当前位置:文档之家› 航空发动机零部件的抗疲劳制造技术_石竖鲲

航空发动机零部件的抗疲劳制造技术_石竖鲲

航空发动机零部件的抗疲劳制造技术_石竖鲲
航空发动机零部件的抗疲劳制造技术_石竖鲲

航空发动机研制难点

航空发动机研制难点 目前,在各行各业众多工业产品中,能够称得上是“工业王冠”的大概只有喷气航空发动机和微电子芯片了。“工业王冠”不单单反应的是喷气式航空发动机在技术层面的研制难度,也不仅仅说明了航空发动机在飞机设计中属于“心脏”一样的核心地位,更说明了在国家发展过程中航空发动机如同“王权”一般高端的战略位置。但是我国偏偏在航空发动机研制过程中,长期处于“慢性心脏病”的状态,在追求“工业王权”的过程中,长期处于“知其然,不知其所以然”的境地。不过,在对航空发动机研制客观规律进行总结和对于国家发展有了更深层次的认识之后,我国在当今航空发动机技术发展的战略机遇期,不仅可以与航空强国齐头并进,还要创立属于中华民族的“动力王朝”。 现代涡扇发动机结构极其复杂,图为GE90大涵道比涡扇发动机结构剖视图 采用三维气动算法进行理论计算的压气机叶片 如何组织燃料高效的燃烧而又不伤及自身,是燃烧室设计的核心问题 带有冷却孔的涡轮叶片,采用了激光熔接技术,号称是世界上最难制造的零件之一。 我国直到上世纪八十年代才开始的高推比核心机预研计划F119-PW-100堪称是世界第一发动机,可是只是美国第四代核心机的衍生产品而已,后面还有三代…… 用于民航的大涵道比涡扇发动机,我国目前在这个领域没有自己的发动机型号。 精心雕琢的工业王冠 喷气式航空发动机的性能优势是建立在精巧的连续回旋转子结构上的,其研制难点也基本围绕这一个核心展开。现代飞机不断提高的战术技术指标对航空发动机提出了非常高的要求。高温、高压、高转速而又要求高可靠性、耐久性和维护性是其基本特点。在这些高而又相互矛盾的要求的推动促进下,航空发动机经过长时间的发展已经成为人类有史以来最复杂最精密的工业产品。 压气机的作用是利用来自涡轮的能量对发动机进气进行压缩和增温。一方面提高了进气分子活跃程度,更有利于提高燃烧效率。另外一方面,增加了单位体积内的氧气含量,因为大气尤其是高空大气的单位体积含氧量太低,远小于燃烧室中的燃油充分燃烧所需的耗氧量。压气机的主要设计难点在于要保证效率、增压比和喘振裕度这三大主要性能参数满足发动机的设计要求。一个世纪以来,伴随着气动热力学、计算流体力学的发展.压气机的设计水平在逐年提高。20世纪初采用螺旋桨理论设计压气机叶片,二十年代开始采用孤立叶形理论,三十年代中期开始采用叶栅设计理论,五十年代开始用二维设计技术,七十年代开始建立准三维设计体系,九十年代以来,航空界开始使用三维粘性流场分析设计体系对压气机进行设计。压气机设计理论、计算模型和设计系统在基础理论科研推动下不断进步跨越。即便是有先进的计算机辅助设计手段,如果基础科研理论没有进步,也无法在高性能压气机领域取得突破。由于压气机的逆压梯度相当大、需要对空气流场、温度场和压力场进行详尽的

先进航空发动机关键制造技术研究

ARTICLES 学术论文 引言 航空发动机的设计、材料与制造技术对于航空工业的发展起着关键性的作用,先进的航空动力是体现一个国家科技水平、军事实力和综合国力的重要标志之一。随着航空科技的迅速发展,面对不断提高的国防建设要求,航空发动机必须满足超高速、高空、长航时、超远航程的新一代飞机的需求。 近年来,航空工业发达国家都在研制高性能航空发动机上投入了大量的资金和人力,实施一系列技术开发和验证计划,如“先进战术战斗机发动机计划(ATFE )”、“综合高性能涡轮发动机技术(IHPTET )计划”及后续的VAATE 计划、英法合作军用发动机技术计划(AMET )等。在这些计划的支持下,美国的F119、欧洲的 EJ200、法国的M88和俄罗斯的AL-41F 等推重比10 一级发动机陆续问世。 为了提高发动机的可靠性和推力,先进高性能发动机采用了大量新材料,且结构越来越复杂,加工精度要求越来越高,对制造工艺提出了更高的要求。而且,在新一代航空发动机性能的提高中,制造技术与材料的贡献率为 50%~70%,在发动机减重方面,制造技术和材料的贡献率占70%~80%,这也充分表明先进的材料和工艺是航空发动机实现减重、增效、改善性能的关键。 1 航空发动机的材料、结构及工艺特点 在提高发动机可靠性和维护性的同时,为了提高发动机的推力和推重比,航空发动机普遍采用轻量化、整体化结构,如整体叶盘、叶环结构。钛合金、镍基高温合金,以及比强度高、比模量大、抗疲劳性能好的树脂基复合材 先进航空发动机关键制造技术研究 黄维,黄春峰,王永明,陈建民 (中国燃气涡轮研究院,四川 江油 621703) Key manufacturing technology research of advanced aero-engine HUANG Wei ,HUANG Chun-feng ,WANG Yong-ming ,CHEN Jian-min (China Gas Turbine Establishment ,Jiangyou 621703,China ) Abstract :This paper describes the features of aero-engine material ,structure and technology ,and then ,development status and trend of key manufacturing technology for advanced aero-engine was analyzed. Finally ,the development of advanced aero-engine manufacturing technology in China is introduced and some proposals are put forward. Key Words : aero-engine ,manufacturing ,summarization 作者简介: 黄维(1982—),男,四川仁寿人,中国燃气涡轮研究院助理工程师,主要从事工艺技术研究。E-mail :huangwei611@https://www.doczj.com/doc/c811736864.html,

