当前位置:文档之家› 核心交换选型

核心交换选型

核心交换选型
核心交换选型

核心交换选型

目前云计算、虚拟化和大数据等热门技术纷纷落地,数据中心网络的建设也不断变化,数据中心流量和带宽的指数级增长,已经远远超出了人们对传统网络的想象,很多企业对高速智能的数据中心核心交换机的需求就十分迫切了,因此对于核心交换机的选择也是必不可少的。

那么,基于未来的发展,数据中心核心交换机到底该如何选择呢?从20世纪60-70年代至今,数据中心自身不断在演进,随着新技术的涌现,其网络架构也随之变革。而随着数据中心网络和以太网标准的发展,数据中心核心交换机架构也经历了一系列的演变。通过梳理这些变化,了解数据中心在未来可能会产生的趋势,企业才能从不同层面去把握选型要旨。

数据中心的演变与发展

当前,数据中心已成为企业或机构管理IT基础设施与应用,提供基础设施与应用服务的重要平台。随着更加先进的技术的融合发展,建设新一代数据中心成为企业普遍关心的热点话题,它不仅代表着IT产业发展的潮流,也反映了不同IT 用户最迫切的核心需求。

以时间轴为导向看数据中心的演变,可以分为以下阶段:

1、60-70年代,数据中心是以大型主机为主要的计算设备,在体系结构、系统功能方面拥有高性能、高可用和高可管理性等技术特性;

2、80-90年代,数据中心以小型机与PC服务器为通用计算设备,它使用客户机/服务器方式相连,强调性价比,被称为“开放”的分布式计算年代;

3、千禧年后,数据中心以刀片服务器构建共享公用计算平台,它使用虚拟化技术连接,被称为面向服务的计算年代。

数据中心结构的发展历程

随着各种技术的不断完善,数据中心架构也随之发生了许多变化——

1、原始的PC服务器阶段

数据中心仅由一台高性能的服务器组成,大约可以为几十人的规模提供服务,完成数据复制、备份、计算等基本功能。

2、服务网络分层阶段这个阶段数据中心具有了多台服务器,共同向外提供多种服务,数据中心内部的服务器通过局域网互连,彼此之间互相影响,协调工作,外部用户依然可以通过互联网访问数据中心的各种应用。

3、虚拟化服务阶段

数据中心规模扩大,可以向数千人提供服务。数据中心内部出现了多种优化性能的设备和技术,数据中心内部服务器虚拟化技术应用普遍。

4、数据中心综合建设优化阶段

数据中心将可以为数万用户同时提供服务,此时的数据中心往往在业务上要进行划分,企业对数据中心的设备规划、电力、制冷、供电等都要综合性分析进行降耗,降低数据中心的运维成本。

5、存储与网络融合阶段

存储网络和业务网络从数据中心出现开始就是分离的,两者一直在独立发展,近几年由于数据中心建设成本越来越高,开始有人研究两种网络合一的可能性,各种网络融合的技术也纷纷开始出现。

6、多数据中心阶段

现在的数据中心往往需要同时为数百万人提供服务,一个数据中心无法满足,而需要建设多个数据中心,由这些数据中心共同来提供服务。

7、云与数据中心融合阶段

通过在数据中心部署云计算技术,可以完成多数据中心之间的业务无感知迁移,并可为数千万人同时提供服务。此时的数据中心虚拟化技术无所不在,网络、存储、安全、服务器等都要部署虚拟化技术。数据中心将不再按照业务类型划分,而是按照云来划分,可以分为公有云、私有云、云服务等等。

数据中心网络架构的发展历程

随着以太网技术的发展以及信息化水平的不断提高,新的应用及数据量急剧增长,数据中心的规模不断膨胀,数据中心网络架构也随之发展——

1、传统数据中心的网络架构

数据中心计算网络主要由大量的二层接入设备与少量的三层设备组成的网络结构,是传统上标准的三层结构:

·接入层,用于连接所有的计算节点,在目前的数据中心中,通常以机柜交换机的形式存在;

·汇聚层,用于接入层的互联,并作为该汇聚区域二三层的边界,同时各种防火墙、负载均衡等业务也部署于此;

·核心层,用于汇聚层的的互联,并实现整个数据中心与外部网络的三层通信。2004-2007年期间,三层网络结构在数据中心十分盛行,2007-2010年,EoR和MoR被认为是取代传统三层网络结构的理想解决方案。

2、二层网络结构:叶脊拓扑网络

2013年后,二层网络结构的叶脊拓扑网络以迅雷不及掩耳之势迅速取代三层网络结构成为了现代数据中心的新宠。这种网络结构主要由脊层交换机和叶层交换机两个部分组成,正好迎合和了未来高密度布线的趋势,几乎能适应所有大中小型数据中心。

数据中心核心交换机架构演进与发展

以太网经过近30年的发展,现阶段10GE的以太网已经批量的应用,40GE和100GE的以太网开始逐步应用。因此,这也对承载以太网带宽发展的核心交换机提出了要求。

第一阶段:2000年-2006年,高密FE/GE接入汇聚,少量10GE上行

这个阶段的核心交换机以中心交换加LSW为主构成,中心交换主要是以太交换芯片为主,线卡单板以FE/GE和少量10GE的LSW作为接口芯片,背板链路以1.25G-6.25Gbps为主,线卡提供48GE线速转发,业务处理基本以二层和三层为主,QoS处理主要以简单的优先级队列调度为主。典型的产品有Cisco 4500/6500、H3C 6500/7500等。

第二阶段:2006年-2012年,高密GE/10GE接入汇聚,少量10GE/40GE上行

这个阶段中心交换的形态很多,有的是共享缓存的简单交换网,有的是集中仲裁的交换网,还有以6.25G为主的CLOS交换架构。线卡单板以GE和10GE的LSW 作为接口芯片,少量40GE上行接口为主。背板链路以5G-10Gbps为主,每线卡槽位的带宽小于480G,最大能力16~48x10GE线速转发,业务处理基本以二层和三层为主,具有简单的HQoS调度,缓存范围很广,依赖于LSW芯片。典型的产品有Cisco N7000、H3C 10500/12500等。

第三阶段:2012年-2020年,高密10GE/40GE接入汇聚,少量100GE上行

这个阶段的核心交换机以CLOS动态路由交换为主,线卡单板以具有复杂业务处理能力的PP芯片为主,提供高密度的10GE/40GE线速转发和业务处理,少量100GE上行接口为主。背板链路以10G起步,未来可演进到25Gbps;目前最大能

力48-96x10GE线速转发,或者24x40GE线速转发,具有完善的QoS处理能力,能支持比较大的缓存,可以达到100ms/端口。典型的产品有华为CE12800。

