计、制造和维护高性能执行机构,以及构建一个包括控制器和执行机构的完整的自动化系统也提出了更高的要求。 AMESIM软件正是能够提供平台级仿真技术的工具。从根据用户需求,提供液压、机械、气动等设计分析到复杂系统的全系统分析,到引领协同仿真技术的发展方向,AMESIM的发展轨迹和方向代表了工程系统仿真技术的发展历程和趋势。 一、系统仿真技术发展的现状 工程系统仿真作为虚拟设计技术的一部分,与控制仿真、视景仿真、结构和流体计算仿真、多物理场以及虚拟布置和装配维修等技术一起,在贯穿产品的设计、制造和运行维护改进乃至退役的全寿命周期技术活动中,发挥着重要的作用,同时也在满足越来越高和越来越复杂的要求。因此,工程系统仿真技术也就迅速地发展到了协同仿真阶段。其主要特征表现为: 1、控制器和被控对象的联合仿真:MATLAB+AMESIM,可以覆盖整个自动控制系统的全部要求。 2、被控对象的多学科、跨专业的联合仿真:AMESIM+机构动力学+CFD+THERMAL +电磁分析 3、实时仿真技术 实时仿真技术是由仿真软件与仿真机等半实物仿真系统联合实现的,通过物理系统的实时模型来测试成型或者硬件控制器。 4、集成进设计平台 现代研发制造单位,尤其是设计研发和制造一体化的大型单位,引进PDM/PLM 系统已经成为信息化建设的潮流。在复杂的数据管理流程中,系统仿真作为CAE 工作的一部分,被要求嵌入流程,与上下游工具配合。 5、超越仿真技术本身 工程师不必是精通数值算法和仿真技术的专家,而只需要关注自己的专业对象,其他大量的模型建立、算法选择和数据前后处理等工作都交给软件自动完成。这一技术特点极大地提高了仿真的效率,降低了系统仿真技术的应用门槛,避免了因为不了解算法造成的仿真失败。 6、构建虚拟产品 在通过建立虚拟产品进行开发和优化过程中,关注以各种特征值为代表的系统性能,实现多方案的快速比较。 二、系统仿真技术的发展趋势 2.1、屏弃单专业的仿真

实验三___离散时间系统的时域分析

实验三 离散时间系统的时域分析 1.实验目的 (1)理解离散时间信号的系统及其特性。 (2)对简单的离散时间系统进行分析,研究其时域特性。 (3)利用MATLAB对离散时间系统进行仿真,观察结果,理解其时域特性。 2.实验原理 离散时间系统,主要是用于处理离散时间信号的系统,即是将输入信号映射成的输出的某种运算,系统的框图如图所示: (1)线性系统 线性系统就是满足叠加原理的系统。如果对于一个离散系统输入信号为时,输出信号分别为,即:。 而且当该系统的输入信号为时,其中a,b为任意常数,输出为,则该系统就是一个线性离散时间系统。 (2)时不变系统 如果系统的响应与激励加于系统的时刻无关,则该系统是时不变系统。对于一个离散时间系统,若输入,产生输出为,则输入为,产生输出为,即: 若,则。 通常我们研究的是线性时不变离散系统。 3.实验内容及其步骤 (1)复习离散时间系统的主要性质,掌握其原理和意义。 (2)一个简单的非线性离散时间系统的仿真 系统方程为: x = cos(2*pi*0.05*n); x1[n] = x[n+1] x2[n] = x[n] x3[n] = x[n-1] y = x2.*x2-x1.*x3; 或者:y=x*x- x[n+1]* x[n-1] 是非线性。 参考:% Generate a sinusoidal input signal clf; n = 0:200; x = cos(2*pi*0.05*n); % Compute the output signal x1 = [x 0 0]; % x1[n] = x[n+1] x2 = [0 x 0]; % x2[n] = x[n] x3 = [0 0 x]; % x3[n] = x[n-1]

