当前位置:文档之家› 简谐运动的几个问题

简谐运动的几个问题

简谐运动的几个问题
简谐运动的几个问题

学 科 物理 版 本 人教版 期 数 7807 年 级 高二

编稿老师

马慧

审稿教师

【同步教育信息】

一. 本周教学内容:

有关简谐运动的几个问题(一)

(一)学习简谐运动重点应掌握的几个概念:

对简谐运动的学习,重点应搞清以下几个概念:

1. 平衡位置:指物体做简谐运动的中心位置,亦是物体不振时,相对静止的位置,如: 图1弹簧振子的装置中,振子不振时,应处在1O 点,从1O 点拉开后释放,振子将以1O 图2球将以2O

图3球将以3O 图4

T 方向(切线方向)和垂直摆动方向(法线方向)分解为两个分力切G 和法G ,切G 即为回复力回F ,而法G F T -恰为摆球的向心力心F ,而摆球的合外力应为回F 和心F 的合力。 振子在平衡位置时,回复力一定为零,但合外力不一定为零。如图5中,当摆球摆至平衡位置时,受两个力作用:重力G 和绳的拉力T F ',切线方向上不受力,即0=回F ,而法线方向上:R

mv F G F T 2

=

=-'心。

图5

4. 简谐运动:指物体在与偏离平衡位置的位移大小成正比并且总指向平衡位置的回复力作用下的振动。

要证明一个振动是简谐运动,需证明两点: (1)回复力与位移大小成正比; (2)回复力与位移方向相反。

(二)对简谐振动回复力的理解 1. 给回复力完整的定义

回复力是指振动物体所受的总是指向平衡位置的合外力。从此定义中让学生认识到: (1)回复力是合外力,不单纯是指某一个力。它是根据力的作用效果命名的,类似于向心力。

(2)回复力的方向是“指向平衡位置”。做简谐振动的单摆,受重力和绳的拉力作用,绳的拉力和重力的法向分力的合力提供圆周运动的向心力;指向平衡位置的合外力是重力

的切向分力,它提供了单摆振动的回复力。 2. 加强对回复力公式的理解和应用 简谐振动的回复力公式为kx F -=。

(1)式中“-”号表示回复力的方向与物体对平衡位置的位移方向相反,亦即指向平衡位置。计算时为避免发生错误,将“-”号省去,直接判断回复力的方向。

(2)式中k 是指回复力与位移成正比的比例系数,不能与弹簧的劲度系数相混淆。单摆的振动中αsin mg F =,若

5<α,有l

x =

αsi n ,则l

x mg

F =,即l

mg k =

。一般而

言,弹簧振子的振动中k 表示弹簧的劲度系数,但也不能一概而论。

[例1] 一个竖直弹簧连着一个质量为M 的薄板,板上放一木块,木块质量为m 。现使整个装置在竖直方向做简谐振动,振幅为A 。若要求在整个过程中小木块m 都不脱离木板,则弹簧的劲度系数k 应不小于多少?

分析:m 随M 一起做简谐振动,以m 为研究对象,提供其做简谐振动的回复力是m 的重力和M 对m 的支持力的合力。当支持力为零时,m 获得向下的最大回复力mg ,即获得向下的最大加速度g 。

若以整体为研究对象,根据牛顿第二定律g m M a m M F )()(+=+= 根据回复力公式kA F =,以上两式相等得A

g

m M k )(+=

,若以m 为研究对象,由牛顿第二定律mg ma F ==,由回复力公式kA F =,则A

mg

k =

后一种答案是错误的。问题出在哪里?以m 为研究对象时,其回复力公式中的比例系数k 不再是弹簧的劲度系数。

我们不妨推导一下,由牛顿第二定律ma F =,从整体出发有m

M kx a +=

代入上式得

m

M kx m

F +=,即此时的比例系数应为m

M k m

+

同理,若以M 为研究对象,不难得出其回复力公式中的比例系数为m

M Mk +。

所以,我们要充分认识回复力公式中k 值的意义。

(3)式中x 是指振子对平衡位置的位移,不是弹簧的伸长量或压缩量。因而即使是对弹簧振子也不能把kx 理解为弹簧的弹力。

[例2] 一倔强系数为k 的轻弹簧,上端固定,下端吊一质量为m 的物体,让其上下做简谐振动,振幅为A ,当物体运动到最高点时,其回复力大小为( )

A. kA mg +

B. kA mg -

C. mg kA -

D. kA 如果弹簧振子是在水平方向做简谐振动,所有同学会很快选择答案D ,但遇到竖直方向的弹簧振子,大部分同学认为必须要考虑竖直方向的重力,因而会把D 答案排除。问题的关键是学生错把kA 当作弹力,而再去求它和重力的合力。

(三)巧用简谐振动的特征解题

做简谐振动的物体,在运动中有许多重要的特征:周期性、双向性、对称性和守恒性。深刻理解并灵活运用这些重要特征,可巧解简谐振动问题。 1. 周期性

[例1] 一弹簧振子做简谐振动,周期为T 。下列说法正确的是( )

A. 若t 时刻和)(t t ?-时刻振子运动位移的大小相等、方向相同,则t ?一定等于T 的

B. 若t 时刻和)(t t ?-时刻运动速度的大小相等、方向相反,则t ?一定等于2

T 的整数

倍;

C. 若T t =?,则在t 时刻和)(t t ?+时刻振子运动的加速度一定相等;

D. 若2

T t =

?,则在t 时刻和)(t t ?+时刻弹簧的长度一定相等。

解析:画出振动的位移时间图象如图1所示,两虚线与图象的交点处对应的时间的位移大小都相等。设1t 、2t 的时间间隔为t ?,则1t 、2t 时刻的位移大小相等、方向相同,但

1t 、2t 的时间间隔t ?不等于T 的整数倍,所以A 不正确。同理,1t 、2t 时刻振子运动速度

的大小相等、方向相反,但t ?小于

2

T ,也不等于

2

T 的整数倍,所以B 不正确。若T t =?,

如图中的1t 、3t 两个时刻,根据简谐运动的周期性、重复性可判断C 正确。而2

T t =

?,即

相差半个周期,弹簧在这两个时刻可能分别处于伸长状态和压缩状态,故弹簧的长度一定相等是错误的,所以D 不正确。

图1

2. 双向性

做简谐振动的物体,以平衡位置为中心来回往复运动,具有双向性的特点。忽视这一特点往往容易造成漏解。

[例2] 一个质点在平衡位置O 点附近做简谐运动,若从O 点开始计时,经过s 3质点第一次经过M 点,再继续运动,又经过s 2它第二次经过M 点,则该质点第三次经过M 点还需的时间是( )

A. s 8

B. s 4

C. s 14

D.

s 310

解析:画出质点振动过程的示意图如图2,设图中a 、b 两点为质点振动过程的最大位移处。若开始计时时刻质点从O 点向右运动,M O →运动过程历时s 3,M b M →→过程历时s 2,则由对称性可知b M →历时s 1,显然

s T 44

=,故s T 16=,质点第三次经过

M 点还需时间s s T t 1423=-=?。故选项C 正确。

图2

若开始时质点从O 点向左运动,M O a O →→→运动过程历时s 3,M b M →→过程历时s 2,显然有

s T T 44

2=+,s T 3

16=

,质点第三次经过M 点还需要时间

s s T t 3

1023=

-=?。故选项D 正确。

做简谐振动的物体,在通过以平衡位置为中心两侧相对称的某两点时,质点的回复力、位移、加速度大小相等,方向相反;速率、动能、机械能相等。

[例3] 如图3所示,质量为m 和M 的两木块由轻弹簧相连接,置于水平桌面上,试分析:在m 上加多大压力F ,才能在F 撤去后,上板弹起时刚好使下板对桌面的压力为零?

图3

解析:撤去外力F 后,m 将在回复力的作用下做简谐振动,依题意当m 运动到最上端时,下板对桌面恰好无压力,故此时回复力为g M m )(+,由对称性可知,当m 在最下端时,回复力大小也为g M m )(+,故所施外力大小为g M m )(+。

4. 守恒性

[例4] 如图4所示,在光滑的水平面上有一弹簧振子,弹簧的劲度系数为k ,振子的质量为M ,振子最大速度为0v ,当振子运动到最大位移A 的时刻,把质量为m 的物体轻放其上,则( )

(1)要保持物体和振子一起运动,二者间的动摩擦因数至少多大? (2)一起振动时,二者过平衡位置时的速度多大?振幅多大?