数据中心在未来的发展趋势

IDC此前就2017年数据中心发展趋势发表以下重要预测。

1、数据中心前景。到2018年,数据密集型行业将有35%的企业采用正式的数据中心规划、采购及治理流程来加快数字化转型进程。

2、下一代工作负载。到2019年,组织机构用于数据中心投资中的25%将用于支持认知/人工智能、机器学习和增强现实等下一代情境工作负载。

3、即用即付(PAYG)使用模式。到2018年,即付即用模式将在本地、外部部署的物理IT和数据中心资产支出中占据25%的比例,从而加强业务与IT部门的合作。

4、智慧数据中心。2017年,只有20%的企业将按预定进度部署软件定义的数据中心,因为关键设施的容量限制会延迟转型进程。

5、多云化操作。随着企业对不断变化的数据应用模式做出反应,2018年企业ICT 支出中的45%将用于主机代管、托管云和公共云数据中心。

6、本地云交付。到2019年,20%的本地部署基础设施将支持与地理相关的下一代工作负载,这些工作负载将通过集成式设备上的IaaS/PaaS堆栈直接连接到公共/托管云。

7、机架级的IT。三年内,机架层级的超融合与超大规模捆绑式销售将占到服务器/存储/网络部署的30%,从而推动能耗和冷却设计的变化。

8、动态连通性。2017年,25%的企业将利用基于策略的覆盖网络(覆盖网络是指建立在另一个网络上的网络,是面向应用的应用层网络)在数据中心、云和分支机构之间快速安全地移动数据和工作负载。

9、电力保证。到2019年,主要数据中心运营商将减少对电网的依赖,10%的数据中心能源需求将通过专用的私人发电来满足。

10、数据中心的退化。硬件过时所导致的功率输出与IT工作负载的不匹配将令30%的大中型企业遭遇服务故障。

数据中心核心交换机选型之道

通过上述不同发展历程的梳理,可见数据中心发生变革的同时,企业对建设数据中心,对数据中心核心交换机的选择也产生了新需求。那么,为了适应数据中心在未来的发展趋势,应该如何进行核心交换机的选择呢?

不同企业对建设数据中心的需求不同,对核心交换机选择的侧重点也必然不同。下面分别介绍一些主流厂商的产品,借此来了解市面上比较主流的核心交换机产品具有哪些亮点。

交换机、路由器设备选型总结

一、交换机选型: 1.背板带宽是交换机接口处理器或接口卡和数据总线间所能吞吐的最大数据量。 交换机机箱内部背后设置的大量的铜线,而背板带宽指的是这些铜线提供的带宽,与背板带宽有关的,是背板铜线部署的多少;交换容量是实际业务板卡与交换引擎之间的连接带宽,真正标志了交换机总的数据交换能力,与交换容量有关的,是业务插槽与管理引擎上的交换芯片,交换容量是决定交换机性能转发的主要因素。 所有单端口容量*端口数量之和的2倍<背板带宽,才可以实现全双工无阻塞交换。 比如cisco公司的Catalyst2950G-48,它有48个100Mbit/s端口和2个1000Mbit/s端口,它的背板带宽应该不小于13.6Gbit/s,才能满足线速交换的要求。 计算如下:(2*1000+48*100)*2(Mbit/s)=13.6(Gbit/s) 2.满配置吞吐量(Mpps)=满配置GE端口数×1.488Mpps,其中1个千兆端口在包长为64字节时的理论吞吐量为1.488Mpps。例如:1台最多能够提供64个千兆端口的交换机,其满配置吞吐量应达到64×1.488Mpps = 95.2Mpps,才能够确保在任何端口均线速工作时,提供无阻塞的包交换。假如一台交换机最多能够提供176个千兆端口,而宣称的吞吐量为不到261.8Mpps(176 x 1.488Mpps = 261.8),那么用户有理由认为该交换机采用的是有阻塞的结构设计。 1.488的由来:包转发线速的衡量标准是以单位时间内发送64byte的数据包(最小包)的个数作为计算基准的。 计算方法如下:一个数据包的实际长度为(64+8+12)byte=(512+64+96)bit=672bit,说明:当以太网帧为64byte时,需考虑8byte的帧头和12byte的帧间隙的固定开销。故一个线速的千兆以太网端口在转发64byte包时的包转发率为1.488095Mpps=1000Mbit/s/672bit。快速以太网的线速端口包转发率正好为千兆以太网的十分之一,为0.1488095Mpps=100Mbit/s/672bit。 对于万兆以太网,一个线速端口的包转发率为14.88Mpps; 对于千兆以太网,一个线速端口的包转发率为1.488Mpps; 对于快速以太网,一个线速端口的包转发率为0.1488Mpps; 对于OC-12的POS端口,一个线速端口的包转发率为1.17Mpps; 对于OC-48的POS端口,一个线速端口的包转发率为468MppS。 3.典型的网络设计会采用过载(Oversubscription)设计模式 过载设计的规则: 接入层到汇聚层--过载率:10:1到20:1 汇聚层到核心层--过载率:2:1到4:1 服务器群--过载率:1:1到4:1 例子:假设三级网络结构 接入层:10000台PC,每台PC使用1000M接入,采用10G上联汇聚层,20:1的过载率; 汇聚到核心层:10GE上联,4:1的过载率;双核心架构,核心交换机之间使用双10G 捆绑链路相连提供冗余。 最终核心层的网络流量最高为:10000*1000M*2*1/(4*20)+10G*2*2=290Gbps,也就是说最大需要的背板带宽为290Gbps,包转发能力为:290G*1.488Mpps=431.52Mpps; 汇聚层的网络流量为:10G*(4+2)*2=120Gbps,即最大需要背板带宽为120Gbps,包转发率为:120G*1.488Mpps=178.56Gpps; 接入层选择48口的交换机,交换容量为:(48*1000M+1*10000M)*2=116Gbps,即最大需求背板带宽为116Gbps,包转发率为:116*1.488Mpps=172.6Mpps。按照20:1的过载

Nexus 9000 系列 数据中心交换机指南

APIC P Cisco Nexus 9000 系列数据中心交换机指南 思科数据中心交换机

最新技术与高性能的统一 支持各种应用模型 业界最高的性能VXLAN 路由支持全方位 SDN 低耗电可扩展性、经济性 可编程网络 APIC IT Cisco Nexus 9000 系列 API Cisco Nexus 9000