制造系统建模与仿真知识点2

知识点2 1. 结合具体制造系统或服务系统,分析离散事件动态系统的基本特征。 2. 什么叫“状态空间爆炸”?产生状态空间爆炸的原因是什么?它给系统性能分析带来哪些 挑战? 3. 常用的离散事件系统建模方法有哪些,它们是如何分类的? 4. 什么是马尔可夫特性?它在离散事件系统建模与分析中有什么作用? 5. 根据功能不同,仿真模型(程序)可以分为哪三个层次?分析三个层次之间的关系。 6. 分析事件调度法、活动循环法、进程交互法和消息驱动法等仿真调度方法的特点,在分 析每种调度方法基本原理的基础上,阐述几种仿真调度方法之间的区别与联系,并绘制每种仿真调度方法的流程图。 7. 结合具体的离散事件系统,如银行、理发店、餐厅、超市、医院、作业车间等,采用事 件调度法、活动循环法或进程交互法分析建立此类系统的仿真模型,试分析仿真模型中的建模元素以及仿真调度流程。 8. 从系统描述、建模要点、仿真时钟推进机制等层面,比较事件调度法、活动循环法和进 程交互法的异同之处。 9. 什么叫仿真时钟,它在系统仿真中有什么作用?什么叫仿真时钟推进机制?常用的仿真 时钟推进机制有哪些?它们的主要特点是什么,分别适合于怎样的系统? 10.结合具体的离散事件系统,分析若采用固定步长时间推进机制、下次事件时间推进机制 或混合时间推进机制时,分别具有哪些优点和缺点,以图形或文字等形式分析时钟推进流程。 11.什么叫仿真效率?什么叫仿真精度?分析影响仿真效率和仿真精度的因素? 12.从仿真效率和仿真精度的角度,分析和比较三种仿真时钟推进机制的特点,并分析三种 仿真时钟推进机制分别适合于什么样的系统? 13. 什么是蒲丰投针试验?绘制蒲丰投针试验原理图,通过推导蒲丰投针试验中针与任一直 线相交的概率,分析采用随机投针试验方法来确定圆周率π的原理。 14. 按照蒲丰投针试验的条件和要求,完成投针试验,在统计投针次数、针与直线的相交次 数的基础上,求解π的估计值,并以报表或图形等形式表达试验结果。具体要求如下: ①自行确定针的长度、直线之间的距离。 ②投针10次、20次、30次、40次、50次、…、100次、…、200次、…,分别计算针 与直线相交的概率、π的估计值。 ③以一随机变量描述上述试验结果,并通过编程或采用商品化软件,以图形、报表等形 式表示投针试验结果,分析其中的规律,并给出结论。 ④写出试验报告。 ⑤在熟悉投针试验原理的基础上,编制投针试验仿真程序,动态运行投针试验的过程。15.什么是蒙特卡洛仿真?它有什么特点,蒙特卡洛仿真应用的基本步骤是什么? 16.采用C或C++等语言,分别编写产生均匀分布、正态分布、指数分布以及威布尔分布的伪随机数序列,通过改变每种分布中参数的数值,分析不同参数数值对随机数值的影响;通过对所产生的伪随机数分布区间的统计、分析和绘图,检验伪随机数的特性及其数值特征。 17. 对于制造系统而言,库存有哪些作用和功能? 18. 在制造企业中,库存大致可以分成四种类型。简要论述四种库存的名称和功能。 19. 什么是安全库存、订货提前期?确定安全库存和订货提前期时分别需要考虑哪些因素? 20. 什么叫“订货点法”?要确定订货点,需要哪些条件?订货点法适合于怎样的库存系统?