航空发动机复杂零部件的新型测量技术

航空发动机复杂零部件的新型测量技术 发布时间:2014-6-30 13:37:51 近几年来,航空市场发展迅猛,国内的航空发动机制造技术也正加速发展。在技术提升的过程中,航空发动机从研发到制造,对计量和测量的需求都非常迫切。在新型号研制过程中,设计部门希望获得准确的测量数据,用于设计验证;制造部门需要更加高效地完成测量工作,提升合格率并控制制造成本。目前,国内对高精度测量设备的投入和对新型测量技术的采用程度,与国外先进企业的水平还有一定的差距。 航空发动机的零部件种类多、结构复杂,进而带来了复杂的测量任务。以整体叶盘为例,目前测量编程仍然是一个很大挑战,在现有的技术平台上,测量过程既要根据叶盘的整体结构设计测量路线,还要根据叶片型线考虑扫描过程控制。因此,测量设备本身的效率和精度的提升是必然的,同时,在设备的附属工具、测量软件、探测技术等方面寻找新的突破点,提升复杂零部件的测量效率和测量效果,也成为新型测量技术的发展趋势。 全球对航空发动机的性能追求从未停歇,对航空发动机零部件的要求也日益提高。海克斯康最新研发的Leitz三坐标测量机扫描技术、HP-O非接触测量和I++ Simulator模拟软件等,为解决航空发动机复杂零部件的测量难题,提出了新的手段和方法。 基于航空发动机复杂零部件的制造发展和质控需求,本文将介绍海克斯康计量新近推出的典型测量技术,包括高效率精密扫描技术、复合式高效高精密探测技术和提高测量机有效工时的仿真模拟软件技术等。 Leitz高精密高速扫描技术 触发式模拟扫描技术已经成为发动机精密零部件测量的主要探测方式,该技术能高速提供密集点云,实现几何量形状和位置的精密判定,但是,复杂曲面曲线的高密度扫描,需要设备能够实时根据曲率变化给出智能的调整,以期平衡点密度和效率的同时获取最精确的结果。Leitz最新的扫描技术,借助最先进的控制技术,控制系统根据机器特性和工件扫描状态,判断和调整扫描过程。多样的扫描形式和控制形式的实现,使三坐标测量机的扫描能力显著提升,面对复杂专业的测量任务更加得心应手。 1VHSS 扫描技术:可变速扫描 能快则快,当慢则慢。依据曲面曲率,在已知几何特征上实时连续调整测量速度。在此之前的扫描技术,需要人为编程控制机器扫描的速度,速度的设定,需要考虑机器性能、工件特点、效率要求等多种因素,对编程者的挑战是:想达到最佳的效率,要么具备经验,要么从此任务中开始积累经验。VHSS扫描则无关乎具体使用者的经验,机器根据自身的性能特点和待检测曲面的数据,自动优化扫描过程的速度,编程者直接得到最佳的测量效率。 在进行复杂零部件的扫描时,比如航空发动机叶片,传统的扫描方法需要手动调整速度,以避免探针和工件表面“失联”。采用来自Leitz Pathfinder的VHSS技术,机器可以在已知几何量情况下进行持续的调整,实时调整扫描。平直的部位扫描速度快,前尾缘附

(完整版)航空发动机试验测试技术

航空发动机试验测试技术 航空发动机是当代最精密的机械产品之一,由于航空发动机涉及气动、热工、结构与 强度、控制、测试、计算机、制造技术和材料等多种学科,一台发动机内有十几个部件和 系统以及数以万计的零件,其应力、温度、转速、压力、振动、间隙等工作条件远比飞机 其它分系统复杂和苛刻,而且对性能、重量、适用性、可靠性、耐久性和环境特性又有很 高的要求,因此发动机的研制过程是一个设计、制造、试验、修改设计的多次迭代性过程。在有良好技术储备的基础上,研制一种新的发动机尚要做一万小时的整机试验和十万小时 的部件及系统试验,需要庞大而精密的试验设备。试验测试技术是发展先进航空发动机的 关键技术之一,试验测试结果既是验证和修改发动机设计的重要依据,也是评价发动机部 件和整机性能的重要判定条件。因此“航空发动机是试出来的”已成为行业共识。 从航空发动机各组成部分的试验来分类,可分为部件试验和全台发动机的整机试验, 一般也将全台发动机的试验称为试车。部件试验主要有:进气道试验、压气机试验、平面 叶栅试验、燃烧室试验、涡轮试验、加力燃烧室试验、尾喷管试验、附件试验以及零、组 件的强度、振动试验等。整机试验有:整机地面试验、高空模拟试验、环境试验和飞行试 验等。下面详细介绍几种试验。 1进气道试验 研究飞行器进气道性能的风洞试验。一般先进行小缩比尺寸模型的风洞试验,主 要是验证和修改初步设计的进气道静特性。然后还需在较大的风洞上进行l/6或l/5的 缩尺模型试验,以便验证进气道全部设计要求。进气道与发动机是共同工作的,在不同状 态下都要求进气道与发动机的流量匹配和流场匹配,相容性要好。实现相容目前主要依靠 进气道与发动机联合试验。 2,压气机试验 对压气机性能进行的试验。压气机性能试验主要是在不同的转速下,测取压气机特性 参数(空气流量、增压比、效率和喘振点等),以便验证设计、计算是否正确、合理,找出 不足之处,便于修改、完善设计。压气机试验可分为: (1)压气机模型试验:用满足几何相似的缩小或放大的压气机模型件,在压气机试验台上按任务要求进行的试验。 (2)全尺寸压气机试验:用全尺寸的压气机试验件在压气机试验台上测取压气机特性,确定稳定工作边界,研究流动损失及检查压气机调节系统可靠性等所进行的试验。 (3)在发动机上进行的全尺寸压气机试验:在发动机上试验压气机,主要包括部件间的匹配和进行一些特种试验,如侧风试验、叶片应力测量试验和压气机防喘系统试验等。 3,燃烧室试验 在专门的燃烧室试验设备上,模拟发动机燃烧室的进口气流条件(压力、温度、流量) 所进行的各种试验。主要试验内容有:燃烧效率、流体阻力、稳定工作范围、加速性、出 口温度分布、火焰筒壁温与寿命、喷嘴积炭、排气污染、点火范围等。 由于燃烧室中发生的物理化学过程十分复杂,目前还没有一套精确的设计计算方法。因此,燃烧室的研制和发展主要靠大量试验来完成。根据试验目的,在不同试验器上,采 用不同的模拟准则,进行多次反复试验并进行修改调整,以满足设计要求,因此燃烧室试 验对新机研制或改进改型是必不可少的关键性试验。