图4

解析:(1)放物体前振动系统的最大回复力为kA F =,放上物体m 后,二者一起振动的最大加速度为m

M kA m

M F a +=

+=

对物体m 而言,所需要的回复力是M 施于它的静摩擦力,则放上物体m 时加速度最大,所需的静摩擦力亦最大。设最大静摩擦力大小为mg μ,则当满足ma mg ≥μ时,两者可一起振动,可见二者间动摩擦因数的最小值为g

m M kA g a )(+=

=

μ。

(2)当二者一起振动时,机械能守恒,过平衡位置时,弹簧恢复原长,弹性势能为零,则

2

02

2

1)(2

1Mv v

m M =

+,解得m

M M v v +=0

(四)机械振动知识在实际问题中的应用 1. 测凹透镜的凹面半径

[例1] 如图1所示,为了测一凹透镜的凹面半径R ,让一半径为r 的光滑钢球在凹面内做振幅很小的振动,若测出它完成N 次全振动的时间为t ,则此凹透镜的凹面半径=R ____。(重力加速度为g )

图1

解析:小球的运动情况和受力情况与单摆很相似,并且r R >>,摆角

5<θ,满足单摆周期公式的使用条件,其运动可看成类单摆运动,可用单摆知识处理,其等效摆长为r R l -=,其振动周期为N

t T =

,由单摆的周期公式g

l T π

2=,

得2

2

2

2

244N

gt

gT r R ππ

=

=

-,有r N

gt

R +=

2

22

4π。

2. 了解汽车、火车振动系统的固有频率

[例2] 支持列车车厢的弹簧固有频率为Hz 2,若列车行驶在每根长为m 5.12的钢轨连成的铁道上,则当列车运行速度多大时,车厢振动的剧烈程度最大?

解析:列车运行时,车轮每通过相邻的两根铁轨的连接处时,就会受到一次撞击,所以车厢和弹簧构成的振动系统就在这个周期性变化的撞击力——驱动力的作用下做受迫振动,驱动力的周期为

v

1,故由共振条件可知,当驱动力的频率Hz f l

v f 2===

固驱时,列

车车厢发生共振,解得s m v /25=。当火车以这一速度行驶时车厢振动最剧烈,对车的破坏性最大,为了延长车的使用寿命,火车行驶时应远离这一速度。

[例3] 卡车在水平道路上行驶,货物随车厢底板上下振动而不脱离底板。设货物的振动为简谐运动,以向上的位移为正,其振动图象如图2所示,在图象中取a 、b 、c 、d 四点,则下列说法中正确的是( )

A. a 点对应的时刻,货物对车厢底板的压力最小

B. b 点对应的时刻,货物对车厢底板的压力最大

C. c 点对应的时刻,货物对车厢底板的压力最大

D. d 点对应的时刻,货物对车厢底板的压力等于货物重力

图2

解析:重力与车厢底板的支持力的合力充当货物振动的回复力,在a 点对应时刻,位移为正向最大,则加速度为负向最大。根据牛顿第二定律有m N ma F mg =-,所以

m N ma mg F -=,压力N N

F F ='最小,在b 、d 时刻,位移为零,则加速度为零,应有压力mg F F N N

=='。在c 点对应时刻,位移为负向最大,则加速度为正向最大,有m N ma mg F =-,所以m N ma mg F +=,压力N N

F F ='最大。 答案:ACD

3. 与人体有关的振动

[例4] 人体在水平方向的固有频率约为3~Hz 6,在竖直方向的固有频率约为4~8Hz ,有

关部门作出规定:拖拉机、风镐、风铲、铆钉机等各类振动机械的工作频率必须大于20Hz ,其中原因是( )

A. 可以使这些机械工作效率更高;

B. 可以使这些机械工作时更节约能源;

C. 可以防止操作工人人体发生共振而损害健康;

D. 以上说法都不正确。

解析:拖拉机、风镐、风铲、铆钉机多是人们常见的机械,振动机械工作时对施工工人有固有周期性驱动力,为防止共振,应使振动机械的工作频率远离人的固有频率,故答案为C 。

[例5] 已知心电图仪的出纸速度(纸带移动的速度)是s cm /5.2,如图2所示是用此仪器记录下的某人的心电图(图中每个方格的边长为cm 5.0)

(1)由图可知此人的心率为_____ 次/分,他的心脏每跳一次所需时间是_____s 。

(2)如果人的心脏每一次大约输送3

5

10

8m -?的血液,正常人血压(可看作心脏压送

血液的压强)的平均值为Pa 4

105.1?,若某人心跳每分钟70次,据此估测心脏工作的平均功率为 W 。

图1

解析:

(1)图中相邻峰值间的距离cm cm s 0.25.00.4=?=,从而此人的心率

.2605.2?=

=

s v f =75次/分,心脏每跳动一次所用时间s s f

s t 8.075

601==

=

(2)把每一次输送的血液简化成一个圆柱体模型,输送位移为该圆柱体的高,设血管的横截面积为S ,血压为p ,则压力pS F =,每送一次位移为L ,由功率的定义可得t

W P =

W t

V p t

PSL t

FL 4.170

6010

8105.15

4

=???=

??=?=?=-。

小结:本题是物理和生物、数学的综合测试题,结合综合能力测试要求,有关环保和人类生存条件的考察成为近年来高考热点之一。解决本题的关键在于将实际问题物理模型化,这也是学好物理的重要方法,可设想心脏在输送血液时,类似于圆形气缸中气体膨胀推动活塞对外做功的模型,问题就迎刃而解了。 4. 用单摆测山的高度

[例6] 有几个登山运动员登上一无名山峰,但不知此山峰的高度,他们想迅速估测出山峰的海拔高度,但是他们只带了一些细绳、小刀、卷尺,可当作秒表用的手表和一些食品,附近有碎石,树木等,其中一个人根据物理知识很快就测出了海拔高度。请写出测量方法,需记录的数据,推导出计算海拔高度的计算式。

解析:用细绳和小石块做成一单摆,用卷尺测出它的摆长l ,利用秒表测出它的周期T ,由此计算出山顶的重力加速度22

4T

l g π=

。因为地面的重力加速度2

0R

GM g =

,山顶的重力

加速度2

0)

(h R GM g +=

,由以上两式可解得0002R l

g T R h -=

π

(0R 为地球的半径)

(五)与传感器相联系的振动问题

[例7] 将一个电动传感器接到计算机上,就可以测量快速变化的力,用这种方法测得的某单摆摆动时悬线上拉力的大小随时间变化的曲线如图2所示,某同学由此图线提供的信息做出了下列判断:

A. s t 2.0=时摆球正经过最低点

B. s t 1.1=时摆球正经过最低点

C. 摆球摆动过程中机械能减小

D. 摆球摆动的周期是s T 4.1=

图2

解析:s t 2.0=时,摆线拉力最大,达2.1N ,可知此时摆球经过了最低点,但摆线拉力越来越小,说明摆球经过最低点的速度越来越小,即摆球在摆动过程中机械能在减小,摆动的周期为s 2.1。

答案:AC

【模拟试题】

1. 做简谐振动的物体,如果在某两个时刻的位移相同,则物体在这两个时刻的( ) A. 加速度相同 B. 速度相同 C. 动能相同 D. 动量相同

2. 一弹簧振子振动过程中的某段时间内其加速度数值越来越大,则在这段时间内( ) ① 振子速度越来越大

② 振子正在向平衡位置运动

③ 振子的速度方向与加速度方向一致 ④ 以上说法都不正确

A. ①②

B. ①③

C. ②④

D. ④

3. 单摆在小角度摆动的情况下,为了增大其振动周期,可以采用的方法是( ) A. 增大摆球的质量 B. 增大振动的振幅 C. 增加单摆的摆长 D. 把单摆移至高山上