离散控制系统分析方法

实验二 离散控制系统分析方法 一、实验目的 利用MATLAB 对各种离散控制系统进行时域分析。 二、实验指导 1.控制系统的稳定性分析 由前面章节学习的内容可知,对线性系统而言,如果一个连续系统的所有极点都位于s 平面的左半平面,则该系统是一个稳定系统。对离散系统而言,如果一个系统的全部极点都位于z 平面的单位圆内部,则该系统是一个稳定系统。一个连续的稳定系统,如果所有的零点都位于s 平面的左半平面,即所有零点的实部小于零,则该系统是一个最小相位系统。一个离散的稳定系统,如果所有零点都位于z 平面的单位圆内,则称该系统是一个最小相位系统。由于Matlab 提供了函数可以直接求出控制系统的零极点,所以使用Matlab 判断一个系统是否为最小相位系统的工作就变得十分简单。 2.控制系统的时域分析 时域分析是直接在时间域对系统进行分析。它是在一定输入作用下,求得输出量的时域表达式,从而分析系统的稳定性、动态性能和稳态误差。这是一种既直观又准确的方法。 Matlab 提供了大量对控制系统的时域特征进行分析的函数,适用于用传递函数表示的模型。其中常用的函数列入表1,供学生参考。 例1.z z z H 5.05 .1)(2+= 试绘出其单位阶跃响应及单位斜波输入响应。 解:为求其单位阶跃响应及单位斜波输入响应,编制程序如下: num=[1.5]; den=[1 0.5 0];sysd=tf(num,den,0.1) [y,t,x]=step(sysd);

subplot(1,2,1) plot(t,y); xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位阶跃响应') grid; u=0:0.1:1; subplot(1,2,2) [y1,x]=dlsim(num,den,u); plot(u,y1) xlabel('Time-Sec'); ylabel('y(t)'); gtext('单位速度响应') grid 二、实验内容 1、MATLAB在离散系统的分析应用 对于下图所示的计算机控制系统结构图1,已知系统采样周期为T=0.1s,被 控对象的传递函数为 2 () s(0.11)(0.05s1) G s s = ++ ,数字控制器 0.36 () 0.98 z D z z - = + ,试 求该系统的闭环脉冲传递函数和单位阶跃响应。 图1 计算机控制系统结构图 实验步骤: 1).求解开环脉冲传递函数,运用下面的matlab语句实现:>> T=0.1; >> sys=tf([2],[0.005 0.15 1 0]); %将传函分母展开>> sys1=c2d(sys,T,'zoh'); >> sys2=tf([1 -0.36],[1 0.98],0.1); >> sys3=series(sys2,sys1) 执行语句后,屏幕上显示系统的开环脉冲传递函数为: sys3 = 0.03362 z^3 + 0.05605 z^2 - 0.01699 z - 0.002717 --------------------------------------------------

离散系统稳定性分析

实验一 离散系统稳定性分析 实验学时:2 实验类型:常规 实验要求:必作 一、实验目的: (1)掌握利用MATLAB 绘制系统零极点图的方法; (2)掌握离散时间系统的零极点分析方法; (3)掌握用MATALB 实现离散系统频率特性分析的方法; (4)掌握逆Z 变换概念及MATLAB 实现方法; (5)掌握用MATLAB 分析离散系统稳定性。 二、实验原理: 1、离散系统零极点图及零极点分析; 线性时不变离散系统可用线性常系数差分方程描述,即 ()()N M i j i j a y n i b x n j ==-= -∑∑ (8-1) 其中()y k 为系统的输出序列,()x k 为输入序列。 将式(8-1)两边进行Z 变换的 00 ()()()() () M j j j N i i i b z Y z B z H z X z A z a z -=-== = = ∑∑ (8-2) 将式(8-2)因式分解后有: 11 () ()() M j j N i i z q H z C z p ==-=- ∏∏ (8-3) 其中C 为常数,(1,2,,)j q j M = 为()H z 的M 个零点,(1,2,,)i p i N = 为()H z 的N 个极点。 系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。 因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性: ● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性;

离散系统的频率特性; 1.1、零极点图的绘制 设离散系统的系统函数为 ()()() B z H z A z = 则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为: p=roots(A) 其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。如多项式为231()4 8 B z z z =+ + ,则求该多项式根的MA TLAB 命令为为: A=[1 3/4 1/8]; P=roots(A) 运行结果为: P = -0.5000 -0.2500 需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。这两种方式在构造多项式系数向量时稍有不同。 (1)()H z 按z 的降幂次序排列:系数向量一定要由多项式最高次幂开始,一直到常数项,缺项要用0补齐;如 3 4 3 2 2()3221 z z H z z z z z += ++++ 其分子、分母多项式系数向量分别为A=[1 0 2 0]、B=[1 3 2 2 1]。 (2)()H z 按1z -的升幂次序排列:分子和分母多项式系数向量的维数一定要相同,不足的要用0补齐,否则0z =的零点或极点就可能被漏掉。如 1 1 2 12()11124 z H z z z ---+= + + 其分子、分母多项式系数向量分别为A=[1 2 0]、B=[1 1/2 1/4]。 用roots()求得()H z 的零极点后,就可以用plot()函数绘制出系统的零极点图。下面是求系统零极点,并绘制其零极点图的MA TLAB 实用函数ljdt(),同时还绘制出了单位圆。 function ljdt(A,B) % The function to draw the pole-zero diagram for discrete system p=roots(A); %求系统极点 q=roots(B); %求系统零点 p=p'; %将极点列向量转置为行向量