什么是Cisco Nexus 系列 ~其产品组合 数据中心交换机的定位 随着数据中心的变化,各种网络问题日益突显…… 从 20 世纪中期起,由于数据中心的服务器的集中化与虚拟化,使得企业在提高服务器使用效率、削减硬件成本的方面获得了很大的成果。但同时伴随着服务器虚拟化的推进,也使得传统的运维模式无法继续维持下去,其运营成本的增加给企业 IT 或数据中心运营商造成很大的负担。数据中心运营面临的较大的问题之一是数据中心网络的管理,现在企业大量增加的应用已经与 10 年前不可同日而语,由于传统的基于 STP 的网络在扩展性和可靠性等都存在严重的问题,已经无法支持企业应用的大规模扩展。另外,由于服务器所虚拟化所实现的虚拟机不依赖于位置的移动性已获得普遍运用,传统型的网络也带来了由孤岛化所引起的运营不便、及资源配置效率低等问题。 新时代的平台 -Cisco Nexus 9000 系列 Cisco Nexus 系列是思科公司为解决这些问题所成功开发的新型网络基础架构平台。最早推出的 Cisco Nexus 7000/5000/2000 系列对问题的解决做出了较大贡献,并在市场上保持压倒性的份额。 Cisco Nexus 9000 系列为了实现下一代自动化数据中心与网络的运营管理而开发,不仅具经过 Cisco Nexus 7000/5000/2000 系列验证的高性能与高密度,而且还以小巧的外形实现了低延迟与高能效。本产品能够广泛地应对客户更专业化的需求,获得了很高的评价,大量的成功案例更加稳固了其在市场上的地位。 Cisco Nexus 拥有非常丰富的系列产品,经过简单的总结可得出以下产品定位:在主干/叶(Spine/Leaf)型的L2/L3 交换矩阵架构下,Cisco Nexus9300-EX/FX 系列做为叶节点交换机,Cisco Nexus 9500 系列做为骨干节点交换机。在使用 vPC 或经典三层组网的情况下,Cisco Nexus9300-EX/FX 系列作为接入层设备,Cisco Nexus 9500 系列作为汇聚层或核心层设备。 这种设计根据环境的规模或条件可能有所不同。例如在需要 DCI 功能(OTV 或 VPLS/MPLS)的情况下,Cisco Nexus 7700 系列更合适。 Cisco Nexus 7700 系列Cisco Nexus 2000 系列Cisco Nexus 3100 系列Cisco Nexus 5600 系列Cisco Nexus 9200 系列Cisco Nexus 9300 系列 Cisco Nexus 9500 系列 模块型 开放 API/开放源代码/应用策略模型 高性能 1/10/25/40/50/100 GE 可扩展的安全分段 Segment ID / VXLAN Cisco Nexus 9300-EX/FX 引导的平台 Cisco Nexus 9500 引导的平台 ● 支持 Cisco ACI & Cisco Tetration Analytics ● 支持DevOps 工具 & 支持 VXLAN & FEX ● 在 vPC 的情况下选择 Cisco Nexus 9200 系列 ● 支持 Cisco ACI & Cisco Tetration Analytics ● 在需要 DCI 技术的情况下选择 Cisco Nexus 7700 系列 固定型

赫斯曼交换机操作手册

赫斯曼交换机操作手册 本网络系统包含一台万兆以太网交换机(MACH 4002)作为核心交换机,两台模块化交换机(MS4128)作为次级交换机。网络系统要求划分为两个VLAN,两个VLAN之间需要通讯。 1、Vlan配置 核心交换机(MACH 4002)的管理地址分别为172.16.8.251。 两台次级交换机(MS 4128)的管理地址分别为172.16.8.252,172.16.8.253。 第一步:连接好所有设备,不考虑Port口位置。 第二步:VLAN规划 本网络划分了两个VLAN,第一个名称为VLAN1,第二个名称为VLAN2,还有一个默认VLAN,名称为Defult。 Port口详细划分如下: MACH4002: VLAN1 Port口:4.1~4.6,6.3~6.14 VLAN2 Port口:3.1~3.8 上联Port口:4.7,4.8,6.15,6.16 管理Port口:6.1,6.2 MS4128:(两台配置一样) VLAN1 Port口:2.3~1.4,3.1~3.4,4.1~4.4,5.1~5.4 VLAN2 Port口:无 上联Port口:1.1,1.2,2.1,2.2

第三步:划分VLAN 使用HiDiscovery扫描到网络内所有的交换机设备,对交换机的管理地址进行设置。 使用HiVision,在Configration-Preference中添加交换机管理地址的扫描网段,可以扫描到网络内的所有交换机如图: 单击Vlan-Manager选项卡,选择Agent list,如图: 选择Discovered devices中的所有设备并单击添加按钮将它们添加到Participating agents 中,并点击OK按钮,如图:

数据中心交换机与普通交换机有什么不同

数据中心交换机与普通交换机有什么不同 随着互联网的普及,信息技术的发展,数据中心的建设需求和标准也在不断的发展,因此数据中心对网络设备的要求也逐步提升,普通的交换机往往无法满足数据中心的需要。接下来是小编为大家收集的数据中心交换机与普通交换机有什么不同,希望能帮到大家。 数据中心交换机与普通交换机有什么不同 1.高容量设备 数据中心的网络流量具有高密度应用调度、浪涌式突发缓冲的特点,而普通交换机以满足互连互通为主要目的,无法实现对业务精确识别与控制,在大业务情况无法做到快速响应和零丢包,无法保证业务的连续性,系统的可靠性主要依赖于设备的可靠性。所以普通交换机无法满足数据中心的需要,数据中心交换机需要具备高容量转发特点。 数据中心交换机必须支持高密万兆板卡,即48口万兆板卡,为使48口万兆板卡能够全线速转发,数据中心交换机只能采用CLOS 分布式交换架构。除此之外,随着40G和100G的普及,支持8端

口40G板卡和4端口的100G板卡也逐渐商用,数据中心交换机40G、100G的板卡早已出现进入市场,从而满足数据中心高密度应用的需求。 2.大缓存技术 数据中心交换机改变了传统交换系统的出端口缓存方式,采用分布式缓存架构,缓存比普通交换机也大许多,缓存能力可达1G以上,而一般的交换机只能达到2~4M。对于每端口在万兆全线速条件下达到200毫秒的突发流量缓存能力。从而在突发流量的情况下,大缓存仍能保证网络转发零丢包,正好适应数据中心服务器量大,突发流量大的特点。 3.虚拟化技术 数据中心的网络设备需要具有高管理性和高安全可靠性的特点,因此数据中心的交换机也需要支持虚拟化,虚拟化就是把物理资源转变为逻辑上可以管理的资源,以打破物理结构之间的壁垒。 网络设备的虚拟化主要包括多虚一,一虚多技术,多虚多等技术。通过虚拟化技术,可以对多台网络设备统一管理,也可以对一台设备上的业务进行完全隔离,从而可以将数据中心管理成本减少

赫斯曼交换机的配置

赫斯曼系列交换机配置及使用说明 一.M ACH4002系列模块化核心交换机 MACH4002 48G-L3P:全千兆模块化工业以太网核心交换机。设备自带16个千兆端口,其中8个为光、电互换Combo端口。最多支持4个介质模块,可再扩展出32个千兆端口,最多可达48个千兆端口。该交换机支持三层路由功能,220V AC冗余供电,0~70℃工作范围。 MACH4002 48+4G-L3P:千兆模块化工业以太网核心交换机。设备自带4个千兆光、电互换Combo 端口和16个百兆电缆端口。最多支持4个介质模块,可再扩展出32个百兆端口,最多可达48个百兆端口和4个千兆端口。该交换机支持三层路由功能,220V AC冗余供电,0~70℃工作范围。 1.设备的安装和拆卸: MACH4002系列核心交换机:该交换机采用标准的19寸机架式安装方式,4个介质模块及设备风扇均支持带电热插拔。 MACH4002 48G-L3P MACH4002 48+4G-L3P 下图为设备正面图示,其中包括有设备的连接端口、风扇、LED显示灯、报警输出节点、RJ11配置端口及USB配置端口。 LED显示灯位于正面左下方,如下图所示:

交换机的背面为基本电源模块安装位置,如下图所示: 2.设备的配置: 设置IP地址的方法:1.通过超级终端的命令行(需要有专用的线缆:串口转V.24);2.通过HiDiscovery 软件,搜索所有的网络设备,设置其IP地址和子网掩码;3.使用BOOTP和DHCP服务器来设置IP地址。(本方法不推荐在这里使用); 4.使用自动设置适配器ACA21(USB接口) 常用的配置方法:1.通过超级终端的命令行(同上);2.通过WEB界面(需要IE5.5以上,并且要装有JA V A 1.3以上),在IE地址栏里输入交换机的IP地址,即可访问设置界面。每次更改设置需要点击“SET”按键,并选择保存; 3. 使用网管软件HiVision进行配置,每次的修改同样需要进行SET和保存。 注意:如果要通过WEB界面进行配置,需要PC和交换机的IP地址在同一子网内。 3.设备的日常维护: 注意交换机的输入电压是否在额定电压范围; 注意:换机工作环境; 注意:交换机风扇是否正常工作; 注意:各台交换机上的LED灯所显示的内容是否有异常; 注意:HiVision是否有报警产生; 注意:交换机各端口的线缆及介质模块的拔出与插入尽量轻操作。

新一代的数据中心级核心交换机

新一代的数据中心级核心交换机 引言 2006年开始出现云计算的概念,其热度一直持续到今天,并有愈演愈烈之势,几乎所有企业IT业务都在向云计算演进。在此期间,数据中心网络设备更是以每年40%以上的速度增长,其中数据中心级的核心交换机可以说是整个云计算网络架构的一个关键节点。 数据中心核心交换机何以诞生? 数据中心级交换机之所以诞生,背后有着深刻的原因。根本的支撑就是整个IT业界的应用模型发生了革命性的变化,从Client/Server的流量模型向Server/Server流量模型演进,从单播为主的流量模型到Incast&多播流量的大量使用。同时陪伴着的是大量企业关键业务IT化,企业客户对IT的投资更加活跃,大规模服务器集群、虚拟化、Big Data等技术的成熟都对网络提出了更高的业务要求。

从上表的分析中,我们可以发现业务应用的需求驱动加上产品技术的成熟是数据中心核心交换机成功的关键。所以当我们实现下一代的数据中心核心交换机时,也谨遵守这一规则。 数据中心级核心交换机的现状 当前条件下,主流网络设备厂商的数据中心级核心交换机基本具备如下特点: 1)较高可扩展性 2)网络设备的自身虚拟化能力

3)多业务支持和网络融合 当前数据中心级核心交换机的缺憾 尽管数据中心级的核心交换机在业务和技术上取得了不少的突破,但目前还存在不少的缺憾,主要包括: 1)网络扩展能力有限 在设备的可扩展性上,核心交换机满足支撑未来5年乃至10年的网络扩展需求的厂家几乎没有;究其根本原因就是设备架构设计和网络业务快速扩张速度的不匹配。 服务器虚拟化后,对二层的数据交换产生了巨大的需求,但二层网络由于天生的缺陷,网络节点的可扩展性非常有限。一些传统的二层网络技术,如STP等,只解决了二层网络的破环,却在如何做大二层网络上并未涉及,在多个数据中心之间如何实现虚拟机的二层互通,现在也没有一个非常成熟的方案。 2)网络虚拟化和应用虚拟化的分离 应用虚拟化以后,客户的业务、应用将变得更加灵活,调整起来会变得更加动态、频繁。 网络虚拟化如何跟随业务、应用的变化进行动态的适配,快速、自动的进行部署变更,也是一道很大的考题。 3)网络行为开放有限 随着客户应用环境的日益复杂,许多客户都提出了网络行为定制化的需求;因为每个客户的网络环境都有自己的特点,而厂家生产的标准化设备不能满足所有客户的特殊行为需求,所以业界出现了通过一个开放式标准接口来控制网络设备行为的思潮。

如何选择交换机

交换机在一些比较大型的局域网中已经非常普遍,随着网络技术的空前发展,交换机产品也日益丰富,厂商不断涌现,Cisco、Avaya、3COM、华为、联想、D-Link、方正、港湾、神州数码等等成百上千家都提供不同层次的交换机产品,来满足各层次用户的需求。面对如此众多的厂商和产品,是不是让您觉得眼花缭乱?怎样才能够选择最适合自己的交换机产品呢?其实笔者认为,任何东西都是万变不离其宗,只要你掌握了产品的本质特性,再根据自身的特点,看菜吃饭,量体裁衣,就不难找到适合自己的东西了。在这里,笔者与各位网友共同学习一下交换机的主要性能指标,从技术角度对交换机有个基本的认识,以便在今后选购和使用交换机时做到心中有数。 一般来说,与交换机性能和设备选型密切相关的因素主要有背板带宽、包转发率、交换方式、端口类型、端口速率、端口密度、冗余模块、堆叠能力、VLAN数量、MAC地址数量、三层交换能力等,下面以几款产品为例逐一介绍: a.背板带宽 背板带宽是我们在选购交换机时应该十分注意的一个性能指标,它标志着一个交换机总的吞吐能力。背板带宽约高,你的交换机负载数据转发能力就越强,网络瓶颈就越低。在以背板总线为交换通道的交换机上,任何端口接收的数据,首先被放到总线上,再由总线传递给目标端口,这种情况下背板带宽就是总线的带宽。现在的许多交换机,尤其是模块化的交换机都为交换矩阵设计,这种设计的交换能力更强,在这样的交换机上,背板带宽实际上指的是交换矩阵的总吞吐量。背板带宽以Gbit/s为单位,从几Gbit/s到几百Gbit/s不等,一般来说固定端口交换机背板带宽较低,而模块化交换机背板带宽较高,如Cisco桌面级交换机CISCO WS-C2950G-48-EI的背板带宽为4.4Gbit/s,而企业级交换机CISCO WS-C6513的交换矩阵吞吐能力是256Gbit/s,相差两个数量级。当然背板带宽越高的价格也就越贵,像上面提高的CISCO WS-C6513目前市场售价大概在11万到12万左右。 b.包转发率 在我们选购交换机时经常会注意到背板带宽和端口速率,但包转发率这项指标也是不可忽视的。包转发率以数据包为单位体现了交换机的交换能力,单位是Mpps(百万包/秒)。包转发率的数值从几Mpps到几百Mpps不等。如Cisco 2950系列交换机包转发率一般为6.6Mpps。华为S5516的包转发率为24Mpps。 c.交换方式 目前交换机通常采用直通式交换、存储转发式、碎片隔离式三种。其中直通式交换延时小,速度快,但不提供错误检测,容易丢包;存储转发与之相反,它是接收数据包后先缓存起来,做CRC校验,过滤错误的数据包后再发送到目的端口,这种交换方式稳定准确,但是延时大,华为的S3026交换机即属于存储转发式,该技术是目前交换机使用最为普遍的方式。还有一种技术,就是碎片隔离式技术,它算是以上两种技术的折中吧,原理是在转发之前先检查数据包的长度是否够64Byte,如小于该值,则丢弃(说明是假包),如大于该值,则转发。该种技术一般应用于低端交换机当中。 d.端口类型 端口类型是指交换机上的端口是以太网、令牌环、FDDI还是ATM等类型,一般来说固定端口交换机只有单一类型的端口,而模块化交换机则可以有不同介质类型的模块可供选择,从而实现各种网络的互连。如华为的S3050交换机提供的是 10/100Base-TX,1000Base-FX端口,而华为S5516交换机有1000/100/10Base-T,1000Base-LX,1000Base-SX等几种接口可供选择。在我们小型办公室中使用的交换机一般是以RJ45以太网端口居多。 e.端口速率 除了背板带宽、包转发等,端口速率也是衡量交换机的一项重要指标,像神州数码DCS-1016交换机提供10M/100M速率,而其模块化交换机DCRS-7515能够提供10M/100M/1000M等不同速率。目前低端交换机一般都能够提供10M、100M速率,高端交换机能够提供1000M甚至更高。