4. 如图1所示,是某质点做简谐振动的图象,根据图象下列说法正确的是( ) A. 图象是从平衡位置开始计时的

B. s t 2=时,速度为x -方向,加速度最大

C. s t 3=时,速度为零,加速度为负

D. s t 5=时,速度为零,加速度为负

图1

5. 一个秒摆A 的旁边,挂一个摆长为秒摆摆长

4

1的B 摆,如图2所示,两个摆球是相同

的弹性小球,互相接触,且位于同一水平线上。今把B 球拉开一个不大的角度后释放,它在s 4内可与A 球发生碰撞的次数是( )

A. 2次

B. 3次

C. 4次

D. 5次

图2

6. 弹簧振子以O 为平衡位置做简谐振动,从某次经过O 点开始计时,振子第一次达到M 占用了0.3s ,又经过0.2s 第二次通过M 点。则振子第三次通过M 点,还要经过的时间可能是( ) A.

s 3

1 B.

s 15

8 C. s 4.1 D. s 6.1

7. 如图3所示,是某质点P 在0~4s 内的振动图象,则下列叙述正确的是( ) A. 再过s 1,该质点的位移达到正向最大 B. 再过s 1,该质点的速度沿x 轴正向 C. 再过s 1,该质点的加速度沿x 轴正向 D. 再过s 1,该质点的加速度最大

图3

8. 两单摆在相同的时间内,甲振动30次,乙振动60次,它们的周期分别是1T 和2T ,频率分别是1f 和2f ,则( )

A. 1:2:2:1:2121==f f T T

B. 2:1:2:1:2121==f f T T

C. 1:2:1:2:2121==f f T T

D. 2:1:1:2:2121==f f T T

9. 一个弹簧振子做简谐振动的过程中,下列说法正确的是( ) A. 当弹簧振子的动能为零时,加速度也为零

B. 当弹簧振子过平衡位置时,加速度方向发生变化

C. 回复力最大时,振子的动能为零

D. 回复力最大时,振子的机械能也最大

10. 受迫振动是在周期性驱动力作用下的振动,关于它的驱动力与振动的关系,下列说法正确的是()

A. 做受迫振动的物体达到稳定后,其振动的频率一定等于驱动力的频率

B. 做受迫振动的物体达到稳定后,周期一定等于驱动力的周期

C. 做受迫振动的物体达到稳定后,振幅与驱动力的周期无关

D. 做受迫振动的物体达到稳定后,振幅与驱动力的大小无关

11. 如图4所示,一向右运动的车厢顶上悬挂着两个单摆M和N,它们只能在图示平面内摆动,某一时刻出现图示情景,由此可知车厢的运动及两单摆相对车厢运动的可能情况是()

A. 车厢做匀速直线运动,M摆动,N静止

B. 车厢做匀速直线运动,M摆动,N也摆动

C. 车厢做匀速直线运动,M静止,N在摆动

D. 车厢做匀加速直线运动,M静止,N也静止

图4

12. 在“用单摆测定重力加速度”的实验中,若测得的g值比当地的标准值偏小,可能是因为()

A. 摆球的质量偏大

B. 摆球的摆角偏小

C. 计算摆长时,把悬线长l'当作了摆长l

D. 测量周期时,将n次全振动误记成了)1

n次。

(+

13. 从图5给出的振动图象可知,前s4内,这个振动物体在s末负方向速度最大,在s末正方向加速度最大。

图5

14. 一质点在一直线上做简谐振动,先后以相同的动量依次通过A、B两点,历时1s钟,过B点后,再经1s钟又第二次通过B点,在这2s钟内,质点的总路程为cm

12,则质点振动的周期为s,振幅为cm。

15. 如图6,一单摆的摆长为L,摆线系在与水平面成α角的光滑斜面上,让其在斜面方向做小角度的振动,则其振动的周期。

图6

16. 已知月球的重力加速度是地球上重力加速度的0.16倍,在地球上的秒摆,放在月球上,其周期是 s 。

17. 如图7所示为一水平弹簧振子的振动图象,如果振子质量为0.2kg ,0=t 时振子的速度为2m/s ,求:

(1)从开始计时,经过 s 第一次达到弹性势能最大,最大弹性势能为 J 。 (2)s t 5.0=时的机械能为 J ,=t s 时刻,弹性势能与s t 5.0=时的弹性势能相等。

图7

18. 在测量重力加速度的实验中,某同学用一个细线和一均匀小球制成单摆,她已经测得此单摆20个周期的时间为t ,从悬点到小球顶端的线长为L ,还需要测量的物理量为 ,将g 用测得的量表示,可得=g 。

19. 光滑水平面上的弹簧振子,质量为g 50,若在弹簧振子被拉到最大位移处时开始计时,在s t 2.0=时,振子第一次通过平衡位置,此时速度为s m /4,问:

(1)该弹簧振子做简谐振动时,其动能的变化频率为多大? (2)在s t 2.1=末,弹簧的弹性势能为多大?

20. 如图8所示,在O 点悬有一细绳,细绳穿过球B 的通过直径的小孔,使B 球能顺着绳子滑下来,在O 点的正下方有一半径为R 的光滑圆弧形轨道,圆心位置恰好在O 点。在弧形轨道上接近O '处有另一小球A ,若将A 、B 两球同时无初速释放,假设A 球第一次到达平衡位置O '时正好能够和B 球相遇,则B 球与绳之间的摩擦力与B 球的重力之比是多

少?(计算时2

π取10,g 取2

/10s m )

图8

【试题答案】

1. AC

2. D

3. CD

4. AD

5. D

6. C

7. AD

8. D

9. BC 10. AB 11. AB 12. C 13. 1,2 14. 4,6 15. α

πsin 2g L 16. 5

17.

(1)1,0.4

(2)0.4,5.0+n (=n 0,1,2,3,……) 18. 小球直径d ,22

)

2(800t

d L g +=

π

19. 解:

(1)弹簧振子的振动周期为s t T 8.04== 频率为Hz Hz T f 25.18

.01

1

===

动能的变化频率Hz f f 5.22=='

(2)因T s t 5.12.1==,故在s 2.1末,振子将运动到负的最大位移处,此时弹簧性势能最大,且等于最大动能,故J J mv

E p 4.0410

502

1212

3

2

=???=

=

-

20. 设B 下滑的加速度为a ,下滑到O '的时间为B t ,则a

R t B 2=

A 球第一次运动到O '的时间为A t 则g

R g R t A 2

241π

π

=

?=

由题给条件知B A t t =

将以上三式可得2

/8s m a =

对B ,由牛顿第二定律得ma F mg f =- 可得m F f 2= 故

5

1102==m

m mg

F f

【励志故事】

乘热而入

一位叫帕特的美国推销员,经过很长时间的推销动作,终于就一套可供一座高层办公大楼使用的空调系统,与买方达成了买卖意向书,面临的最后一关需要买方董事会的同意。帕特一出场,几位董事就提出了一连串尖锐的问题。

帕特急中生智,说:“今天天气酷热,请允许我脱掉外衣。”董事们仿佛也受到感召似地纷纷脱去外衣,有的董事甚至抱怨:“这里怎么没空调,闷死人了!”恰逢此时,帕特才开始介绍他的空调系统,生意立马拍板成交。

