当前位置:文档之家› 01第一章 集合与简易逻辑

01第一章 集合与简易逻辑

01第一章  集合与简易逻辑
01第一章  集合与简易逻辑

第一章 集合与简易逻辑

一、基础知识

定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ?。例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用?来表示。集合分有限集和无限集两种。

集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。例如{有理数},}0{>x x 分别表示有理数集和正实数集。

定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ?,例如Z N ?。规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

定义3 交集,}.{B x A x x B A ∈∈=且

定义4 并集,}.{B x A x x B A ∈∈=或

定义5 补集,若},{,1A x I x x A C I A ?∈=?且则称为A 在I 中的补集。

定义6 差集,},{\B x A x x B A ?∈=且。

定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合

},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞

定理1 集合的性质:对任意集合A ,B ,C ,有:

(1));()()(C A B A C B A = (2))()()(C A B A C B A =;

(3));(111B A C B C A C = (4)).(111B A C B C A C =

【证明】这里仅证(1)、(3),其余由读者自己完成。

(1)若)(C B A x ∈,则A x ∈,且B x ∈或C x ∈,所以)(B A x ∈或)(C A x ∈,即)()(C A B A x ∈;反之,)()(C A B A x ∈,则)(B A x ∈或)(C A x ∈,即A x ∈且B x ∈或C x ∈,即A x ∈且)(C B x ∈,即).(C B A x ∈

(3)若B C A C x 11 ∈,则A C x 1∈或B C x 1∈,所以A x ?或B x ?,所以)(B A x ?,又I x ∈,所以)(1B A C x ∈,即)(111B A C B C A C ?,反之也有

.)(111B C A C B A C ?

定理2 加法原理:做一件事有n 类办法,第一类办法中有1m 种不同的方法,第二类办法中有2m 种不同的方法,…,第n 类办法中有n m 种不同的方法,那么完成这件事一共有n m m m N +++= 21种不同的方法。

定理3 乘法原理:做一件事分n 个步骤,第一步有1m 种不同的方法,第二步有2m 种不同的方法,…,第n 步有n m 种不同的方法,那么完成这件事一共有n m m m N ???= 21种不同的方法。

二、方法与例题

1.利用集合中元素的属性,检验元素是否属于集合。

例1 设},,{2

2Z y x y x a a M ∈-==,求证:

(1))(,12Z k M k ∈∈-;

(2))(,24Z k M k ∈∈-;

(3)若M q M p ∈∈,,则.M pq ∈

[证明](1)因为Z k k ∈-1,,且22)1(12--=-k k k ,所以.12M k ∈-

(2)假设)(24Z k M k ∈∈-,则存在Z y x ∈,,使2224y x k -=-,由于y x -和y x +有相同的奇偶性,所以))((22y x y x y x +-=-是奇数或4的倍数,不可能等于24-k ,假设不成立,所以.24M k ?-

(3)设Z b a y x b a q y x p ∈-=-=,,,,,2222,则))((2222b a y x pq --=

22222222a y b x b y a a --+=M ya xb yb xa ∈---=22)()(

(因为Z ya xb Z ya xa ∈-∈-,)。

2.利用子集的定义证明集合相等,先证B A ?,再证A B ?,则A =B 。

例2 设A ,B 是两个集合,又设集合M 满足

B A M B A B A M B M A ===,,求集合M (用A ,B 表示)。

【解】先证M B A ?)( ,若)(B A x ∈,因为B A M A =,所以M x M A x ∈∈, ,所以M B A ?)( ;

再证)(B A M ?,若M x ∈,则.B A M B A x =∈1)若A x ∈,则

B A M A x =∈;2)若B x ∈,则B A M B x =∈。所以).(B A M ? 综上,.B A M =

3.分类讨论思想的应用。

例3 }02{},01{},023{222=+-==-+-==+-=mx x x C a ax x x B x x x A ,若

C C A A B A == ,,求.,m a

【解】依题设,}2,1{=A ,再由012=-+-a ax x 解得1-=a x 或1=x ,

因为A B A = ,所以A B ?,所以A a ∈-1,所以11=-a 或2,所以2=a 或3。 因为C C A = ,所以A C ?,若?=C ,则082<-=?m ,即2222<<-m ,若?≠C ,则C ∈1或C ∈2,解得.3=m