交换机设备选型案例

1.1. 交换机设备选型 大部分的厂商对交换机的分类是相似的,基本上都分为:接入层交换机、汇聚层交换机、核心交换机。各个系列的使用都有一定的适用场合,下面我们通过一个例子来解释一下设备选型的问题。下图是一个典型的校园网络,各部分需求在图中都有注出,基本要求是网络骨干千兆、多媒体应用、满足各个楼宇的接入节点数量。 那么如何在各大厂商和设备型号间选择合适的设备来满足网络要求呢?下面我们用一个实例来解释设备型号和功能的差异: 按上图所示,这是一个典型的校园网络,网络的核心在“网络中心/实验楼”,核心需要选择一台交换机以满足本楼宇内部的三台服务器千兆连接、42个多媒体电子教室节点的百兆连接、到图书馆等四个区域的千兆连接,也就是核心设备起码能够提供7个千兆端口和42个百兆端口。其余“图书馆”楼宇有40个节点、千兆连接“网络中心/实验楼”的核心交换机;“办公楼”36个节点、千兆连接“网络中心/实验楼”的核心交换机;“教学楼”两栋,分别有90和65个节点,也都用千兆线路连接“网络中心/实验楼”核心交换机。需要网管能力,交换机上能够实现网络管理。 我们以厂商D-Link的设备为例来选择设备,大家可以到D-Link的官方网站https://www.doczj.com/doc/cd11284791.html,查询,会发现其可网管型交换机型号就多达24种,这么多种设备如何来选择呢?我们的方案如下图:

先来看看核心设备的选择:仔细考虑一下大家就会发现,作为核心交换机,其需求是交换容量大、端口密度高并且端口配置灵活,所以D-LINK 系列交换机中,要选择模块化核心交换机。这是因为固定端口交换机的端口密度不够,一般固定端口交换机只具备24个以下的RJ45端口,而且通常固定端口交换机也只能配备1到2个千兆端口,无法满足网络核心7个千兆端口、42个百兆端口要求;同时固定端口交换容量一般为8G 左右,而核心需要交换容量理论值为:7乘以1G 加上42乘以100M 等于11.2G ,作为当前使用和日后升级扩展也无法满足交换容量需求。这里我们选择了DES-6000模块化核心交换机,此设备是2层核心设备,选择它也因为此网络中并没有内部路由需求,如果有的话可以考虑DES-6300机箱

核心交换机与普通交换机的区别

核心交换机与普通交换机的区别 数据中心级交换机以高质量的业务保证和控制识别能力为特征,端到端的流控与背压机制,保证数据传输的稳定可靠,平抑网络浪涌。可靠性、安全性更高,组网方式更简单,业务部署更快捷。 1.数据中心核心交换机介绍 核心交换机并不是交换机的一种类型,而是放在核心层(网络主干部分)的交换机叫核心交换机,一般大型企业网络和网吧需要购买核心交换机来实现强大的网络扩展能力,以保护原有的投资,电脑达到一定数量才会要用上核心交换机,而基本在50台以下无需用核心交换机,有个路由器即可,所谓的核心交换机是针对网络架构而言,如果是个几台电脑的小局域网,一个8口的小交换机就可以称之为核心交换机!而在网络行业中核心交换机是指有网管功能,吞吐量强大的2层或者3层交换机,一个超过100台电脑的网络,如果想稳定并高速的运行,核心交换机必不可少。

2.核心交换机与普通交换机的区别 2.1端口的区别 普通交换机端口数量一般为24-48个,网口大部分为千兆以太网或者百兆以太网口,主要功能用于接入用户数据或者汇聚一些接入层的交换机数据,这种交换机最多可以配置Vlan简单路由协议和一些简单的SNMP等功能,背板带宽相对较小。 核心交换机端口数量较多,通常采用模块化,可以自由搭配光口和千兆以太网口。一般核心交换机都是三层交换机,可设置路由协议/ACL/QoS/负载均衡等各种高级网络协议。最主要的一点是核心交换机的背板带宽远远高于普通交换机,且通常有单独引擎模块,并且为主备用。 2.2用户连接或访问网络的区别 通常将网络中直接面向用户连接或访问网络的部分称为接入层,将位于接入层和核心层之间的部分称为分布层或汇聚层,接入层目的是允许终端用户连接到网络,因此接入层交换机具有低成本和高端口密度特性。汇聚层交换机是多台接入层交换机的汇聚点,它必须能够处理来自接入层设备的所有通信量,并提供到核心层的上行链路,因此汇聚层交换机具备更高的性能,更少的接口和更高的交换速率。