电力系统仿真分析技术的发展趋势.doc

电力系统仿真分析技术的发展趋势 0 引言 随着化石能源逐渐枯竭,发展利用清洁能源和可再生能源成为世界各国的必然选择,也是新能源变革的主要内容。中国新能源变革的目标可以归纳为:以可再生能源逐步替代化石能源,提高化石能源的清洁高效利用水平,实现可再生能源(水能、风能、太阳能、地热能、生物质能)和核能利用在一次能源消耗占较大份额。在新能源变革形势下,电网的使命也将发生变化,智能电网是适应新能源变革和承担电网新使命的新一代电网。 中国自 21 世纪初就提出了建设特高压电网的设想,并逐步加以实施,近两年根据国际电力系统发展的最新动向,又进一步提出了建设智能电网的宏伟蓝图。中国的智能电网是以特高压电网为骨干网架、各级电网协调发展的坚强网架为基础,以通信信息平台为支撑,具有信息化、自动化、互动化特征,包含电力系统的发电、输电、变电、配电、用电和调度各个环节的现代电网。与此同时,随着电网规模的不断扩大,新能源、新设备的不断加入,当今电力系统已经日益变得复杂,这使得运行人员更加难于对其进行监视、分析和控制。近些年,国内外不断发生大规模的停电事故,这些事故都造成了很大的经济损失和社会影响,不断地为人们敲响警钟,也给电网的安全稳定运行提出了更高的要求。 在上述的大停电事故中,电力系统从第一次元件故障,到整个系统崩溃,一般会有一个较长的过程,如果这期间运行人员能够进行正确的处理,大停电是可以避免的。换言之,电网缺乏有效的在线监测和预警系统,不能及时掌握实时电网稳定情况并采取有效的控制措施是导致大停电事故发生的重要原因。 电力系统仿真分析是电力系统规划设计和调度运行的基础,涵盖的范围非常广泛,包括从稳态分析、动态分析到暂态分析的各个方面。根据实时电力系统动态过程响应时间与系统仿真时间的关系,可分为非实时仿真和实时仿真;根据仿真的数据来源,又可分为离线仿真、在线仿真。其中在线仿真是实现在线预警和决策支持的必要手段。 电力系统仿真分析涵盖电力系统、数学、计算机、通信等多学科技术领域,面对智能电网建设提出的要求,需要不断地引入先进的计算机和通信技术以及数学方法等,推动仿真分析技术在仿真的准确性、快速性、灵活性等方面的发展。具体体现在以下几个方面:1)可实现更大规模电网的仿真计算,同时仿真数据的粗细程度可根据需要自动调整。 2)仿真计算应具有更快的速度及更高的准确性。 3)仿真计算应具备更多的效用,并与环境、经济等相关领域相结合。 4)仿真建模应具备更大的灵活性,以适应智能电网中层出不穷的新元件、新设备建模的需要。 5)需加强对电力系统智能建模方法的应用以及仿真结果的智能化分析。 6)电网自愈对实时决策控制的要求。要求能实时跟踪评价电力系统行为,一旦发生故障,立即进行快速仿真并提供决策控制支持,防止大面积停电,并快速从紧急状态恢复到正常状态。 7)仿真试验应具备更大的灵活性。未来的仿真试验将可实现对多个异地试验设备的同步测试。 8)仿真计算应适应新的计算模式,如云计算、协同计算等。 9)可实现智能人机交互仿真,显著提高用户操作的便捷性和仿真系统的使用效率。 10)数据融合技术在仿真分析中应用,提高对仿真分析中对多源海量数据的整合能力。 本文将依据计算机、网络、通信等技术当前和未来可能的发展,探讨和预测新的先进计算技术(如云计算等)及其在电力系统仿真分析中的应用。 1 发展现状 1.1 电力系统仿真分析技术概述 如图 1 所示,电力系统仿真分析技术可分为电力系统建模、电力系统数字仿真分析方法、电力系统在线仿真分析和电力系统实时仿真等4项技术,其中电力系统建模技术包括建模方法和模型研究技术,电力系统数字仿真分析方法主要指针对各类仿真应用的基础方法,后2种技术则分别针对在线应用和实时应用。其中先进计算技术包括计算机及网络、与电力系统仿真分析相关的计算数学和计算模式这3项技术。下文分别描述上述各项技术的发展现状。