太行航空发动机总体设计方案

一·本型航空发动机的应用领域 舰载机是以航空母舰或其他军舰为基地的海军飞机。用于攻击空中、水面、水下和地面目标,并遂行预警、侦察、巡逻、护航、布雷、扫雷和垂直登陆等任务。它是海军航空兵的主要作战手段之一,是在海洋战场上夺取和保持制空权、制海权的重要力量。舰载机能适应海洋环境。普通舰载机一般在6级风、4~5级浪的海况下,仍能在航空母舰上起落。舰载机能远在舰炮和战术导弹射程以外进行活动;借助母舰的续航力,可远离本国领土,进入各海洋活动。舰载歼击机多兼有攻击水面、地面目标的能力,舰载强击机(攻击机)多兼有空战能力,以充分发挥有限数量舰载机的最大效能。舰载飞机的起落和飞行条件比陆上飞机恶劣,因此舰载飞机应有良好的起飞性能、较低的着陆速度、良好的低速操纵性。驾驶舱的视野开阔,在母舰和飞机上还装有特殊的导航设备,便于驾驶员对准甲板跑道。为了少占甲板面积和便于在舰上机库存储器放,多数舰载飞机的机翼在停放时可以向上折叠,有的垂尾和机头也可以折转。此外,海水和潮湿的环境容易使飞机机体、发动机和机载设备严重腐蚀,飞机要有较好的防腐蚀措施。

二·航空发动机的性能设计指标 推力:15000daN 单位推力:20daN·s/kg 重量:150kg 推重比:10 耗油率:0.4kg/(h·N) 总压比:36 涡轮前温度:1800K 整机效率:50% 设计寿命:24000h 三·航空发动机的结构形式 3.1压气机 采用传统的小涵道比涡轮风扇发动机。涡轮风扇发动机有内外两

个涵道,它的外涵风扇处于飞机进气道内,可以在跨声速或超声速飞行时工作,较之于螺浆发动机具有效率高的优点。涡扇发动机与涡喷发动机相比,它具有较高的推进效率与较大的推力。而且采用涡轮风扇发动机后,为提高热效率而提高涡轮前温度不会给推进效率带来不利影响。而且外涵道的冷空气可以在涡轮部位形成冷空气薄膜,降低涡轮前高温燃气对涡轮的损害。而且外涵道空气与涡轮后燃气相掺混,有利于增加推力并降低噪音。下面对主要部件进行阐述。 压气机依然选用轴流式压气机。空气在轴流式是压气机中的流动方向大致平行工作轮轴,采用此中压气机的优点是其流动使其在结构上容易组织多级压缩,以没一级都较低的整压压力比获得较高的压气机总增压压力比。每级的增压压力i1.15-1.35之间,使得空气流经每级叶片通道时无需急剧的改变方向,减少流动损失,因而压气机效率高。特别在大流量是,轴流式压气机较其他种类的压气机更容易获得较高的压气机效率,可达90%左右,多级轴流式压气机还具有大流量,高效率,小迎风面的优点。 采用鼓盘式转子,兼顾鼓式转子的抗弯刚性和盘式转子的承受大离心载荷的能力,具体为混合式鼓盘转子,采用这种形式的转

航空发动机结构分析思考题答案

《航空发动机结构分析》 课后思考题答案 第一章概论 1.航空燃气涡轮发动机有哪些基本类型?指出它们的共同点、区别和应用。 答: 2.涡喷、涡扇、军用涡扇分别是在何年代问世的? 答:涡喷二十世纪三十年代(1937年WU;1937年HeS3B); 涡扇 1960~1962 军用涡扇 1966~1967 3.简述涡轮风扇发动机的基本类型。 答:不带加力,带加力,分排,混排,高涵道比,低涵道比。 4.什么是涵道比?涡扇发动机如何按涵道比分类? 答:(一)B/T,外涵与内涵空气流量比; (二)高涵道比涡扇(GE90),低涵道比涡扇(Al-37fn) 5.按前后次序写出带加力的燃气涡轮发动机的主要部件。 答:压气机、燃烧室、涡轮、加力燃烧室、喷管。 6.从发动机结构剖面图上,可以得到哪些结构信息? 答: a)发动机类型 b)轴数 c)压气机级数 d)燃烧室类型 e)支点位置 f)支点类型 第二章典型发动机 1.根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡喷、涡扇、军用涡扇发动机的性能指 标。 答:涡喷表2.1 涡扇表2.3 军用涡扇表2.2 2.al-31f发动机的主要结构特点是什么?在该机上采用了哪些先进技术? 答:AL31-F结构特点:全钛进气机匣,23个导流叶片;钛合金风扇,高压压气机,转子级间电子束焊接;高压压气机三级可调静