简谐运动的能量问题

张建斌:浅谈机械波传播过程中介质中质点的运动 浅谈机械波传播过程中介质中质点的运动 张建斌 摘要:人民教育出版社2007年11月版物理《选修3-4》认为:有正弦波传播的介质中的质点在做简谐运动。但笔者查阅了相关书籍后发现这一说法欠妥。本文将从平面简谐波的波动方程和介质波的能量出发,分析机械波能量在空间上的分布、随时间的变化与能量传递的实质,通过与简谐运动的对比,对新教材中关于机械波传播过程中介质中质点的运动作新的描述“简谐波是简谐运动在介质中的传播,但介质中各质点做得并非简谐运动,而是运动规律满足正弦(或余弦)图像的受迫振动”。 关键词:受迫振动简谐运动机械波能量传递 普通高中课程标准实验教科书《物理:选修3-4》(人民教育出版社2007年4月第2版)第27页“介质中有正弦波传播时,介质的质点在做简谐运动”。但简谐运动的能量在整个振动过程中是一个守恒量,简谐运动的过程是动能和势能的相互转化过程,这样做简谐运动的介质中的质点将无法实现传递能量的功能。 实际上,平面波传播时,若介质中质点按正弦(或余弦)规律运动时,叫做平面简谐波,是最基本的波动形式,一些复杂的波可视为平面简谐波的叠加。但平面简谐波传播时,介质中的质点并非简谐运动,只是其运动规律满足正弦(或余弦)规律。因为介质中每一个振动质点(体元)的动能和势能同时达到最大、同时达到最小,质点的机械能在最大值和最小值之间变化,每个质点都在不断吸收和放出能量的过程中实现能量的传递。本文主要阐述机械波的能量及其传递,并尝试对新教材中关于机械波传播过程中介质中质点的运动谈一点自己的看法。 一、波动方程 设一列平面简谐波沿轴正向传播,波源点的振动方程为,在轴上任意点的振动比点滞后(是振动状态传播的速度、即波速),即当点相位为时,点相位为,因此点的振动方程为,这就是平面简谐波方程,它可以描述平面简谐波在传播方向上任意点的振动规律。 二、介质中波的能量分布 一列波在弹性介质中传播时,各体元都在平衡位置附近振动,所以具有动能;同时,各体元发生形变,又有弹性势能。现以简谐横波为例,研究某体元的动能、势能和总能的变化规律。 1、动能 在有简谐横波传播的介质中,取一微元,根据平面简谐波方程可得到其振动速度 设介质密度为,微元体积为,则该体元的动能为 2、形变势能 我们选取的介质中的微元同时受到相邻的微元的作用而发生剪切形变(即在力偶作用下,两平行截面发生相对移动的形变),如图1所示,若设表示假想截面的面积,且在该面上均匀分布,则剪应力。同时,我们用平行截面间相对滑动位移与截面垂直距离之比描述剪切形变,称为剪切应变。由图1:,称为切变角。则可由剪切形变的胡克定律得:在形变范围内(为剪切模量,反映材料抵抗剪切应变的能力),且单位体积剪切形变的弹性势能为。 对于传播横波的介质中的微元而言,其剪切形变简化为如图2所示,。所以选取的微元的形变势能为 3、总能 弹性介质中横波的波动方程可写为: 对偏导运算可得:

高中物理-简谐运动的图像和公式教学设计

高中物理-简谐运动的图像和公式教学设计 教学目标 1.理解振动图象的物理意义。 2.通过利用图象得到的信息,例如判断物体的位移、速度、加速度等物理量的大小与方向的变化规律,培养学生的抽象思维能力。 3.理解简谐运动的表达式,进一步使学生掌握解决物理问题的两种方法:公式法和图象法。 4.通过实验法得到简谐运动的图象,培养学生认真、严谨、实事求是的科学态度。 重点难点 重点:简谐运动图象的物理意义和特点;运用简谐运动的图象解决有关位移、周期、频率、加速度、回复力等问题。 难点:用实验法描绘出简谐运动的图象;运用简谐运动的图象求解实际问题。 设计思想 在高考中对本节的考查重点在于由振动图像获得振动的信息,并能理解振动方程,学生学习过程中重点在于理解振动图像的物理意义,并能很好得寻找出图像中包含的信息。这些重点知识,重要方法的学习,本课采用了学习自主探究的方式,培养学生的观察习惯,提高学生处理图像的能力。 教学资源《简谐运动的图像和公式》多媒体课件、、 实验器材:沙漏,悬挂支架,可拖动的长板,单摆 教学设计 【课堂引入】 质点做直线运动时,x-t图象能形象地说明质点的位移随时间变化的规律。物体做简 谐运动时,它的位移随时间变化的规律又是什么样的呢? 问题1:思考能否也用x-t图象来形象的描述简谐运动,还是你有其他的想法,并说明如 何获得你想要的图像? (学生分析、讨论:可以仍然作x-t图像,但此处的x与以往的位移不同,是指相对于平衡位置的位移;可以用拍照的方式,记下很多时刻做简谐运动的物体的位置,再用测量、描点的方式得到图像。) 老师引导: 老师小结:这位同学提的方案非常好,我们就以他的想法来画简谐运动的x-t图像,不过课堂上实验条件有限,下面我们就用最简便的装置来描绘x-t图像。 实验仪器介绍、分析:如图所示,沙摆装置,漏斗相对于绳子的长度是比较小的,并且摆动时角度较小,所以它的摆动近似可以看成是简谐运动,当它摆动时在沙漏的下方有一块可以拖动的薄板,薄板匀速拖动时接收漏下的沙子,就可以在板上留下一张图。下面我们就进行实验。 【课堂学习】 学习活动一:探究描述简谐运动的图像 实验演示:让砂摆振动,同时沿着与振动垂直的方向匀速拉 动摆下的长木板(即平板匀速抽动,如图所示)。 实验现象:砂子在长木板上形成一条曲线。现以板拖动的 反方向为横轴,以垂直于拖动方向为纵轴,得到了如图所示的图 像。 问题1:如图这样建立了坐标那么图线的横、纵坐标分别表 示什么物理量? (学生答案:横坐标表示时间,纵坐标表示质点在不同时刻相对

简谐运动问题解题导引

阜阳市红旗中学 时其新 摘要:简谐运动问题是全国中学生物理竞赛考查的重点内容,本文对这类问题 的常见类型以及解决问题的思路作了比较详尽的阐述,希望对参加竞赛的同学有所裨益。 关键词:简谐运动 解题导引 简谐运动问题是历届全国中学生物理竞赛考查的重点内容之一。这类问题大体上可以分为三类:(1)判断物体的运动是否是简谐运动,并求其振动周期;(2)确定物体做简谐运动的振动方程;(3)确定物体在简谐运动过程中的时间、位移、速度、能量等。本文旨在就这几类问题求解的基本思路作些指导,希望对准备参赛的同学有所帮助。 1. 判断物体的运动是否是简谐运动,并求其振动周期 1.1 判断物体的运动是否是简谐运动的基本方法 简谐运动的基本判据: (1) 动力学判据:判断物体所受回复力是否满足 F= -kx 其中k ——回复力系数 (2) 运动学判据:判断物体运动的加速度是否满足 a= -ω2x 其中ω——简谐运动的圆频率 无论采用那种方法判断,其基本步骤都是:首先确定振动物体的平衡位置,然后令物体偏离平衡位置一段位移x ,再求物体所受的回复力或物体具有的加速度。进而,可确定回复 力系数k 或圆频率ω,从而由T=2πm k 或ω=T π2求出振动周期。 例1.如图1所示,一个质量为m 2的光滑滑轮由劲度系数为k 的轻弹簧吊 在天花板上,一根轻绳一端悬挂一个质量为m 1的重物,另一端竖直固定在地板上。试证明重物沿竖直方向的振动是简谐运动,并求其振动周期。 解析:设:系统平衡时弹簧的伸长量是x 0。则有 kx 0=2m 1g+m 2g (1) 当重物m 1向下偏离平衡位置x 时,滑轮m 2向下偏离平衡位置(x 0+ 2 x ),假设此时绳上的拉力是F ,m 1的加速度为a 1,m 2的加速度为a 2,则由牛顿第二定律得 对m 1: F -m 1g=m 1a 1 (2) 对m 2: k (x 0+ 2 x )-2F -m 2g=m 2a 2 (3) 由位移关系有: a 1=2a 2 (4) 由以上各式可得 F=m 1g+ 2 11 4m m m +kx (5) m 1 m 2 k 图—1

简谐运动的能量

第六节简谐运动的能量阻尼振动 ●本节教材分析 本节从功能关系角度来深化对简谐运动的特点的认识. 教学时,在复习机械能守恒的基础上,应向学生说明:在位移最大时,即动能为零时,单摆的振幅最大,重力势能最大;水平弹簧振子的振幅越大,弹性势能越大,因此振幅越大,振动的能量越大. 对于竖直的弹簧振子,涉及弹性势能、重力势能、动能三者的变化,不要求从能量的角度对它进行分析. 简谐运动是一种理想化模型,实际中发生的振动都要受到阻尼的作用,如果阻尼很小,振动物体受到的回复力大小与位移成正比,方向与位移相反,则物体的运动可以看作是简谐 运动,这种将实际问题理想化的方法,应注意让学生理会. 1.知道振幅越大,振动的能量(总机械能) 2. 3. 4.知道什么是阻尼振动和阻尼振动中能量转化的情况. 5.知道在什么情况下可以把实际发生的振动看作简谐运动. 1.分析单摆和弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力. 2.通过阻尼振动的实例分析,提高处理实际问题的能力. 1.简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透. 2.振动有多种不同类型说明各种运动形式都是普遍性下的特殊性的具体体现. 1.对简谐运动中能量转化和守恒的具体分析. 2.什么是阻尼振动. 关于简谐运动中能量的转化. 1.多媒体展示弹簧振子和单摆的振动过程,观察、讨论、阅读课文,得到水平弹簧振子和单摆的振动过程中动能和势能的转化情况. 2.多媒体、结合实验演示,得到阻尼振动的概念. 3.对比认识各种振动的特点. 投影片、CAI 出示本节课的学习目标. 1.会分析弹簧振子和单摆这两种典型简谐运动的能量及能量转化情况. 2.知道简谐运动振幅与振动系统能量的关系. 3.