离散时间系统的时域分析

第七章离散时间系统的时域分析 §7-1 概述 一、离散时间信号与离散时间系统 离散时间信号:只在某些离散的时间点上有值的 信号。 离散时间系统:处理离散时间信号的系统。 混合时间系统:既处理离散时间信号,又处理连 续时间信号的系统。 二、连续信号与离散信号 连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理: 三、离散信号的表示方法:

1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。 例如:)1.0sin()(k k f = 2、 (有序)数列:将离散信号的数值按顺序排列起来。例如: f(k)={1,0.5,0.25,0.125,……,} 时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。 四、典型的离散时间信号 1、 单位样值函数:? ??==其它001)(k k δ 下图表示了)(n k ?δ的波形。

这个函数与连续时间信号中的冲激函数 )(t δ相似,也有着与其相似的性质。例如: )()0()()(k f k k f δδ=, )()()()(000k k k f k k k f ?=?δδ。 2、 单位阶跃函数:? ??≥=其它001)(k k ε 这个函数与连续时间信号中的阶跃函数)(t ε相似。用它可以产生(或表示)单边信号(这里称为单边序列)。 3、 单边指数序列:)(k a k ε

比较:单边连续指数信号:)()()(t e t e t a at εε=,其 底一定大于零,不会出现负数。 (a) 0.9a = (d) 0.9a =? (b) 1a = (e) 1a =? (c) 1.1a = (f) 1.1a =?

生产系统建模与仿真

《建模与仿真》课程教学大纲 (Modeling and Simulation) 课程编码: 学分:2.5 总学时:40 适用专业:工业工程 先修课程:生产计划与控制、工程统计学、工程数学、运筹学、计算机编程技术 一、课程的性质、目的和任务 《建模与仿真》是面向工程实际的应用型课程,是工业工程系的主导课程之一。学生通过本课程的学习能够初步运用仿真技术来发现生产系统中的关键问题,并通过改进措施的实现,提高生产能力和生产效率。本课程的目的是要求学生通过学习、课堂教育和上机训练,能了解如何运用计算机仿真技术模拟生产系统的布置和调度管理。并熟悉和掌握计算机仿真软件的基本操作和能够实现的功能。使学生了解计算机仿真的基本步骤。结合本课程的特点,使学生掌握或提高系统化分析问题和解决问题的能力,为系统化管理生产打下基础。二、教学基本要求 具体在教学过程中要求学生应该达到: 1.全面了解本课程的性质与任务、框架内容以及理论和方法; 2.掌握仿真的概率统计基础知识。 3.掌握供理论模型建模方法。 4.掌握仿真模型的设计与实现方法。 5.熟练应用建模理论,对排队系统、库存系统、加工制造系统进行建模仿真。 三、教学内容与学时分配 离散事件系统仿真是仿真技术的重要领域,在规划论证、方案评估、计划调度、 加工制造、产品试验、生产培训、训练模拟、管理决策等方面得到广泛应用。本课程 深入地介绍了离散事件系统建模仿真的理论、方法和技术,突出对理论建模方法和计 算机实现技术的讲解,对离散事件系统建模仿真的发展和应用情况做了比较详尽的介 绍。 具体教学内容如下: 第一章绪论 4学时