子叶片九级环形燕尾榫头的工作叶片;环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴;高压涡轮叶片不带冠,榫头处有减振器,低压涡轮叶片带冠;涡轮冷却系统采用了设置在外涵道中的空气-空气换热器,可使冷却空气降温125-210*c;加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障;收敛-扩张型喷管由亚声速、超声速调节片及蜜蜂片各16式组成;排气方式为内、外涵道混合排气。 3.ALF502发动机是什么类型的发动机?它有哪些有点? 答:ALF502,涡轮风扇。优点: ●单元体设计,易维修 ●长寿命、低成本 ●B/T高耗油率低 ●噪声小,排气中NOx量低于规定 第三章压气机 1.航空燃气涡轮发动机中,两种基本类型压气机的优缺点有哪些? 答:(一)轴流压气机增压比高、效率高单位面积空气质量流量大,迎风阻力小,但是单级压比小,结构复杂; (二)离心式压气机结构简单、工作可靠、稳定工作范围较宽、单级压比高;但是迎风面积大,难于获得更高的总增压比。 2.轴流式压气机转子结构的三种基本类型是什么?指出各种转子结构的优缺点。 答 3.在盘鼓式转子中,恰当半径是什么?在什么情况下是盘加强鼓? 答:(一)某一中间半径处,两者自由变形相等联成一体后相互没有约束,即无力的作用,这个半径称为恰当半径;(二)当轮盘的自由变形大于鼓筒的自由变形;实际变形处于两者自由变形之间,具体的数值视两者受力大小而定,对轮盘来说,变形减少了,周向应力也减小了;至于鼓筒来说,变形增大了,周向应力增大了。 4.对压气机转子结构设计的基本要求是什么? 答:基本要求:在保证尺寸小、重量轻、结构简单、工艺性好的前提下,转子零、组件及其连接处应保证可靠的承受载荷和传力,具有良好的定心和平衡性、足够的刚性。 5.转子级间联结方法有哪些 答:转子间:1>不可拆卸,2>可拆卸,3>部分不可拆部分可拆的混合式。 6.转子结构的传扭方法有几种?答: a)不可拆卸:例,wp7靠径向销钉和配合摩擦力传递扭矩; b)可拆卸:例,D30ky端面圆弧齿传扭; c)混合式:al31f占全了;cfm56精制短螺栓。 7.如何区分盘鼓式转子和加强的盘式转子? 答:P40 图3.6 _c\d 8.工作叶片主要由哪两部分组成 答:叶身、榫头(有些有凸台) 9.风扇叶片叶身凸台的作用是什么? 答:减振凸台,通过摩擦减少振动,避免发生危险的共振或颤振。 10.叶片的榫头有哪几种基本形式?压气机常用哪一种?答: a)销钉式榫头; b)枞树型榫头;

航空发动机整机的性能方案设计

航空发动机整机的性能方案设计 对于一款民用航空发动机来说,最重要的是什么?安全!省油!安!全!省!油!重要的话说三遍!正如有国外专家说的那样:民用发动机必须足够安全、足够省油,否则就是白给航空公司,人家也不要。 “丈母娘择婿指南” 那么大家说了,你就造个最安全、最省油的,很难吗?我们先不涉及制造、装配,仅谈一谈整机的性能设计问题。一款民用航空发动机要想和心目中的飞机搭伙过日子,就得首先被航空公司挑中。与中国大妈挑女婿的标准类似,能被选中的发动机也要满足以下几点要求:力气大(高推力)、吃得少(省油)、不要动不动就撂挑子(安全性高),最好全年无休(可靠性高),有病不去医院吃个药片就能好(维修成本低),同时还要足够沉稳内敛(低噪声)、讲究卫生(污染物排放少)。下面,就让我们一起走近民用航空发动机,看看它是怎样从整机性能上勤修内功征服丈母娘的吧。

事情是这样的,在我们周围的空气里面,住着无数调皮的空气分子。根据脾气秉性的不同,又分为氮气分子、氧气分子、水分子等各种类型。这些分子就像被一杆子打散的桌球,时时刻刻处于不停的运动和相互碰撞中。当它们前进的方向上有东西挡路时,就狠狠地撞上去。遇上其它空气分子还好,大不了大家都改个方向继续往前跑。若遇到列队迎敌的固体分子们,那就是一个被立刻反射回来的下场。当然,此时铜墙铁壁的固体分子也被狠狠地撞了一下腰。 分子们个体太小,碰撞一下的力量当然也是不值一提的。但架不住数量太多,每时每刻都有数以亿亿亿计的分子撞上来。所以宏观来看,空气中的任何物体都会持续受到一个压力的作用,即气压P。“咦?我就算初中毕业也知道这个P 应该叫压强吧?!”没错,说起这个名称,那还真有个原因:发动机内部各个部件的表面积和各流道截面的面积一般是固定不变的,如果每次计算压力都用压强乘以面积那也太傻了,所以直接扔掉面积不管,压力就是压强了! 显然,这个压力的大小与单位时间内撞上来的分子个数成正比。同样数量的空气分子被塞到大小不同的箱子中,它们对箱壁的压力也会不同。箱子越大,分子们越稀疏,撞到同一块地方的分子就越少,压力也就越小。具体说来就是,压力P

航空发动机总资料

第一章概论 航空发动机可以分为活塞式发动机(小型发动机、直升飞机)和空气喷气发动机两大类型。P3 空气喷气发动机中又可分为带压气机的燃气涡轮发动机和不带压气机的冲压喷气发动机(构造简单,推力大,适合高速飞行。不能在静止状态及低速性能不好,适用于靶弹和巡航导弹)。涡轮发动机包括:涡轮喷气发动机WP,涡轮螺旋桨发动机WJ,涡轮风扇发动机WS,涡轮轴发动机WZ,涡轮桨扇发动机JS。在航空器上应用还有火箭发动机(燃料消耗率大,早期超声速实验飞机上用过,也曾在某些飞机上用作短时间的加速器)、脉冲喷气发动机(用于低速靶机和航模飞机)和航空电动机(适用于高空长航时的轻型飞机)。P4 燃气涡轮发动机是由进气装置、压气机、燃烧室、涡轮和尾喷管等主要部件组成。 由压气机、燃烧室和驱动压气机的涡轮这三个部件组成的燃气发生器,它不断输出具有一定可用能量的燃气。涡桨发动机的螺桨、涡扇发动机的风扇和涡轴发动机的旋翼,它们的驱动力都来自燃气发生器。按燃气发生器出口燃气可用能量的利用方式不同,对燃气涡轮发动机进行分类:将燃气发生器获得的机械能全部自己用就是涡轮喷气发动机;将燃气发生器获得的机械能85%~90%用来带动螺旋桨,就是涡桨发动机;将获得的机械能的90%以上转换为轴功率输出,就是涡轮轴发动机;将小于50%的机械能输出带动风扇,就是小涵道比涡扇发动机(涵道比1:1);将大于80%的机械能输出带动风扇,就是大涵道比涡轮风扇发动机(涵道比大于4:1)。P5 航空燃气涡轮发动机的主要性能参数:1.推力,我国用国际单位制N或dan,1daN=10N,美国和欧洲采用英制磅(Pd),1Pd=0.4536Kg,俄罗斯/苏联采用工程制用Kg,1Kg=9.8N;2.推重比(功重比),推重比是推力重量比的简称,即发动机在海平面静止条件下最大推力与发动机重力之比,是无量纲单位。对活塞式发动机、涡桨发动机和涡轴发动机则用功重比(功率重量比的简称)表示,即发动机在海平面静止状态下的功率与发动机重力之比,KW/daN;3.耗油率,对于产生推力、的喷气发动机,表示1daN推力每小时所消耗的燃油量单位Kg/(daN·h),对于活塞式发动机、涡桨发动机和涡轴发动机来说,它表示1KW功率每小时所消耗的燃油量单位Kg/(kw·h);4.增压比,压气机出口总压与进口总压之比,飞速较高增压比较低,低耗油率增压比较高;5.涡轮前燃气温度,是第一级涡轮导向器进口截面处燃气的总温,也有发动机用涡轮转子进口截面处总温表示,发动机技术水平高低的重要标志之一;6.涵道比,是涡扇发动机外涵道和内涵道的空气质量流量之比,又称流量比。涵道比小于1为小涵道比,大于4为大涵道比,大于1小于4为中涵道比,加力式涡扇发动机涵道比一般小于1,甚至0.2~0.3。P8~9 喷气时代(主流),服役战斗机发动机推重比从2提高到7~9,定型投入使用的达9~11,我国到8。民用大涵道比涡扇发动机的最大推力已超过50000daN 巡航耗油率从20世纪50年代涡喷发动机 1.0kg(daN·h)-1下降到0.55kg(daN·h)-1,噪声下降20dB,NO X下降45%。服役的直升飞机用涡轴发动机的功重比从2Kg/daN提高到4.6kW/daN~7.1kw/daN。发动机可靠性和耐久性倍增,军用发动机空中停车率一般为0.2/1000EFH~0.4/1000EFH(发动机飞行小时),民用发动机为0.002/1000EFH~0.02/1000EFH。战斗机发动机热端零件寿命达