综上所述,2=a 或3=a ;3=m 或2222<<-m 。

4.计数原理的应用。

例4 集合A ,B ,C 是I ={1,2,3,4,5,6,7,8,9,0}的子集,(1)若I B A = ,求有序集合对(A ,B )的个数;(2)求I 的非空真子集的个数。

【解】(1)集合I 可划分为三个不相交的子集;A \B ,B \A ,I B A , 中的每个元素恰属于其中一个子集,10个元素共有310种可能,每一种可能确定一个满足条件的集合对,所以集合对有310个。

(2)I 的子集分三类:空集,非空真子集,集合I 本身,确定一个子集分十步,第一步,1或者属于该子集或者不属于,有两种;第二步,2也有两种,…,第10步,0也有两种,由乘法原理,子集共有10242

10=个,非空真子集有1022个。

5.配对方法。 例5 给定集合},,3,2,1{n I =的k 个子集:k A A A ,,,21 ,满足任何两个子集的交集非空,并且再添加I 的任何一个其他子集后将不再具有该性质,求k 的值。

【解】将I 的子集作如下配对:每个子集和它的补集为一对,共得12

-n 对,每一对不能同在这k 个子集中,因此,12-≤n k ;其次,每一对中必有一个在这k 个子集中出现,否则,若

有一对子集未出现,设为C 1A 与A ,并设?=1A A ,则A C A 11?,从而可以在k 个子集中再添加A C 1,与已知矛盾,所以12

-≥n k 。综上,12-=n k 。

6.竞赛常用方法与例问题。 定理4 容斥原理;用A 表示集合A 的元素个数,则,B A B A B A -+=

C B A C B C A B A C B A C B A +---++=,

需要xy 此结论可以

推广到n 个集合的情况,即∑

∑∑∑=≠≤<<≤=+-=n i k j i j i n k j i j i i n i i A A A A A A A

111 .)1(11 n i i n A =--+-

定义8 集合的划分:若I A A A n = 21,且),,1(j i n j i A A j i ≠≤≤?= ,则这些子集的全集叫I 的一个n -划分。

定理5 最小数原理:自然数集的任何非空子集必有最小数。

定理6 抽屉原理:将1+mn 个元素放入)1(>n n 个抽屉,必有一个抽屉放有不少于1+m 个元素,也必有一个抽屉放有不多于m 个元素;将无穷多个元素放入n 个抽屉必有一个抽屉放有无穷多个元素。

例6 求1,2,3,…,100中不能被2,3,5整除的数的个数。

【解】 记})2(2,1001{},100,,3,2,1{x x x x A I 记为整除能被且≤≤== ,}5,1001{},3,1001{x x x C x x x B ≤≤=≤≤=,由容斥原理,

+??

????+??????=+---++=31002100C B A A C C B B A C B A C B A 7430100151001010061005100=??

????+??????-??????-??????-??????,所以不能被2,3,5整除的数有26=-C B A I 个。

例7 S 是集合{1,2,…,2004}的子集,S 中的任意两个数的差不等于4或7,问S 中最多含有多少个元素?

【解】将任意连续的11个整数排成一圈如右图所示。由题目条件可知每相邻两个数至多有一个属于S ,将这11个数按连续两个为一组,分成6组,其中一组只有一个数,若S 含有这11个数中至少6个,则必有两个数在同一组,与已知矛盾,所以S 至多含有其中5个数。又因为2004=182×11+2,所以S 一共至多含有182×5+2=912个元素,另一方面,当

},2004,10,7,4,2,1,11{N k r t t k r r S ∈≤=+==时,恰有912=S ,且S 满足题目条件,所以最少含有912个元素。

例8 求所有自然数)2(≥n n ,使得存在实数n a a a ,,,21 满足:

}.2

)1(,,2,1{}1}{-=≤<≤-n n n j i a a j i 【解】 当2=n 时,1,021==a a ;当3=n 时,3,1,0321===a a a ;当4=n 时, 1,5,2,04321====a a a a 。下证当5≥n 时,不存在n a a a ,,,21 满足条件。

令n a a a <<<= 210,则.2

)1(-=n n a n 所以必存在某两个下标j i <,使得1-=-n j i a a a ,所以1111--=-=-n n n a a a a 或21a a a n n -=-,即12=a ,所以1,2)1(1-=-=

-n n n a a n n a 或2)1(-=n n a n ,12=a 。 (ⅰ)若1,2

)1(1-=-=-n n n a a n n a ,考虑2-n a ,有22-=-n n a a 或22a a a n n -=-,即22=a ,设22-=-n n a a ,则121----=-n n n n a a a a ,导致矛盾,故只有.22=a 考虑3-n a ,有23-=-n n a a 或33a a a n n -=-,即33=a ,设23-=-n n a a ,则

02212a a a a n n -==---,推出矛盾,

设33=a ,则2311a a a a n n -==--,又推出矛盾,

所以4,22==-n a a n 故当5≥n 时,不存在满足条件的实数。 (ⅱ)若1,2

)1(2=-=a n n a n ,考虑2-n a ,有12-=-n n a a 或32a a a n n -=-,即23=a ,

这时1223a a a a -=-,推出矛盾,故21-=-n n a a 。考虑3-n a ,有23-=-n n a a 或-=-n n a a 33a ,即3a =3,于是123--=-n n a a a a ,矛盾。因此32-=-n n a a ,所以12211a a a a n n -==---,这又矛盾,所以只有22a a n =-,所以4=n 。故当5≥n 时,不存在满足条件的实数。

例9 设A ={1,2,3,4,5,6},B ={7,8,9,……,n },在A 中取三个数,B 中取两个数组成五个元素的集合i A ,.201,2,20,,2,1≤<≤≤=j i A A i j i 求n 的最小值。

【解】 .16min =n

设B 中每个数在所有i A 中最多重复出现k 次,则必有4≤k 。若不然,数m 出现k 次(4>k ),则.123>k 在m 出现的所有i A 中,至少有一个A 中的数出现3次,不妨设它是1,就有集合{1,121,,,b m a a }},,,,1{},,,,,1{365243b m a a b m a a ,其中61,≤≤∈i A a i ,为满足题意的集合。i a 必各不相同,但只能是2,3,4,5,6这5个数,这不可能,所以.4≤k 20个i A 中,B 中的数有40个,因此至少是10个不同的,所以16≥n 。当16=n 时,如下20个集合满足要求:

{1,2,3,7,8}, {1,2,4,12,14}, {1,2,5,15,16}, {1,2,6,9,10}, {1,3,4,10,11}, {1,3,5,13,14}, {1,3,6,12,15}, {1,4,5,7,9}, {1,4,6,13,16}, {1,5,6,8,11}, {2,3,4,13,15}, {2,3,5,9,11}, {2,3,6,14,16}, {2,4,5,8,10}, {2,4,6,7,11}, {2,5,6,12,13}, {3,4,5,12,16}, {3,4,6,8,9}, {3,5,6,7,10}, {4,5,6,14,15}。 例10 集合{1,2,…,3n }可以划分成n 个互不相交的三元集合},,{z y x ,其中z y x 3=+,求满足条件的最小正整数.n

【解】 设其中第i 个三元集为,,,2,1},,,{n i z y x i i =则1+2+…+∑==n i i z

n 1,43 所以∑==+n i i z n n 1

42)13(3。当n 为偶数时,有n 38,所以8≥n ,当n 为奇数时,有138+n ,所以5≥n ,当5=n 时,集合{1,11,4},{2,13,5},{3,15,6},{9,12,7},{10,14,8}满足条件,所以n 的最小值为5。

三、基础训练题

1.给定三元集合},,1{2

x x x -,则实数x 的取值范围是___________。

2.若集合},,012{2R x R a x ax x A ∈∈=++=中只有一个元素,则a =___________。 3.集合}3,2,1{=B 的非空真子集有___________个。