简谐运动问题解题导引

简谐运动问题解题导引 阜阳市红旗中学时其新 摘要:简谐运动问题是全国中学生物理竞赛考查的重点内容,本文对这类问题的常见类型以及解决问题的思路作了比较详尽的阐述,希望对参加竞赛的同学有所裨益。 关键词:简谐运动解题导引 简谐运动问题是历届全国中学生物理竞赛考查的重点内容之一。这类问题大体上可以分 为三类:(1)判断物体的运动是否是简谐运动,并求其振动周期;(2)确定物体做简谐运动的振动方程;(3)确定物体在简谐运动过程中的时间、位移、速度、能量等。本文旨在就这几类问题求解的基本思路作些指导,希望对准备参赛的同学有所帮助。 1.判断物体的运动是否是简谐运动,并求其振动周期 1.1判断物体的运动是否是简谐运动的基本方法 简谐运动的基本判据: (1)动力学判据:判断物体所受回复力是否满足 F= — kx 其中k -------- 回复力系数 (2)运动学判据:判断物体运动的加速度是否满足 a= —3 2x 其中3――简谐运动的圆频率 无论采用那种方法判断,其基本步骤都是:首先确定振动物体的平衡位置,然后令物体 偏离平衡位置一段位移 x,再求物体所受的回复力或物体具有的加速度。进而,可确定回复力系数k 或圆频率3,从而由 T=2 n 'mm或3 = 2-求出振动周期。 例1.如图1所示,一个质量为 m2的光滑滑轮由劲度系数为 k的轻弹簧吊在天花板 上,一根轻绳一端悬挂一个质量为m1的重物,另一端竖直固定在地板 上。试证明重物沿竖直方向的振动是简谐运动,并求其振动周期。 解析:设:系统平衡时弹簧的伸长量是X。。则有 kx o=2m1g+m2g (1) 「十—X 当重物m1向下偏离平衡位置 x时,滑轮 m2向下偏离平衡位置(X0+—), 2 假设此时绳上的拉力是 F,m1的加速度为a1,m2的加速度为a2,则由牛顿第二定律得对m1: F — m1g=m1a1 (2) 对m2:—2F — m2g=m2a2 (3) 由位移关系有:a1=2a2 (4) 由以上各式可得 m1 F=m1g+ kx 4m1 m2 (5) 图一1

《简谐运动的回复力和能量》教案

11.3、简谐运动的回复力和能量示范教案 一、教学目的 1.掌握简谐运动的定义;了解简谐运动的运动特征;掌握简谐运动的动力学公式;了解简谐运动的能量变化规律。 2.引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。 3.结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。 二、教学难点 1.重点是简谐运动的定义; 2.难点是简谐运动的动力学分析和能量分析。 三、教具:弹簧振子,挂图。 四、主要教学过程 (一)引入新课 提问1:什么是机械振动? 答:物体在平衡位置附近做往复运动叫机械振动。 提问2:振子做什么运动? 日常生活中经常会遇到机械振动的情况:机器的振动,桥梁的振动,树枝的振动,乐器的发声,它们的振动比较复杂,但这些复杂的振动都是由简单的振动的组成的,因此,我们的研究仍从最简单、最基本的机械振动开始。刚才演示的就是一种最简单、最基本的机械振动,叫做简谐运动。 提问3:过去我们研究自由落体等匀变速直线运动是从哪几个角度进行研究的? 今天,我们仍要从运动学(位移、速度、加速度)研究简谐运动的运动性质;从动力学(力和运动的关系)研究简谐运动的特征,再研究能量变化的情况。 (二)新课教学 (第二次演示竖直方向的弹簧振子) 提问4:大家应明确观察什么?(物体) 提问5:上述四个物理量中,哪个比较容易观察? 提问6:做简谐运动的物体受的是恒力还是变力?力的大小、方向如何变? 小结:简谐运动的受力特点:回复力的大小与位移成正比,回复力的方向指向平衡位置 提问7:简谐运动是不是匀变速运动? 小结:简谐运动是变速运动,但不是匀变速运动。加速度最大时,速度等于零;速度最大时,加速度等于零。 提问8:从简谐运动的运动特点,我们来看它在运动过程中能量如何变化?让我们再来观察。提问9:振动前为什么必须将振子先拉离平衡位置?(外力对系统做功) 提问10:在A点,振子的动能多大?系统有势能吗? 提问11:在O点,振子的动能多大?系统有势能吗? 提问12:在D点,振子的动能多大?系统有势能吗? 提问13:在B,C点,振子有动能吗?系统有势能吗? 小结:简谐运动过程是一个动能和势能的相互转化过程。 (三)总结: (四)布置作业:

高中物理第1章机械振动3简谐运动的图像和公式教师用书教科选修3-4

3.简谐运动的图像和公式 学习目标知识脉络 1.掌握简谐运动的位移——时间 图像.(重点、难点) 2.知道简谐运动的表达式、明确 各量表示的物理意义.(重点) 3.了解相位、初相和相位差的概 念. 4.能用公式描述简谐运动的特 征.(重点、难点) 简谐运动的图像 [先填空] 1.坐标系的建立 在简谐运动的图像中,以横轴表示质点振动的时间,以纵轴表示质点偏离平衡位置的位移. 2.物理意义 表示做简谐运动质点的位移随时间变化的规律. 3.图像的特点 是一条正弦(或余弦)曲线. 4.从图像中可以直接得到的信息 (1)任意时刻质点偏离平衡位置的位移; (2)振动的周期; (3)振动的振幅. [再判断] 1.简谐运动图像反映了物体在不同时刻相对平衡位置的位移.(√) 2.振动位移的方向总是背离平衡位置.(√) 3.振子的位移相同时,速度也相同.(×) 4.简谐运动的图像都是正弦或余弦曲线.(√) [后思考] 1.简谐运动的图像是否是振动物体的运动轨迹?

【提示】不是.简谐运动的图像是描述振动物体的位移随时间变化的规律,并不是物体的运动轨迹. 2.简谐运动中振动物体通过某一位置时,加速度和速度方向是否一致? 【提示】不一定.振动物体通过某一位置时,加速度方向始终指向平衡位置,但速度方向可能指向平衡位置,也可能背离平衡位置,故加速度和速度方向不一定一致. 1.图像含义 表示某一质点不同时刻的位移;简谐运动图像不是做简谐运动的物体的运动轨迹. 2.图像斜率 该时刻速度的大小和方向. 3.判断规律 (1)随时间的延长,首先得到质点相对平衡位置的位移情况. (2)任意时刻质点的振动方向:看下一时刻质点的位置,如图1-3-1中a点,下一时刻离平衡位置更远,故a此刻向上振动. 图1-3-1 (3)任意时刻质点的速度、回复力、加速度的变化情况及大小比较:看下一时刻质点的位置,判断是远离还是靠近平衡位置,如图1-3-1中b点,从正位移向着平衡位置运动,则速度为负且增大.回复力方向与位移方向相反,总指向平衡位置,t轴上方曲线上各点回复力取负值.t轴下方曲线上各点回复力取正值,回复力大小和位移成正比,离平衡位置越远,回复力越大.加速度变化步调与回复力相同. 1.一质点做简谐运动,其位移x与时间t的关系曲线如图所示,由图1-3-2可知( ) 图1-3-2 A.质点振动频率是4 Hz B.t=2 s时,质点的加速度最大 C.质点的振幅为2 cm D.t=2 s时,质点的位移是2 cm E.从t=0开始经过3 s,质点通过的路程是6 cm