航空发动机知识大全

航空发动机知识大全 飞行器发动机的主要功用是为飞行器提供推进动力或支持力,是飞行器的心脏。自从飞机问世以来的几十年中,发动机得到了迅速的发展,从早期的低速飞机上使用的活塞式发动机,到可以推动飞机以超音速飞行的喷气式发动机,还有运载火箭上可以在外太空工作的火箭发动机等,时至今日,飞行器发动机已经形成了一个种类繁多,用途各不相同的大家族。 飞行器发动机常见的分类原则有两种:按空气是否参加发动机工作和发动机产生推进动力的原理。按发动机是否须空气参加工作,飞行器发动机可分为两类,大约如下所示: 吸空气发动机简称吸气式发动机,它必须吸进空气作为燃料的氧化剂(助燃剂),所以不能到稠密大气层之外的空间工作,只能作为航空器的发动机。一般所说的航空发动机即指这类发动机。如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。 火箭喷气式发动机是一种不依赖空气工作的发动机,航天器由于需要飞到大气层外,所以必须安装这种发动机。它也可用作航空器的助推动力。按形成喷气流动能的能源不同,火箭发动机又分为化学火箭发动机、电火箭发动机和核火箭发动机等。 按产生推进动力的原理不同,飞行器的发动机又可分为直接反作用力发动机、间接反作用力发动机两类。直接反作用力发动机是利用向后喷射高速气流,产生向前的反作用力来推进飞行器。直接反作用力发动机又叫喷气式发动机,这类发动机有涡轮喷气发动机、冲压喷气式发动机,脉动喷气式发动机,火箭喷气式发动机等。 间接反作用力发动机是由发动机带动飞机的螺旋桨、直升机的旋翼旋转对空气作功,使空气加速向后(向下)流动时,空气对螺旋桨(旋翼)产生反作用力来推进飞行器。这类发动机有活塞式发动机、涡轮螺旋桨发动机、涡轮轴发动机、涡轮螺旋桨风扇发动机等。而涡轮风扇发动机则既有直接反作用力,也有间接反作用力,但常将其划归直接反作用力发动机一类,所以也称其为涡轮风扇喷气发动机。

航空发动机设计的总体强度

航空发动机设计的总体强度 众所周知,航空发动机是一种高温、高压、高转速的精密机械,那强度,必须刚刚的!!上一期的总体结构想必大家还念念不忘,本期借着结构的东风讲讲发动机的总体强度。 第一个问题,强度专业是干啥滴?通俗地讲,“大发”作为一个干得多吃得少的新时代好青年,没有一个强健的身体可不行呢,这个强健,既体现在普通意义的强度上面(抗拉抗弯还要抗扭),还体现在抗疲劳能力(怎么折腾都不坏)和抗打击能力(无知的小鸟呼啦啦地撞上来)等方方面面,总的来说,生活在 航空发动机这样一个地狱般的工作环境里,没有一副打不坏、耐力好、贼扛揍 的好身板是不行的。为了确保发动机方方面面的零组件都能符合这样变态的标准,我们的强度攻城狮们可谓是殚精竭虑。 今天,我们首先为大家介绍的是总体强度专业。 在国内,很少有总体强度这样一个概念,那总体强度是干什么的呢?其主要有三个方面:用洋文来说分别为Load, WEM and Rotor Dynamics。发动机行业内有句名言,载荷先行活看结构,这个载荷呢就是这里的Load;WEM作为一个 洋小伙,其全称为Whole Engine Model,凡是和整机模型相关的各种任务都 找他;最后一位就是本期的主角,RotorDynamics,转子动力学。 下面客官请听我娓娓道来。 1转子动力学的前生后世 为满足航空器日益增长的舒适性、经济性、高效率等要求,现代民用航空发动机被设计为带涡轮和压气机的旋转机械。为保障不同涡轮和压气机的工作性能,发动机主要采用双轴和三轴的结构布局,而转速往往达到每分钟几千(低压部件)或几万转(高压部件)。在这种严酷的工作条件下,发动机转子动力学设计就显得尤为重要了。 发动机转子动力学设计的优劣,直接影响着发动机整机振动的好坏与否。 如果将航空发动机拟化为一个人,涡轮、压气机、燃烧室等部件结构代表 着发动机的骨骼与肌肉,燃油和空气代表着食物与血液,性能等代表着物理特