关于数字监控系统中的交换机选择

关于数字监控系统中的交换机选择 一、接入层交换机的选择: 接入层交换机主要下联前端网络高清摄像机,上联汇聚交换机。 以720P网络摄像机4M码流计算,一个百兆口接入交换机最大可以接入几路720P 网络摄像机呢? 我们常用的交换机的实际带宽是理论值的50%-70%,所以一个百兆口的实际带宽在50M-70M。4M*12=48M,因此建议一台百兆接入交换机最大接入12台720P网络摄像机。 同时考虑目前网络监控采用动态编码方式,摄像机码流峰值可能会超过4M带宽,同时考虑带宽冗余设计,因此一台百兆接入交换机控制在8台以内时最好的,超过8台建议采用千兆口。 二、汇聚层交换机的选择: 汇聚层交换机主要下联接入层交换机,上联监控中心核心交换机。一般情况下汇聚交换机需选择带千兆上传口的二层交换机。 还是以720P网络摄像机4M码流计算,前端每台接入层交换机上有6台720P网络摄像机,该汇聚交换机下联5台接入层交换机。该汇聚层交换机下总带宽为 4M*6*5=120M,因此汇聚交换机与核心交换机级联口应选千兆口。 三、核心层交换机的选择: 核心层交换机主要下联汇聚层交换机,上联监控中心视频监控平台,存储服务器,数字矩阵等设备,是整个高清网络监控系统的核心。 在选择核心交换机是必须考虑整个系统的带宽容量及如何核心层交换机配置不当,必然导致视频画面无法流畅显示。因此监控中心需选择全千兆口核心交换机。 如点位较多,需划分VLAN,还应选择三层全千兆口核心交换机。 四、决定交换机性能的几个参数 1、背板带宽

背板带宽计算方法:端口数*端口速度*2=背板带宽,以华为S2700-26TP-SI为例,该款交换机有24个百兆口,两个千兆上联口。 背板带宽=24*100*2/1000+2*1000*2/1000=8.8Gbps。 2、包转发率 包转发率的计算方法: 满配置GE端口数×1.488Mpps+满配置百兆端口数×0.1488Mpps=包转发率 (1个千兆端口在包长为64字节时的理论吞吐量为1.488Mpps,1个百兆端口在包长为64字节时的理论吞吐量为0.1488Mpps)。 交换机有24个百兆口,两个千兆上联口。 包转发率=24*0.1488Mpps+2*1.488Mpps=6.5472Mpps。 五、其他 1、摄像机码流 100W(720P)像素摄像机的码流为4.5M 130W(960P)像素摄像机的码流为6M 200W(1080P)像素摄像机的码流为8M 300W像素摄像机的码流为10M 500W像素摄像机的码流为13-15M 举个例子,200W(1080P)像素、码流为8M的摄像机一般8个端口的交换机即可。 由于交换机的带宽实际利用率只有60%-70%,所以一定要选择更大带宽的交换机。另外在看背板带宽时,也要注意其包转发率,只有背板带宽和包转发率均满足要求的交换机,才能让视频传输更顺畅。 提醒:背板相对大,吞吐量相对小的交换机,除了保留了升级扩展的能力外就是软件效率/专用芯片电路设计有问题;背板相对小,吞吐量相对大的交换机,整体性能比较高。 2、建议 百兆口可使用超五类双绞线,千兆口应使用六类双绞线或者光纤。

赫斯曼交换机的配置和使用

赫斯曼系列交换机配置及使用说明一.M ACH4002系列模块化核心交换机 MACH4002 48G-L3P:全千兆模块化工业以太网核心交换机。设备自带16个千兆端口,其中8个为光、电互换Combo端口。最多支持4个介质模块,可再扩展出32个千兆端口,最多可达48个千兆端口。该交换机支持三层路由功能,220V AC冗余供电,0~70℃工作范围。 MACH4002 48+4G-L3P:千兆模块化工业以太网核心交换机。设备自带4个千兆光、电互换Combo 端口和16个百兆电缆端口。最多支持4个介质模块,可再扩展出32个百兆端口,最多可达48个百兆端口和4个千兆端口。该交换机支持三层路由功能,220V AC冗余供电,0~70℃工作范围。 1.设备的安装和拆卸: MACH4002系列核心交换机:该交换机采用标准的19寸机架式安装方式,4个介质模块及设备风扇均支持带电热插拔。 MACH4002 48G-L3P MACH4002 48+4G-L3P 下图为设备正面图示,其中包括有设备的连接端口、风扇、LED显示灯、报警输出节点、RJ11配置端口及USB配置端口。 LED显示灯位于正面左下方,如下图所示:

交换机的背面为基本电源模块安装位置,如下图所示: 2.设备的配置: 设置IP地址的方法:1.通过超级终端的命令行(需要有专用的线缆:串口转V.24);2.通过HiDiscovery 软件,搜索所有的网络设备,设置其IP地址和子网掩码;3.使用BOOTP和DHCP服务器来设置IP地址。(本方法不推荐在这里使用); 4.使用自动设置适配器ACA21(USB接口) 常用的配置方法:1.通过超级终端的命令行(同上);2.通过WEB界面(需要IE5.5以上,并且要装有JA V A 1.3以上),在IE地址栏里输入交换机的IP地址,即可访问设置界面。每次更改设置需要点击“SET”按键,并选择保存; 3. 使用网管软件HiVision进行配置,每次的修改同样需要进行SET和保存。 注意:如果要通过WEB界面进行配置,需要PC和交换机的IP地址在同一子网内。 3.设备的日常维护: 注意交换机的输入电压是否在额定电压范围;注意交换机工作环境;注意交换机风扇是否正常工作;注意各台交换机上的LED灯所显示的内容是否有异常;注意HiVision是否有报警产生;注意交换机各端口的线缆及介质模块的拔出与插入尽量轻操作。 二.M S30-0802SAAPHC系列模块化交换机 MS30-0802SAAPHC:千兆模块化工业以太网交换机。设备自带一个基本介质模块,为交换机工作提供电源及相应的诊断配置端口。交换机自身不具有任何端口,所有端口均需由介质模块扩展实现。交换机最多可以实现2个千兆光、电互换Combo端口和8个百兆端口。该交换机为二层交换机,不支持三层路由

汇聚交换机配置规范

汇聚节点交换机设置规范 适用范围: 汇聚三层交换机 适用设备: 考虑到全网设备的兼容性和可控性,原则上统一使用思科交换机。并具备三层路由功能。 设备选型: 考虑到全网设备实施策略的统一性和网络稳定性,不允许使用厂家已停产的设备机型,同时接入设备的系统版本要保持及时更新。 设置规范: 1.汇聚交换机管理vlan统一使用vlan1,并配置管理ip。管理ip院外使用 31.0.3.0/24网段地址,院内使用31.0.4.0/24网段地址。 2.汇聚交换机命名依据规定的命名规则进行设置。级联交换机端口增加 description设置。 3.汇聚交换机密码依据我们的密码表进行设置,同时设置 enabel secrect password和telnet password.并在vty 线程上设置访问控制列表,仅允许特定的网段远程访问。 4.汇聚交换机上下级联端口设置trunk模式(cisco),统一封装协议为802.1q。 汇聚交换机用户接入端口统一设置为access模式,不允许使用switchport mode dynamic desirable自动协商模式。 5.vtp域设置依据节点位置名称进行设置,并将vtp模式设置为server模式。 Vlan名称依据对应单位的名称进行命名。 6.交换机所有端口设置广播风暴抑制,抑制基准线:千兆口设置为2%,百兆 口设置为5%。 7.交换机所有用户接入(非级联交换机)端口设置bpdu guard 环路抑制功能。 8.交换机所有密码使用密文模式,设置service password-encryption。并关 闭web访问模式 no ip http server。 9.接入交换机统一设置只读通信密码snmp-server community xhpublic RO , 和读写通信密码snmp-server community xhprivate RW。 10.汇聚交换机启用ospf路由,设置内容如下: 设置ospf路由进程,全网统一使用100 设置每个路由id,每个交换机必须唯一