高三物理简谐运动的公式描述.docx

简谐运动的公式描述教案 教学目标 1.知识与技能 (1)会用描点法画出简谐运动的运动图象. (2)知道振动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线. (3)了解替代法学习简谐运动的位移公式的意义. (4) 知道简谐运动的位移公式为x=A sin (ωt+),了解简谐运动位移公式中各量的物 理含义. (5) 了解位相、位相差的物理意义. (6) 能根据图象知道振动的振幅、周期和频率、位相. 2.过程与方法 (1) 通过“讨论与交流”匀速圆周运动在Ⅳ方向的投影与教材表1— 3— 1 中数据的 比较,并描出z— t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图象一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易 以及应用已学的知识解决问题. (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点. 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简, 科学地寻找解决问题的方法. (2)培养学生合作学习、探究自主学习的学习习惯. ●教学重点 ,难点 1.简谐运动位移公式x=Asin(ω t +)的推导 2.相位 , 相位差的物理意义 .. ●教学过程 教师讲授 简谐振动的旋转矢量法 。y 在平面上作一坐标轴 OX,由原点 O 作一长度等于振幅的矢量 A t=0 ,矢量与坐标轴的夹角等于初相 矢量 A 以角速度w 逆时针作匀速圆周运动, 研究端点M 在 x 轴上投影点的运动, 1.M 点在 x 轴上投影点的运动 x=Asin(ω t+)为简谐振动。 x 代表质点对于平衡位置的位移,t 代表时间,简谐运动的三角函数表示 回答下列问题 a:公式中的 A 代表什么 ? b:ω叫做什么 ?它和 f 之间有什么关系? c:公式中的相位用什么来表示? d:什么叫简谐振动的初相? M A t M 0 o x P x

有关弹簧问题中应用简谐运动特征的解题技巧

有关弹簧问题中应用简谐运动特征的解题技巧 黄 菊 娣 (浙江省上虞市上虞中学 312300) 弹簧振子的运动具有周期性和对称性,因而很容易想到在振动过程中一些物理量的大小相等,方向相同,是周期性出现的;而经过半个周期后一些物理量则是大小相等,方向相反.但是上面想法的逆命题是否成立的条件是:①此弹簧振子的回复力和位移符合kx F -=(x 指离开平衡位置的位移) ;②选择开始计时的位置是振子的平衡位置或左、右最大位移处,若开始计时不是选择在这些位置,则结果就显而易见是不成立的. 在这里就水平弹簧振子和竖直弹簧在作简谐运动过程中应用其特征谈一谈解题技巧,把复杂的问题变简单化,从而消除学生的一种碰到弹簧问题就无从入手的一种恐惧心理. 一、弹簧振子及解题方法 在判断弹簧振子的运动时间,运动速度及加速度等一些物理量时所取的起始位置很重要,在解题方法上除了应用其规律和周期性外,运用图象法解,会使问题更简单化. 例1 一弹簧振子做简谐运动,周期为T ,则正确的说法是………………………………………( ) A .若t 时刻和(t +Δt )时刻振子运动位移的大小相等,方向相同,则Δt 一定等于T 的整数倍 B .若t 时刻和(t +Δt )时刻振子运动速度大小相等,方向相反,则Δt 一定等于 2 T 的整数倍 C .若Δt =T ,则在t 时刻和(t +Δt )时刻振子运动的加速度一度相等 D .若Δt =2T ,则在t 时刻和(t +Δt )时刻弹 簧的长度一定相等 解法一:如图1为一个弹簧振子的示意图,O 为平衡位置,B 、C 为两侧最大位移处,D 是C 、O 间任意位置. 对于A 选项,当振子由D 运动到B 再回到D ,振子两次在D 处位移大小、方向都相 同,所经历的时间显然不为T ,A 选项错. 对于B 选项,当振子由D 运动到B 再回到D ,振子两次在D 处运动速度大小相等,方向相反,但经过的时间不是 2 T ,可见选项B 错. 由于振子的运动具有周期性,显然加速度也是如此,选项C 正确. 对于选项D ,振子由B 经过O 运动到C 时,经过的时间为 2 T ,但在B 、C 两处弹簧长度不等,选项D 错.正确答案选C . 解法二:本题也可利用弹簧振子做简谐运动的图象来解.如图2所示,图中A 点与B 、E 、F 、I 等点的振动位移大小相等,方向相同.由图可见,A 点与E 、I 等点对应的时刻差为T 或T 的整数倍;A 点与B 、F 等点对应的时刻差不为T 或T 的整数倍,因此选项A 不正确.用同样的方法很容易判断出选项B 、D 也不正确.故只有选项C 正确. 图1

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲 2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0ω= 且 10m m m =+

式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量 20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理: 1、用逐差法处理数据 由下列公式 221 104()T m m k π=+

第六节 简谐运动的能量 阻尼振动33794

第六节简谐运动的能量阻尼振动 教学目标: 一、知识目标: 1、知道振幅越大,振动的能量(总机械能)越大。 2、对单摆,应能根据机械能守恒定律进行定量计算。 3、对水平的弹簧振子,应能定量地说明弹性势能与动能的转化。 4、知道什么是阻尼振动和阻尼振动中能量转化的情况。 5、知道在什么情况下可以把实际发生的振动看作简谐运动。 二、能力目标: 1、分析单摆和弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力。 2、通过阻尼振动的实例分析,提高处理实际问题的能力。 三、德育目标: 1、简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透。 2、振动有多种不同类型说明各种运动形式都是普遍性下的特殊性的具体体现。 教学重点: 1、对简谐运动中能量转化和守恒的具体分析。 2、什么是阻尼振动。 教学难点: 关于简谐运动中能量的转化。 教学方法: 1、多媒体展示弹簧振子和单摆的振动过程,观察、讨论、阅读课文,得到水平弹簧振子和单摆的振动过程中动能和势能的转化情况。 2、多媒体、结合实验演示,得到阻尼振动的概念。 3、对比认识各种振动的特点。 教学用具: CAI课件、单摆、水平弹簧振子 教学过程: 一、导入新课: 1、演示:取一个单摆,将摆球拉到一定高度后释放,观察它的摆动情况如何? 2、现象:单摆的振幅会越来越小,最后停下来。 3、思考:实际振动的单摆为什么会停下来呢? 今天,我们就来共同探究这个问题。 二、新课教学: (一)、简谐运动的能量: 1、用多媒体模拟简谐运动: 2、分析简谐运动中的能量转化情况: 简谐运动A→O O→A′A′→O O→A 能量的变化动能↑↓↑↓势能↓↑↓↑总能不变 3、总结: ⑴、简谐运动在振动过程中系统的能量守恒,振幅保持不变,叫等幅振动或无阻尼振动。

简谐运动的回复力和能量

简谐运动的回复力和能量 一、简谐运动的回复力 1.简谐运动 如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 2.回复力 使振动物体回到平衡位置的力。 3.回复力的方向 总是指向平衡位置。 4.回复力的表达式 F=-kx。即回复力与物体的位移大小成正比,“-”表明回复力与位移方向始终相反,k是一个常数,由简谐运动系统决定。 二、简谐运动的能量 1.振动系统(弹簧振子)的状态与能量的对应关系:弹簧振子运动的过程就是动能和势能互相转化的过程。 (1)在最大位移处,势能最大,动能为零。 (2)在平衡位置处,动能最大,势能最小。 2.简谐运动的能量特点:在简谐运动中,振动系统的机械能守恒,而在实际运动中都有一定的能量损耗,因此简谐运动是一种理想化的模型。 1.回复力的来源 (1)回复力是指将振动的物体拉回到平衡位置的力,同向心力一样是按照力的作用效果来命名的。 (2)回复力可以由某一个力提供,如水平弹簧振子的回复力即为弹簧的弹力;也可能是几个力的合力,如竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;还可能是某一力的分力。归纳起来,回复力一定等于振动物体在振动方向上所受的合力。分析物体的受力时不能再加上回复力。 2.关于k值:公式F=-kx中的k指的是回复力与位移的比例系数,而不一定是弹簧的