CFM56-7B飞机发动机部件位置及功能

第70-80章: 发动机系统 名称 反推控制手柄 启动电门 发动机启动电门, 发动机点火选择电门 发动机附件装置(EAU)位置 中央操作台、推力手柄上 驾驶舱P5面板上 驾驶舱P5前顶板 在电气设备(EE)舱内 E3架上 主电子舱E3架上功能 提供反推的放出和收回的信号向发动机启动系统提供启动信号的输入…….. 启动电门选择启动模式,点火选择电门选择点火模式控制反推装置(T/R)自动再收入操作,帮助做反推装置控制系统的故障分析,控制驾驶舱内P5后舱顶板上的反推灯计算机存储每台发动机的振动值,提供帮助?发动机配平平衡操作的振动平衡? 发动机主要的控制器,控制和监控容纳发动机滑油,从回油中清除空气,使你做滑油而检查和充加滑油系统冷却IDG滑油,同时加温发动机燃油供给发动机伺服系统和燃油系统的燃油

增压燃油 启动活门打开提供气压动力至起动机测量流至燃油总管和燃油喷嘴的燃油质量流量 提供一号轴承振动信号 AVM信号处理器 发动机电子控制组件(EEC) 滑油箱 IDG滑油冷却器 燃油滤压差电门 液压机械组件(HMU) 燃油泵 启动活门 燃油喷嘴油滤 燃油流量传感器 1号轴承振动传感器位置: 在风扇机匣 风扇机匣2:00钟位置 风扇机匣3:00位置 风扇机匣7:00位置 风扇机匣8:00钟位置 风扇机匣8:00钟位置

AGB的后面,在发动机风扇 机匣左侧08:00钟位置 风扇机匣上(9:00)高于起动机风扇机匣10:00钟位置 风扇机匣10:00钟位置 在发动机内部,接头在风扇机 匣上,发动机滑油箱后部,发 哦的那个叫铭牌的上面 风扇机匣的右侧下部 风扇框架上3:00钟位置 风扇框架6:00钟位置 点火激励器 风扇框架压气机机匣垂直振 动传感器(FFCCV) 防漏活门 VBV作动筒 VBV门 LPTCC活门提供高能电压到点火电嘴提供风扇框架压气机机匣垂直面的振动值 风扇框架后面在4: 00、"8:00钟VBV作动筒接受指令作动,带动摇臂作动VBV门,打开到指令位置风扇框架上一圈,12个

航空发动机制造技术专业简介

航空发动机制造技术专业简介 专业代码560603 专业名称航空发动机制造技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握航空发动机制造技术、精密加工、特种加工和航空发动机工艺装备等基本知识,具备精密加工、超精加工、特种加工工艺参数选择和航空零部件工艺装备制造的能力,以及数控加工工艺规程的编制和数控加工程序的编制的能力,从事数控机床操作、数控电加工机床操作、数控编程、机械加工工艺等工作的高素质技术技能人才。 就业面向 主要面向航空发动机研发、制造企业,在数控机床操作、数控电加工机床操作、机械加工工艺等岗位群,从事工艺装备的制造、精密机床和特种加工设备的操作(包括电火花成型机床、线切割机床、电化学加工机床、激光加工机床和快速成型机床)等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备航空零件识图能力和计算机绘图能力; 3.具备材料选用与热处理方法选择能力; 4.具备数控编程和操作数控机床加工航空零部件的能力; 5.具备对航空发动机零部件进行测绘的能力,具备 CAD/CAM 软件应用能力; 6.具备精密加工、超精加工、特种加工工艺参数选择能力; 7.具备操作数控电加工机床加工机械零件的能力。

核心课程与实习实训 1.核心课程 包括机械制造工艺与机床夹具、金属切削与机床、数控特种加工概述、数控电火花加工、数控电火花线切割加工、先进制造技术、航空发动机制造新技术等。 2.实习实训 在校内进行数控机床操作、数控电加工机床、UG 制图员培训、数控手工编程等实训。在航空发动机研发、制造企业进行实习。 职业资格证书举例 机修钳工制图员数控设备装调维修工数控线切割操作工数控电加工机床操作工 衔接中职专业举例 飞机维修机械加工技术 接续本科专业举例 无