本章分析了系统和制造系统定义、组成与特点,介绍了系统建模与仿真的基本概念和使用步骤,并给出应用案例。 本章教学目标: 本章教学基本要求: 了解常用术语及常用的仿真软件,了解仿真技术的的发展状况及应用。 理解系统与制造系统的定义及系统建模与仿真的概念及系统、模型与仿真之间的关系。 掌握制造系统建模与仿真的基本概念及基本步骤。 本章教学重点:制造系统建模与仿真的原则及基本步骤。 本章教学难点:制造系统建模与仿真的原则及基本步骤 第一节系统与制造系统 0.3学时 (一)什么是系统 (二)制造系统的组成与特点 第二节系统建模与仿真的基本概念。 0.3学时 (一)系统、模型与仿真的关系 (二)系统建模与仿真技术的特点 第三节制造系统建模与仿真的基本概念。 0.3学时 (一)制造系统建模与仿真的特点分析 (二)制造系统类型及建模元素 (三)制造系统仿真的功能分析 第四节系统建模与仿真的基本步骤 0.4学时 第五节系统建模与仿真的案例分析 0.5学时 (一)连杆生产线的组成与功能分析 (二)连杆生产线仿真模型的构建 (三)仿真逻辑的分析与定义 (四)仿真结果分析及系统优化 第二章系统建模与仿真的基本原理 2学时 本章在分析离散事件系统模型的分类和元素组成的基础上,介绍了建立系统模型的常用方法。 本章教学目标:使学生掌握常用的系统建模方法 本章教学基本要求:

离散时间系统的分析

课程设计报告 课程设计题目:离散时间系统分析学号:201420130206 学生姓名:董晓勇 专业:通信工程 班级:1421301 指导教师:涂其远 2015年12月18日

离散时间系统的分析 一、设计目的和意义 1 . 目的: (1)深刻理解卷积和、相加、相乘运算,掌握求离散序列卷积和、相加相乘的计算方法;(2)加深理解和掌握求离散序列Z变换的方法; (3)加深和掌握离散系统的系统函数零点、函数极点和系统时域特性、系统稳定性的关系。 2 . 意义: 在对《信号与系统》一书的学习中,进行信号与系统的分析是具有十分重要的意义,同时也是必不可少的。利用matlab函数,只需要简单的编程,就可以实现系统的时域、频域分析,对系统特性进行分析,为实际的系统设计奠定了基础。本设计在离散系统Z域分析理论的基础上,利用matlab对离散系统的稳定性和频域响应进行了分析。 二、设计原理

第一部分:对离散时间系统的时域进行分析呈 对离散时间信号的代数运算(相加、相乘、卷积和),是在时域进行分析。相加用“+”来完成,相乘用“·*”来完成,卷积和则用conv 函数来实现,具体形式为y=conv(x1,x2,….),其中x1,x2,…..为输入的离散序列 ,y 为输出变量。 在零初始状态下,matlab 控制工具箱提供了一个filter 函数,可以计算差分方程描述的系统的响应,其调用形式为: y=filter(b,a,f) 其中,a=[a0,a1,a2,…]、b=[b0,b1,b2,….]分别是系统方程左、右边的系数向量,f 表示输入向量,y 表示输出向量。 第二部分:对离散时间系统的Z 域进行分析 matlab 工具箱提供了计算Z 正变换的函数ztrans,其调用形式为: F=zrtans(f) %求符号函数f 的Z 变换,返回函数的自变量为z 。 Matlab 的zplane 函数用于系统函数的零极点图的绘制,调用方式为: zplane(b,a)其中,b 、a 分别为系统函数分子、分母多项式的系数向量。 matlab 中,利用freqz() 函数可方便地求得系统的频率响应,调用格式为: freqz(b,a,N) 该调用方式将绘制系统在0~PI 范围内N 个频率等分点的幅频特性和相频特性图。 三、 详细设计步骤 1.自己设计两个离散时间序列x1、x2,对其进行相加,相乘,卷积运算,并显示出图形。 2.根据已知的LTI 系统:y[n]-0.7y[n-1]-0.6y[n-2]+y[n-3]=x[n]+0.5[n-1],得其在Z 域输 入输出的传递函数为: 1 12310.5()10.70.6z H z z z z ----+= --+ 利用matlab 求:(1)系统函数的零点和极点,并在z 平面显示他们的分布;(2)画出幅频响应和相频响应的特性曲线。 四、 设计结果及分析 (1).自行设计产生两个离散序列信号,对其进行相加、乘及卷积运算