劲度系数,系数k由振动系统自身决定。 3.加速度的特点:根据牛顿第二定律得a =F m=-k m x,表明弹簧振子做简谐运动时,振 子的加速度大小与位移大小成正比,加速度方向与位移方向相反。 4.回复力的规律:因x=A sin(ωt+φ),故回复力F=-kx=-kA sin(ωt+φ),可见回复力随时间按正弦规律变化。 1.根据水平弹簧振子图,可分析各个物理量的变化关系如下: 图11-3-4 振子的运动A→O O→A′A′→O O→A 位移方向向右向左向左向右大小减小增大减小增大 回复力方向向左向右向右向左大小减小增大减小增大 加速度方向向左向右向右向左大小减小增大减小增大 速度方向向左向左向右向右大小增大减小增大减小 振子的动能增大减小增大减小 弹簧的势能减小增大减小增大 系统总能量不变不变不变不变 当堂达标 1、(多选)如图11-3-2所示,物体系在两弹簧之间,弹簧劲度系数分别为k1和k2,且k1=k,k2=2k,两弹簧均处于自然状态。现在向右拉动物体,然后释放,物体在B、C间振动,O 为平衡位置(不计阻力),设向右为正方向,物体相对O点的位移为x,则下列判断正确的是() 图11-3-2 A.物体做简谐运动,OC=OB

高中物理.《简谐运动的图像和公式》教案教科版选修解析

《简谐运动的图像》 一、教学三维目标 (一)知识与技能 1、知道振动图像的物理含义。 2、知道简谐运动的图像是一条正弦或余弦曲线。 3、能根据图象知道振动的振幅、周期和频率。 (二)过程与方法 1、学会用图象法、列表法表示简谐运动位移随时间变化规律,提高运用工具解决物理问题的能力。 2、分析简谐运动图像所表示的位移,速度、加速度和回复力等物理量大小及方向变化的规律,培养抽象思维能力。 (三)情感态度与价值观 1、描绘简谐运动的图像,培养学生认真、严谨、实事求是的科学态度。 2、从图像了解简谐运动的规律,培养学生分析问题的能力,以及审美能力(逐步认识客观存在着简洁美、对称美等)。 二、重点、难点、疑点及解决办法 1、重点 (1)简谐运动图像的物理意义。 (2)简谐运动图像的特点。 2、难点 (1)用描点法画出简谐运动的图像。 (2)振动图像和振动轨迹的区别。 (3)由简谐运动图像比较各时刻的位移、速度、加速度和回复力的大小及方向。 3、疑点 能用正弦(或余弦)图像判定一个物体的振动是否是简谐运动。 4、解决办法 (1)通过对颗闪照相的分析,利用表格,通过作图比较,认识简谐运动的特点。 (2)复习数学中的正弦(或余弦)图像知识;比较几种典型运动(匀速直线运动,匀加速、匀减速直线运动)的图像与简谐运动图像的区别。

三、课时安排 1课时 四、教具、学具准备 自制幻灯片、幻灯机(或多媒体课件)、音叉(带共鸣箱)(附小槌、灵敏话筒、示波器)。 五、学生活动设计 1、学生观看多媒体课件,观察振子的简谐运动情况及其频闪照片、位移一时间变化表格。 2、学生根据表格画出s-t图 3、学生分组讨论,确定振子在各时刻的位移、速度、回复力和加速度的方向。 六、教学步骤 [导入新课] 提问 1、在匀速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线?(是一条过原点的直线) 2、在匀变速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (根据s=at2,运动的位移图像是一条过原点的抛物线) 那么,简谐运动的位移图像是一条什么线? [新课教学] 多媒体课件(或幻灯)显示。观察气垫导轨上弹簧振子的振动情况,这是典型的简谐运动。 观察振子从离平衡位置最左侧20mm处向右运动的1/2周期内频闪照片,以及接下来1/2周期内的频门照片,已知频闪的频率为9.0Hz提问,相邻两次闪光的时间间隔t。是多少? 时间t0=s=0.11s 提问,频闪照片上记录下来什么? (照片上记录下来每隔t0振子所在的位置) 取平衡位置的右方为正方向。根据频门照片上的读数,列出位移。随时间;变

弹簧问题

物理弹簧问题分析的思维起点 东北师范大学附属中学卫青山尹雄杰 由于弹簧与其相连接的物体构成的系统的运动状态具有很强的综合性和隐蔽性;由于弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律较多,因而多年来,弹簧试题深受高考命题专家们物理教师的青睐,在物理高考中弹簧问题频频出现已见怪不怪了。弹簧问题不仅能考查学生分析物理过程,理清物理思路,建立物理图景的能力,而且对考查学生知识综合能力和知识迁移能力,培养学生物理思维品质和挖掘学生学习潜能也具有积极意义。因此,弹簧问题也就成为高考命题专家每年命题的重点、难点和热点。 与弹簧相连接的物理问题表现的形式固然很多,但总是有规律可循,有方法可依,存在基于弹簧特性分析问题的思维起点。 一、以弹簧遵循的胡克定律为分析问题的思维起点 弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。显然,弹簧的长度发生变化的时候,胡克定律首先成了弹簧问题分析的思维起点。 例1 劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。 解析物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。由匀变速直线运动公式及牛顿定律得: ① ② ③

解以上三式得:。 显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。 二、以弹簧的伸缩性质为分析问题的思维起点 弹簧能承受拉伸的力,也能承受压缩的力。在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的思维起点。 例2如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。弹簧与竖直方向的夹角。 解析以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。所以

简谐运动的几个注意问题

简谐运动的几个注意问题 1、物体运动的路线不一定都是直线 例如,单摆摆球做简谐运动时的运动路线是在摆球平衡位置两侧并通过平衡位置的一段圆弧,即摆球的运动路线为曲线。 2、物体运动的速度方向与位移方向不一定相同 简谐运动的位移指的是振动物体偏离平衡位置的位移,位移的起点总是在平衡位置,那么当物体远离平衡位置时位移方向与速度方向相同,靠近平衡位置时位移方向与速度方向相反。 3、振动物体所受的回复力方向与物体所受的合力方向不一定相同 例如,单摆在平衡位置附近(小角度范围内)的摆动既做圆周运动,又做简谐运动,摆球所受到的各个力的合力既要提供其做圆周运动的向心力,又要提供其做简谐运动的回复力,即单摆振动过程中摆球受到所有力的合力的一个分力提供向心力,另一个分力提供回复力。那么回复力方向就与摆球所受到的各力的合力方向不相同。 4、物体在平衡位置不一定处于平衡状态 例如,单摆摆球做简谐运动经过平衡位置时,由于摆球的平衡位置在圆弧上,摆球在圆弧上做圆周运动需要向心力,故摆球在平衡位置处悬绳的拉力大于摆球的重力,即摆球在平衡位置并非处于平衡状态。 5、物体在四分之一周期内通过的路程不一定等于振幅

做简谐运动的物体在一个运动周期的时间内通过的路程是振幅的4倍,在半个周期的时间内通过的路程是振幅的2倍,但是在四分之一周期时间内通过的路程就不一定等于振幅。虽然当物体从平衡位置向最大位移运动四分之一周期时间或从最大位移向平衡位置运动四分之一周期时间,物体通过的路程都等于振幅,但是当物体从平衡位置和最大位移之间的某一位置开始运动四分之一周期时间通过的路程就不等于振幅了。因为做简谐运动的物体在平衡位置附近速度比在最大位移附近速度大,放物体从平衡位置和最大位移之间的某一位置向平衡位置方向运动并通过平衡位置的四分之一周期时间内通过的路程就大于振幅,而向最大位移方向运动并返回的四分之一周期时间内通过的路程就小于振幅。 6、简谐运动的振动快时物体的运动不一定快 简谐运动的振动快慢由振动周期或频率反映,周期小振动快,周期大振动慢;而做简谐运动的物体运动快慢则由物体运动的瞬时速度反映,在某时刻瞬时速度大则运动快,反之则运动慢。同时简谐运动的振动快慢是由振动系统的本身决定的,而做简谐运动物体的运动快慢则由振动物体的位置和储存在振动系统中的能量决定。所以简谐运动振动快,物体在某时刻的运动不一定快。 7、单摆的摆长短,周期不一定小 单摆振动的周期不但与摆长有关,而且还与单摆所在处重力加速度一定时摆球悬点的加速度有关,当摆球是点的加速度为零时,摆长越短,周期就越小。那么当把摆长较短的单摆放在加速下降的升降机中时,由于单摆处于失重状态,故单摆振动的周期也可以比放在地面上悬点加速度为零的摆长较长的单摆振动周期大,当单摆处于完全失重状态时,单摆振动周期为无穷大,单摆处于停振状态。