航空发动机先进材料高性能零部件制造技术进展

过去10多年中,IHPTET 等研究计划将低涵道比涡扇发动机的推重比逐步提高了60%以上,达到了10:1,而ADVENT 计划还在进一步实现变循环发动机技术的跨越;商用大推力大涵道比航空发动机也在控制油耗、改进效率、降低噪声、提高安全可靠性、削减研制生产成本等多个方面取得了重要进步。主要的航空发动机制造商——通用电气(GE)、罗尔斯·罗伊斯、普惠和赛峰等所取得的这些重大成就都与其在航空发动机先进加工制造技术中的不断进步密不可分。GE9X、GEnx、LEAP、Trent 1000 及PW8000 等新型航空发动机的试验研究和研制经历都表明,具有很高机械物理性能的新材料零部件的可加工性、可生产性的改善及其工程化应用,是航空发动机从机体结构减重和涡轮工作温度增高两方面提升性能,改进效率,取得持续进步的重要推动力。 新型复合材料风扇的加工制造技术 1 碳纤维增强环氧树脂复合材料风扇 大涵道比涡扇发动机的碳纤维增强环氧树脂复合材料(CFRP) 风扇叶片加工制造技术已经日益成熟。如图1 所示,GE90 系列的大型CFRP 风扇叶片约有1.2m 长,经过超声切割技术精确加工的数百层碳纤维预浸料布,进行铺设后进行热压制成。风扇叶形经过先进的计算机三元流优化设计,榫头到叶尖的厚度逐步从10cm 降低到0.6cm,并采用钛合金(后改为合金钢提高强度)包边增强的方式,重量也仅有22.7kg。此类经过气动优化、大尺寸、少叶数的风扇已经显示了突出优势,GE90-115B的风扇叶片有22 个,GEnx降低到18 个,而GE9X 又降低到了16 个,既扩大了涵道比、增大了空气流量,又减少了风扇系统的重量。由于通过外涵道排出空气所形成的推力占据了商用发动机总推力的70%~90%,因此,增大空气流量、减少风扇系统的重量,会带来更好的燃油效率。例如,GE公司指出GE90-115B 仅此就提高了约1.5% 的燃油效率[1]。CFM 公司LEAP 发动机的直径约3m,共用了18 个总重量为76kg 的CFRP 叶片,相比之下,CFM56 则有36 个总重高达150kg的钛合金叶片。新的碳纤维三维编织/ 树脂传递模塑成形(RTM)制造工艺可以进一步提高风扇叶片的强度,因此,新一代GEnx及LEAP 发动机上都将采用这一技术制造风扇叶片。斯奈克玛公司为LEAP 发动机CFRP 风扇叶片开发的碳纤维三维编织/RTM 制造工艺中,长度以千米计的碳纤维进行三维编织后经超声加工方法制成预制体,再在专门开发的RTM 模具中注射树脂并进行热压固化制成叶片(图2)。叶片的成型过程需要24h,然后再进行钛合金包边并完成LEAP 发动机风扇叶片的最终加工[2]。不过,普惠等公司开展的一些试验也表明,为保证零件强度——例如防鸟撞,CFRP 材料风扇叶片要做的比传统钛合金叶片相对厚一些,这会降低发动机的气动性能。因此,在直径较小的发动机上采用超塑成形/ 扩散连接(SFP/DB)工艺制成风扇叶片的优势仍然存在。这样,风扇叶片可以做的较薄、强度够、气动性能也好。CFM 也在进一步将碳纤维增强环氧树脂复合材料(CFRP)制作的风扇机匣在LEAP 发动机上进行测试。 2 金属基/ 陶瓷基复合材料风扇 金属基/ 陶瓷基复合材料(MMC/CMC)风扇的研发也一直在深入开展。MMC/CMC 材料比CFRP 具有更好的强度、刚度以及高温性能,因此,在发动机上多种类型的零件都有较好的应用前景。GE 公司在GE9X 的技术验证评估中认定,CMC 材料轻质高强的特点使得他们能够在与现有GE90 的CFRP 风扇叶片相同强度的情况下,可以做得更薄,并减少到16 个风扇叶片,这有望将发动机效率提高10%。罗尔斯·罗伊斯公司也在一个名为UltraFanTM的项目中对新型C/Ti 复合材料叶片进行验证,计划在未来一代大型发动机上替换SPF/DB 钛合金风扇叶片。他们预期,如果未来将风扇及机匣都替换为此类C/Ti 复合材料,将有望使发动机减重700kg。

(整理)西北工业大学航空发动机结构分析课后答案第2章典型发动机

第二章典型发动机 1、根据总增压比、推重比、涡轮前燃气温度、耗油率、涵道比等重要性能指标,指出各代涡轮喷气、涡轮风扇、军用涡扇发动机的性能特征。 涡轮喷气发动机、涡轮风扇发动机、军用涡扇发动机对比如下,以典型的三代发动机的性能指标加以对比,如下表所示: 通过分析比较,涡喷发动机随着技术的更新,新一代的发动机比上一代的发动机拥有高的增压比,推重比,涡轮燃气温度也有较大幅度的提高,特别是第三代发动机,整体性能有了大幅度的提升。 民用涡扇发动机的涵道比进一步增大,涡轮燃气温度也进一步升高,在不影响整体性能的情况下,采用了一系列措施降低了耗油率。

军用涡轮风扇发动机每一代的性能提高十分迅速,增压比,推重比,涡轮前燃气温度都有大幅度提高,而涵道比降低,耗油率也有较明显的下降。对于军用发动机来说,推重比的大幅提高提高了战机的机动性能,耗油率降低也相应的增大了载弹量,这些性能的提高均有利于空中作战. 2、АЛ—31Ф发动机的主要特点是什么?在该机上采用了哪些先进技术? 主要特点: АЛ—31Ф发动机是苏—27的动力装置,其主要部件有低压压气机、中介机匣、高压压气机、环形燃烧室、双转子涡轮、射流式加力燃烧室、全状态可调拉瓦尔喷管和附件传动机匣等。其中压气机有13级,低压压气机4级,高压压气机9级;涡轮为双转子流反应式,高、低压涡轮各1级。高压转子为刚性连接,支承在两个支点上;打压转子由部分组成,各个部分之间用销钉连接,支撑在4个支点上。 先进技术: 进气匣为全钛结构,有23个可变弯度的进口导流叶片; 风扇和高压压气机才、广泛采用钛合金结构,转子的级间采用了电子束焊; 高压压气机有三级可调静子叶片,所有9级工作叶片均为环形燕尾形榫头; 环形燃烧室有28个双路离心式喷嘴,两个点火器,采用半导体电嘴; 高压压气机不带冠,榫头处带有减震器,低压涡轮叶片带冠; 涡轮冷却系统采用了设置在外涵道中的空气—空气换热器,可使冷却空气降温125~210℃,加强了冷却效果; 加力燃烧室采用射流式点火方式,单晶体的涡轮工作叶片为此提供了强度保障; 收敛—扩张喷管有亚音速、超音速调节片及密封片各16片组成; 排气方式为内、外涵道混合排气; 燃油控制系统为监控型电子控制,模拟式电子控制装置—综合调节器提供超限保护,提高了控制精度;发动机全流程几何通道控制系统和防喘系统使发动机稳定工作范围扩大,工作可靠性提高; 附件传动装置中游恒速传动装置。 3、ALF502发动机是什么类型的发动机?它有哪些优点? ALF502发动机是为商用短程及支线客机发展的小推力级别高涵道比双子涡轮风扇发动机。 优点: 该发动机采用单元体设计,整台发动机由4个单元体组成,每个单元体在出厂前都经过平衡,可以直