华为数据中心5800交换机01-09 端口安全配置

9端口安全配置关于本章 9.1 简介 介绍端口安全的定义和目的。 9.2 原理描述 通过介绍安全MAC地址的分类和超过安全MAC地址限制数后的保护动作,说明端口安 全的实现原理。 9.3 应用场景 介绍端口安全常见的应用场景。 9.4 配置注意事项 介绍端口安全的配置注意事项。 9.5 缺省配置 介绍端口安全的缺省配置。 9.6 配置端口安全 端口安全(Port Security)功能将设备接口学习到的MAC地址变为安全MAC地址(包 括安全动态MAC和Sticky MAC),可以阻止除安全MAC和静态MAC之外的主机通过 本接口和交换机通信,从而增强设备安全性。 9.7 配置举例 结合组网需求、配置思路来了解实际网络中端口安全的应用场景,并提供配置文件。 9.1 简介 介绍端口安全的定义和目的。 端口安全(Port Security)通过将接口学习到的动态MAC地址转换为安全MAC地址 (包括安全动态MAC和Sticky MAC),阻止非法用户通过本接口和交换机通信,从而 增强设备的安全性。

9.2 原理描述 通过介绍安全MAC地址的分类和超过安全MAC地址限制数后的保护动作,说明端口安 全的实现原理。 安全MAC地址的分类 安全MAC地址分为:安全动态MAC与Sticky MAC。 表9-1安全MAC地址的说明 l接口使能端口安全功能时,接口上之前学习到的动态MAC地址表项将被删除,之后学习到的MAC地址将变为安全动态MAC地址。 l接口使能Sticky MAC功能时,接口上的安全动态MAC地址表项将转化为Sticky MAC地址, 之后学习到的MAC地址也变为Sticky MAC地址。 l接口去使能端口安全功能时,接口上的安全动态MAC地址将被删除,重新学习动态MAC地 址。 l接口去使能Sticky MAC功能时,接口上的Sticky MAC地址,会转换为安全动态MAC地址。超过安全MAC地址限制数后的动作 接口上安全MAC地址数达到限制后,如果收到源MAC地址不存在的报文,端口安全则 认为有非法用户攻击,就会根据配置的动作对接口做保护处理。缺省情况下,保护动 作是丢弃该报文并上报告警。

设备选型

湟源一中网络工程建设一期设备选型 第7组

设备选型 ?根据上一章节的需求分析的介绍,本章重点详细介绍说明三层网络中的每一层的细节,同时对网络架构的分析和设计思路,校园网的设计原则等做个简要说明。具体内容如下。

1. 网络架构分析 ?校园网在分层布线主要采用树型结构;每个房间的计算机连接到本层的交换机,然后每层的交换机在连接到本楼出口的交换机,各个楼的交换机器再连接到校园网的通信网中,由此构成了校园网的拓补结构

2 . 设计思路 ?进行校园网总体设计,首先明确学校的性质、任务和改革发展的特点及系统建设的需求和条件,对学校的信息化环境进行准确的描述;其次,在应用需求分析的基础上,确定各层的设备,安置位置,布线等。 总体要使校园网满足一下: ?(1)整体规划安排; ?(2)先进性、开放性和标准化相结合; ?(3)结构合理,便于维护; ?(4)高效实用; ?(5)支持宽带多媒体业务; ?(6)能够实现快速信息交流、协同工作和形象展示

3. 校园网的设计原则 (1)先进性原则 ?以先进、成熟的网络通信技术进行组网,支持数据、语音和视频图像等多媒体应用,采用基于交换的技术代替传统的基于路由的技术,并且能确保网络技术和网络产品在几年内基本满足需求。(2)开放性原则 ?校园网的建设应遵循国际标准,采用大多数厂家支持的标准协议及标准接口,从而为异种机、异种操作系统的互连提供便利和可能。 (3)可管理性原则 ?网络建设的一项重要内容是网络管理,网络的建设必须保证网络运行的可管理性。在优秀的网络管理之下,将大大提高网络的运行速率,并可迅速简便地进行网络故障的诊断。 (4)安全性原则 ?信息系统安全问题的中心任务是保证信息网络的畅通,确保授权实体经过该网络安全地获取信息,并保证该信息的完整和可靠。网络系统的每一个环节都可能造成安全与可靠性问题。 (5)灵活性和可扩充性 ?选择网络拓扑结构的同时还需要考虑将来的发展,由于网络中的设备不是一成不变的,如需要添加或删除一个工作站,对一些设备进行更新换代,或变动设备的位置,因此所选取的网络拓扑结构应该能够容易的进行配置以满足新的需要。 (6)稳定性和可靠性 ?可靠性对于一个网络拓扑结构是至关重要的,在局域网中经常发生节点故障或传输介质故障,一个可靠性高的网络拓扑结构除了可以使这些故障对整个网络的影响尽可能小以外,同时还应具有良好的故障诊断和故障隔离功能。

交换机的性能参数和使用选型概述

附录一:交换机的性能参数和使用选型 4.1 交换机性能参数 交换机参数是使用者用来衡量交换机用途、性能的重要参考依据,任何一个网络在施工之前都必须经严格的论证,论证的过程就包括网络拓扑结构的分析,节点设备功能的确定等环节;其中设备功能的确定主要是根据该网络的业务要求而确定,也就是能常所说的设备选型,而选购者也就是根据交换机相应的性能参数来选购所需设备。例如该网络用户需要满足的最小带宽、用户节点数量、是否支持远程网络管理、该交换机有多少个扩展槽、支持那些网络协议、是否支持VLAN、端口数量等等。 4.1.1基本参数 基本参数是设备选型时的主要参考标准,通常从这些参数中就能了解该设备的主要信息,判断是否满足建网要求等,例如我们需要购买一台支持网管功能的第三层千兆企业级模块化以太网交换机,这些参数年中就标明了设备类型。主要类型参考如下。 1.设备类型 交换机的分类标准多种多样,常见的有以下几种: (1)根据网络覆盖范围分 局域网交换机和广域网交换机。 (2)根据传输介质和传输速度划分 以太网交换机、快速以太网交换机、千兆以太网交换机、10千兆以太网交换机、ATM交换机、FDDI交换机和令牌环交换机。 (3)根据交换机应用网络层次划分 企业级交换机、校园网交换机、部门级交换机和工作组交换机、桌机型交换机。 (4)根据交换机端口结构划分 固定端口交换机和模块化交换机。 (5)根据工作协议层划分 第二层交换机、第三层交换机和第四层交换机。 (6)根据是否支持网管功能划分 网管型交换机和非网管理型交换机。