简谐运动的回复力和能量教案

第十一章机械振动 第三节简谐运动的回复力和能量 教学目标: (一)知识与技能 掌握简谐运动的定义;了解简谐运动的运动特征;掌握简谐运动的动力学公式;了解简谐运动的位移、速度、加速度、能量变化规律。 (二)过程与方法 引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。 (三)情感、态度与价值观 结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。 二、教学难点 1.重点是简谐运动的定义; 2.难点是简谐运动的动力学分析和能量分析。 【提出问题】 物体做匀变速直线运动时,所受合力_________,方向___________; 物体做匀速圆周运动时,所受合力大小_______,方向与速度方向 ______并________, 物体做简谐运动时,所受合力有什么特点? 四:新课教学 一、简谐运动的回复力 1.振动形成的原因 水平弹簧振子的振动 如图所示,当把振子从静止的位置O拉开一小段距离到A再放开后,它为什么会在A-O-A'之间振动呢? (1)物体做机械振动时,一定受到指向__________的力,这个力的作用总能使物体回到中心位置,这个力叫__________。 (2)回复力是根据力的________ (选填“性质”或“效果”)命名的。它可以是重力、弹力或摩擦力,或者几个力的合力,或某个力的分力。 (3)回复力的效果:把物体拉回到__________.当振子离开平衡位置后,振子所受的回复力总是使振子回到___________,这样不断进行下去,就形成了振动。 (4)方向:总是与位移x的方向相反,即总是指向__________. (5)表达式:F=________.即回复力与成正比___,“-”表明回复力与位移方向始终________,k是一个常数,由简谐运动系统决定.

气轨上的弹簧简谐振动实验报告

气轨上弹簧振子的简谐振动 目的要求: (1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。 (2)观测简谐振动的运动学特征。 (3)测量简谐振动的机械能。 仪器用具: 气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。 实验原理: (一)弹簧振子的简谐运动过程: 质量为m1的质点由两个弹簧与连接,弹簧的劲度系数分别 为k1和k2,如下图所示: 当m1偏离平衡位置x时,所受到的弹簧力合力为 令 k=,并用牛顿第二定律写出方程 解得 X=Asin() 即其作简谐运动,其中 在上式中,是振动系统的固有角频率,是由系统本身决定的。m=m 1+m0是振动系统的有效质量,m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。系统的振动周期为

通过改变测量相应的T,考察T 和的关系,最小二乘法线性拟合求出k 和 (二)简谐振动的运动学特征: 将()对t 求微分 ) 可见振子的运动速度v 的变化关系也是一个简谐运动,角频率为,振幅为,而且v 的相位比x 超前 .消去t,得 v2=ω02(A2?x2) x=A时,v=0,x=0 时,v 的数值最大,即 实验中测量x和v 随时间的变化规律及x和v 之间的相位关系。 从上述关系可得 (三)简谐振动的机械能: 振动动能为 系统的弹性势能为 则系统的机械能 式中:k 和A均不随时间变化。上式说明机械能守恒,本实验通过测定不同位 置x上m 1的运动速度v,从而求得和,观测它们之间的相互转换并验证机 械能守恒定律。 (四)实验装置: 1.气轨设备及速度测量 实验室所用气轨由一根约2m 长的三角形铝材做成,气轨的一端堵死,另 一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的内表面经过精加工

简谐运动的回复力和能量 说课稿 教案

简谐运动的回复力和能量 新课标要求 (一)知识与技能 1、理解简谐运动的运动规律,掌握在一次全振动过程中位移、回复力、加速度、速度变化的规律。 2、掌握简谐运动回复力的特征。 3、对水平的弹簧振子,能定量地说明弹性势能与动能的转化。 (二)过程与方法 1、通过对弹簧振子所做简谐运动的分析,得到有关简谐运动的一般规律性的结论,使学生知道从个别到一般的思维方法。 2、分析弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力。 (三)情感、态度与价值观 1、通过物体做简谐运动时的回复力和惯性之间关系的教学,使学生认识到回复力和惯性是矛盾的两个对立面,正是这一对立面能够使物体做简谐运动。 2、简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透。 教学重点 1、简谐运动的回复力特征及相关物理量的变化规律。 2、对简谐运动中能量转化和守恒的具体分析。 教学难点 1、物体做简谐运动过程中位移、回复力、加速度、速度等变化规律的分析总结。

2、关于简谐运动中能量的转化。 教学方法 实验演示、讨论与归纳、推导与列表对比、多媒体模拟展示 教学用具: CAI 课件、水平弹簧振子 教学过程 (一)引入新课 教师:前面两节课我们从运动学的角度研究了简谐运动的规律,不涉及它所受的力。 我们已知道:物体静止或匀速直线运动,所受合力为零;物体匀变速直线运动,所受合力为大小和方向都不变的恒力;物体匀速圆周运动,所受合力大小不变,方向总指向圆心。那么物体简谐运动时,所受合力有何特点呢? 这节课我们就来学习简谐运动的动力学特征。 (二)进行新课 1.简谐运动的回复力 (1)振动形成的原因(以水平弹簧振子为例) 问题:(如图所示)当把振子从它静止的位置O 拉 开一小段距离到A 再放开后,它为什么会在A -O -A ' 之间振动呢? 分析:物体做机械振动时,一定受到指向中心位 置的力,这个力的作用总能使物体回到中心位置,这 个力叫回复力。回复力是根据力的效果命名的,对于水平方向的弹簧振子,它是弹力。 ①回复力:振动物体受到的总能使振动物体回到平衡位置, 且始终指向平衡位

第一章第三节 简谐运动的公式描述

1-3简谐运动的公式描述(选修3-4) 教材分析:这节课的内容标准主要是用公式和图像描述简谐运动,与前两节一起完成《课程标准》中对简谐运动的要求,即“通过观察与分析,理解简谐运动的特征”。本节的内容比较抽象,过去的教学安排是从简谐运动的回复力出发,直接给出简谐运动的运动图像,现在不仅增加了简谐运动的运动公式,并且增加了运用参考圆得出简谐运动的位移公式以及各个量的物理意义的过程,并讨论公式的x-t 图像中表示,难度是比较大的。教学中应注意将教学难点分散,逐层进行教学,多采取学生动手练习、讨论和启发式讲述的方法,同时设计配套课件,节约一定时间,提高直观性。 教学目标: 1.知识与技能 (1)会用描点法画出简谐运动的运动图像。 (2)知道振动图象的物理含义,知道简谐运动的图像是一条正弦或余弦曲线。 (3)了解替代法学习简谐运动的位移公式的意义。 (4)知道简谐运动的位移公式为)(?ω+=t A x cos ,了解简谐运动位移公式中各 量的物理含义。 (5)了解位相、位相差的物理意义。 (6)能根据图像知道振动的振幅、周期和频率、位相。 2.过程与方法 (1)通过“讨论与交流”匀速圆周运动在“方向的投影与教材中给出的数据比较,描出x-t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图像一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易以及应用已学的知识解决问题。 (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点。 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简,科学地寻找解决问题的方法。 (2)培养学生合作学习、探究自主学习的学习习惯。 重难点分析: 1、得出简谐运动的位移公式、x-t 图象是重点。 2、运用参考圆来分析和理解简谐运动及图象,对各量的理解是难点。 教学过程: 1、复习回顾:简谐运动最基本的特征?(周期性) 2、提出问题:简谐运动的位移是如何随时间的变化做周期性变化的? 3、引导学生分析讨论得到简谐运动的运动公式。 (1)给出用频闪照相的方法得到的一组简谐运动的位移x 随时间t 变化的数据,引导学生找出大致规律。 (2)讲述分析参考圆的方法。

相关主题
文本预览
相关文档 最新文档