先进航空发动机关键制造技术发展现状与趋势

先进航空发动机关键制造技术发展现状与趋势 一、轻量化、整体化新型冷却结构件制造技术1 整体叶盘制造技术整体叶盘是新一代航空发动机实现结构创新与 技术跨越的关键部件,通过将传统结构的叶片和轮盘设计成整体结构,省去传统连接方式采用的榫头、榫槽和锁紧装置,结构重量减轻、零件数减少,避免了榫头的气流损失,使发动机整体结构大为简化,推重比和可靠性明显提高。在第四代战斗机的动力装置推重比10 发动机F119 和EJ200上,风扇、压气机和涡轮采用整体叶盘结构,使发动机重量减轻20%~30%,效率提高5%~10%,零件数量减少50% 以上。目前,整体叶盘的制造方法主要有:电子束焊接法;扩散连接法;线性摩擦焊接法;五坐标数控铣削加工或电解加工法;锻接法;热等静压法等。在未来推重比15~20 的高性能发动机上,如欧洲未来推重比15~20 的发动机和美国的IHPTET 计划中的推重比20的发动机,将采用效果更好的SiC 陶瓷基复合材料或抗氧化的C/C 复合材料制造整体涡轮叶盘。2 整体叶环(无盘转子)制造技术如果将整体叶盘中的轮盘部分去掉,就成为整体叶环,零件的重量将进一步降低。在推重比15~20 高性能发动机上的压气机拟采用整体叶环,由于采用密度较小的复合材料制造,叶片减轻,可以直接固定在承力环上,从而取消了轮盘,使结构质量减轻70%。目前正

在研制的整体叶环是用连续单根碳化硅长纤维增强的钛基复合材料制造的。推重比15~20 高性能发动机,如美国XTX16/1A 变循环发动机的核心机第3、4 级压气机为整体叶环转子结构。该整体叶环转子及其间的隔环采用TiMC 金属基复合材料制造。英、法、德研制了TiMMC 叶环,用于改进EJ200的3级风扇、高压压气机和涡轮。3 大小叶片转子制造技术大小叶片转子技术是整体叶盘的特例,即在整体叶盘全弦长叶片通道后部中间增加一组分流小叶片,此分流小叶片具有大大提高轴流压气机叶片级增压比和减少气流引起的振动等特点,是使轴流压气机级增压比达到3 或3 以上的有发展潜力的技术。4 发动机机匣制造技术在新一代航空发动机上有很多机匣,如进气道机匣、外涵机匣、风扇机匣、压气机机匣、燃烧室机匣、涡轮机匣等,由于各机匣在发动机上的部位不同,其工作温度差别很大,各机匣的选材也不同,分别为树脂基复合材料、铁合金、高温合金。树脂基复合材料已广泛用于高性能发动机的低温部件,如F119 发动机的进气道机匣、外涵道筒体、中介机匣。至今成功应用的树脂基复合材料有PMR-15(热固性聚酰亚胺)及其发展型、Avimid(热固性聚酰亚胺)AFR700 等,最高耐热温度为290℃~371℃,2020 年前的目标是研制出在425℃温度下仍具有热稳定性的新型树脂基复合材料。树脂基复合材料构件的制造技术是集自动铺带技术(ATL)、自动纤维铺放

航空发动机构造

航空发动机构造 课堂测试-1 1.航空发动机的研究和发展工作具有那些特点? 技术难度大;周期长;费用高 2.简述航空燃气涡轮发动机的作用。 是现代飞机与直升机的主要动力(少数轻型、小型飞机和直升机采用航空活塞式发动机),为飞机提供推进力,为直升机提供转动旋翼的功率。 3.航空燃气涡轮发动机包括哪几类?民航发动机主要采用哪种? 涡喷、涡桨、涡扇、涡轴、桨扇、齿扇等;涡扇。 4.高涵道比民用涡扇发动机的涵道比范围是多少? 5-12 课堂测试-2 1.发动机吊舱包括(进气道)、(整流罩)和(尾喷管)等。 2.对于民用飞机来说,动力装置的安装位置应该考虑到以下几点: 不影响进气道的效率;排气远离机身;容易接近,便于维护 3.在现代民用飞机上,发动机在飞机上的安装布局常见的有(翼下安装)、(翼下吊装和垂直尾翼安装)和(机身尾部安装)。 4.发动机安装节分两种:(主安装节)与(辅助安装节)。前者传递轴向力、径向力、扭矩,后者传递径向力、扭矩。一般主安装节装于(温度较低,靠近转子止推轴承处的压气机或风扇机匣上)上,辅助安装节装于(涡轮或喷管的外壳上)上。 5.涡轮喷气发动机的进气道可分为(亚音速)进气道和(超音速)进气道两大类。我国民航主要使用亚音速飞机,其发动机的进气道大多采用(亚音速)进气道。 6.通常在涡轮喷气和涡轮风扇发动机上采用(热空气)防冰的方式,在涡轮螺旋桨发动机上采用(电加热)防冰,或是两种结合的方式。 7.对于涡轮螺旋桨发动机来说,需要防冰的部位有(进气道)、(桨叶)和(进气锥)。 8.为了对吊舱进行通风冷却,一般把吊舱分成不同区域,各区之间靠(防火墙)隔开,以阻挡火焰的传播。9.发动机防火系统包括(火情探测)、(火情警告)和(灭火)三部分。 课堂测试-3 1.现代涡轮喷气发动机由(进气道)、(压气机)、(燃烧室)、(涡轮)、(尾喷管)五大部件和附件传动装置 与附属系统所组成。 2.发动机工作时,在所有的零部件上都作用着各种负荷。根据这些负荷的性质可以分为(气动)、(质量) 和(温度)三种。 3.航空燃气涡轮发动机主轴承均采用(滚动)轴承,其中(滚棒轴承)仅承受径向载荷,(滚珠轴承)可承 受径向载荷与轴向载荷。 4.转子上的止推支点除承受转子的(轴向)负荷、(径向)负荷外,还决定了转子相对于机匣的(轴向)位 置。因此每个转子有(一)个止推支点,一般置于温度较(低)的地方。 5.压气机转子轴和涡轮转子轴由(联轴器)连接形成发动机转子,分为(柔性联轴器)和(刚性联轴器)。 其中(柔性联轴器)允许涡轮转子相对压气机转子轴线有一定的偏斜角。 6.结合图3.9,简述发动机的减荷措施有哪些?这些措施是否会减少发动机推力? 减荷措施:

相关主题
文本预览
相关文档 最新文档