2.交换方式 目前交换机在传送源和目的端口的数据包时通常采用直通式交换、存储转发式和碎片隔离方式三种数据包交换方式。目前的存储转发式是交换机的主流交换方式。 (1)、直通交换方式(Cut-through) 采用直通交换方式的以太网交换机可以理解为在各端口间是纵横交叉的线路矩阵电话交换机。它在输入端口检测到一个数据包时,检查该包的包头,获取包的目的地址,启动内部的动态查找表转换成相应的输出端口,在输入与输出交叉处接通,把数据包直通到相应的端口,实现交换功能。由于它只检查数据包的包头(通常只检查14个字节),不需要存储,所以切入方式具有延迟小,交换速度快的优点。所谓延迟(Latency)是指数据包进入一个网络设备到离开该设备所花的时间。 它的缺点主要有三个方面:一是因为数据包内容并没有被以太网交换机保存下来,所以无法检查所传送的数据包是否有误,不能提供错误检测能力;第二,由于没有缓存,不能将具有不同速率的输入/输出端口直接接通,而且容易丢包。如果要连到高速网络上,如提供快速以太网(100BASE-T)、FDDI或ATM连接,就不能简单地将输入/输出端口“接通”,因为输入/输出端口间有速度上的差异,必须提供缓存;第三,当以太网交换机的端口增加时,交换矩阵变得越来越复杂,实现起来就越困难。 (2)、存储转发方式(Store-and-Forward) 存储转发(Store and Forward)是计算机网络领域使用得最为广泛的技术之一,以太网交换机的控制器先将输入端口到来的数据包缓存起来,先检查数据包是否正确,并过滤掉冲突包错误。确定包正确后,取出目的地址,通过查找表找到想要发送的输出端口地址,然后将该包发送出去。正因如此,存储转发方式在数据处理时延时大,这是它的不足,但是它可以对进入交换机的数据包进行错误检测,并且能支持不同速度的输入/输出端口间的交换,可有效地改善网络性能。它的另一优点就是这种交换方式支持不同速度端口间的转换,保持高速端口和低速端口间协同工作。实现的办法是将10Mbps低速包存储起来,再通过 100Mbps速率转发到端口上。 (3)、碎片隔离式(Fragment Free) 这是介于直通式和存储转发式之间的一种解决方案。它在转发前先检查数据包的长度是否够64个字节(512 bit),如果小于64字节,说明是假包(或称残帧),则丢弃该包;如果大于64字节,则发送该包。该方式的数据处理速度比存储转发方式快,但比直通式慢,但由于能够避免残帧的转发,所以被广泛应用于低档交换机中。 使用这类交换技术的交换机一般是使用了一种特殊的缓存。这种缓存是一种先进先出的FIFO(First In First Out),比特从一端进入然后再以同样的顺序从另一端出来。当帧被接收时,它被保存在FIFO中。

RG-S6220系列数据中心与云计算交换机产品介绍

面向下一代数据中心与云计算交换机RG- S6220系列产品介绍

1 产品图片 RG-S6220-48XS4QXS RG-S6220-48XT4QXS 图1-1RG-S6220-24XS

图1-2RG-S6220-48XS6QXS-H 图1-3RG-S6220-48XT6QXS-H 图1-4RG-S6220-32QXS-H 图1-5RG-S6220-48XS4QXS-L

2 产品概述 数据中心是通过网络提供服务的“生产工厂”。近年来,以移动互联网、Web2.0应用、云计算 为代表的新型业务迅速发展,数据中心规模开始迅速扩大,并呈现出动态、弹性、灵活、按 需调用的特点。传统网络设备作为数据中心内部最重要的基础设施之一,却由于无法满足弹 性、灵活的业务需求而成为当前数据中心发展的瓶颈。 针对当前的问题及趋势,锐捷网络率先推出真正面向下一代数据中心与云计算的交换机产品, 将“无阻塞交换、统一交换、虚拟化交换、透明交换、绿色交换”作为下一代数据中心的发展 方向,解决传统数据中心网络设备数量多,成本高、流量突增等问题,为构建云计算网络奠 定基础。 其中RG-S6220系列交换机是锐捷网络在国内率先推出的面向融合FC/FCoE/IP网络的全万兆 云计算特性数据中心交换机。 围绕数据中心与云计算网络虚拟化的趋势,RG-S6220系列交换机采用业界领先的VSU 2.0 (Virtual Switch Unit,虚拟交换单元)虚拟化技术将多台物理设备虚拟化为一台逻辑设备,大 幅简化网络结构,提高设备可靠性。RG-S6220系列支持数据中心边缘虚拟交换VEPA、虚拟 机发现及安全策略自动迁移等下一代数据中心虚拟化特性。硬件支持IPv4/IPv6双协议栈多层 线速交换和功能特性,并为IPv6网络之间的通信提供丰富的Tunnel技术,可灵活应用于纯 IPv4网络、纯IPv6网络、IPv4到IPv6共存的网络,满足当前网络从IPv4向IPv6过渡的需 要。 同时,伴随着数据中心融合网络的趋势,RG-S6220系列可为服务器提供FC(Fibre Channel) 与FCoE(Fibre Channel over Ethernet)接入和以太网接入服务,同时为传统IP SAN用户提供 无损以太网传输,增加IP SAN的可靠性,并且帮助用户轻松整合异构的存储网和数据网,减 少数据中心建设成本和复杂性。 RG-S6220系列提供二到七层的智能的业务流分类、完善的服务质量(QoS)策略。根据不同 应用对不同业务流分级处理,保证重要数据传输无延时。 RG-S6220系列交换机支持非常丰富的接口形态和扩展方式,可提供48口万兆光口+4口40G 光口,48口万兆电口+4口40G光口,48口万兆光口+6口40G光口,48口万兆电口+6口40G 光口,32口40G光口,24口万兆光口+2个扩展槽。在RG-S6220-24XS交换机上,可扩展2 口40G模块,或8口FC 8/4/2Gbps自协商模块,或12口万兆光模块,或8口万兆电模块, 使您可以非常灵活的组建数据中心网络。 RG-S6220系列数据中心交换机可为超大型数据中心服务器接入、中小型数据中心网络的汇聚 或核心、大型园区网汇聚、中小型网络核心提供高性能、完善的端到端服务质量、丰富的下一 代数据中心虚拟化特性,最大化满足“无阻塞交换、统一交换、虚拟化交换、透明交换、绿色 交换”的下一代数据中心组网需求。

相关主题
文本预览
相关文档 最新文档