离散系统的时域分析实验报告

实验2 离散系统的时域分析 一、实验目的 1、熟悉并掌握离散系统的差分方程表示法; 2、加深对冲激响应和卷积分析方法的理解。 二、实验原理 在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下: 其输入、输出关系可用以下差分方程描述: 输入信号分解为冲激信号, 记系统单位冲激响应,则系统响应为如下的卷积计算式: . .

. . 当 时,h[n]是有限长度的(),称系统为FIR 系统;反之, 称系统为IIR 系统。 三、实验容 1、用MATLAB 求系统响应 1) 卷积的实现 线性移不变系统可由它的单位脉冲响应来表征。若已知了单位脉冲响应和系统激励就可通过卷积运算来求取系统响应,即)(*)()(n h n x n y 程序: x=input(‘Type in the input sequence=’); %输入x h=input(‘Type in the impulse response sequence=’); %输入h y=conv(x,h); % 对x ,h 进行卷积 N=length(y)-1; %求出N 的值 n=0:1:N; %n 从0开始,间隔为1的取值取到N 为止 disp(‘output sequence=’); disp(y); %输出y stem(n,y); %画出n 为横轴,y 为纵轴的离散图 xlabel(‘Time index n ’); ylable(‘Amplitude ’); % 规定x 轴y 轴的标签 输入为: x=[-2 0 1 -1 3] h=[1 2 0 -1] 图形: 2) 单位脉冲响应的求取 线性时不变因果系统可用MA TLAB 的函数filter 来仿真 y=filter(b,a,x);

国内外军用仿真技术发展现状概述

国内外军用仿真技术发展现状概述 一、概述仿真技术是以相似原理、信息技术、系统技术及其应用领域有关的专业技术为基础,以计算机和各种物理效应设备为工具,利用系统模型对实际的或设想的系统进行试验研究的一种综合性技术。它综合集成了计算机、网络技术、图形图像技术、多媒体、软件工程、信息处理、自动控制等多个高新技术领域的知识。 随着仿真技术在科技进步和社会发展中的作用愈来愈显重要,特别是军事科学,随着高、精尖武器系统的研制和发展,对军用仿真技术的应用和研究提出了更高的要求。世界各军事强国竟相在新一代武器系统的研制过程中不断完善仿真方法,改进仿真手段,以提高研制工作的综合效益。军用仿真技术在武器系统战技指标论证、方案选择、研制、试验、鉴定、改进提高以及部队维护保养和训练中的应用,已得到研制方和使用部队的承认和重视。它对提高新一代武器系统综合性能,减少系统实物试验次数、缩短研制周期,节省研制经费,提高维护水平,延长寿命周期,强化部队训练等方面都可大有作为。 二、国内外军用仿真技术发展现状1.国外军用仿真技术发展现状态 美国国防部高度重视仿真技术的发展,近十多年来,美国一直将建模与仿真列为重要的国防关键技术。1992年公布了国防建模与仿真倡议,并成立了国防建模与仿真办公室,负责倡议的实施:1992年7月美国防部公布了国防科学技术战略,综合仿真环境被列为保持美国军事优势的七大推动技术之一;1995年10月,美国防部公布了建模与仿真主计划,提出了美国防部建模与仿真的六个主目标;1997年度的美国国防技术领域计划,将建模与仿真列为有助于能极大提高军事能力的四大支柱(战备、现代化、部队结构、持续能力)的一项重要技术,并计划从1996年至2001年投资5.4亿美元、年均投资0.9亿美元。同时美国国防科学局(Defense Science Board)认为建立集成的综合仿真环境和仿真系统,必须解决五个层次的使能技术,(enabling technologies )(即应能解决实现的技术) 第一层次基础技术。 包括:光纤通讯、集成电路、软件工具、人的行为模型、环境模型等。 第二层次元、部件级技术

相关主题
文本预览
相关文档 最新文档