4.已知集合}01{},023{2=+==+-=ax x N x x x M ,若M N ?,则由满足条件的实

数a 组成的集合P =___________。

5.已知}{},2{a x x B x x A ≤=<=,且B A ?,则常数a 的取值范围是___________。

6.若非空集合S 满足}5,4,3,2,1{?S ,且若S a ∈,则S a ∈-6,那么符合要求的集合S 有___________个。

7.集合}14{}12{Z k k Y Z n n X ∈±=∈+=与之间的关系是___________。

8.若集合}1,,{-=xy xy x A ,其中Z x ∈,Z y ∈且0≠y ,若A ∈0,则A 中元素之和是___________。

9.集合}01{},06{2=-==-+=mx x M x x x P ,且P M ?,则满足条件的m 值构成

的集合为___________。

10.集合},9{},,12{2R x x y y B R x x y x A ∈+-==∈+==+,则

=B A ___________。

11.已知S 是由实数构成的集合,且满足1)2;1S ?)

若S a ∈,则S a

∈-11。如果?≠S ,S 中至少含有多少个元素?说明理由。

12.已知B A C a x y y x B x a y y x A =+====},),{(},),{(,又C 为单元素集合,求实数a 的取值范围。

四、高考水平训练题

1.已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,=y ___________。

2.},9,1{)()(},2{,,},9,8,7,6,5,4,3,2,1{11==??=B C A C B A I B I A I

}8,6,4{)(1=B A C ,则=)(1B C A ___________。

3.已知集合}121{},0310{2-≤≤+=≥-+=m x m x B x x x A ,当?=B A 时,实

数m 的取值范围是___________。

4.若实数a 为常数,且=??

????????=+-=∈a x ax x A a 则,1112___________。 5.集合}1,12,3{},3,1,{22+--=-+=m m m N m m M ,若}3{-=N M ,则

=m ___________。

6.集合},27{},,35{++∈+==∈+==N y y b b B N x x a a A ,则B A 中的最小元素是___________。

7.集合}0,,{},,,{2222y x y x B xy y x y x A -+=+-=,且A =B ,则=+y x ___________。

8.已知集合}04{},021{<+=<-+=px x B x

x x

A ,且A

B ?,则p 的取值范围是___________。

9.设集合},05224),{(},01),{(22=+-+==--=y x x y x B x y y x A }),{(b kx y y x C +==,问:是否存在N b k ∈,,使得?=C B A )(,并证明你的结论。

10.集合A 和B 各含有12个元素,B A 含有4个元素,试求同时满足下列条件的集合C 的个数:1)B A C ?且C 中含有3个元素;2)?≠A C 。

11.判断以下命题是否正确:设A ,B 是平面上两个点集,}),{(222r y x y x C r ≤+=,若

对任何0≥r ,都有B C A C r r ?,则必有B A ?,证明你的结论。

五、联赛一试水平训练题

1.已知集合A B B x mx x m z z B x x A ??≠>+-==<=且,},2,1

1{},0{2,则实数m 的取值范围是___________。

2.集合}12,2,,3,2,1{+=n n A 的子集B 满足:对任意的B y x B y x ?+∈,,,则集合B 中元素个数的最大值是___________。

3.已知集合}2,,{},,,{2d a d a a Q aq aq a P ++==,其中0≠a ,且R a ∈,若P =Q ,则

实数=q ___________。

4.已知集合}1),{(},0,),{(y x xy y x B a a y x y x A +=+=>=+=,若B A 是平面上正八边形的顶点所构成的集合,则=a ___________。

5.集合},,,4812{Z n l m l n m u u M ∈++==,集合

},,,121620{Z r q p r q p u u N ∈++==,则集合M 与N 的关系是___________。

6.设集合}1995,,3,2,1{ =M ,集合A 满足:M A ?,且当A x ∈时,A x ?15,则A 中元素最多有___________个。

7.非空集合}223{},5312{≤≤=-≤≤+=x x B a x a x A ,≤则使B A A ?成立的所有a 的集合是___________。

8.已知集合A ,B ,aC (不必相异)的并集},,2,1{n C B A =, 则满足条件的有序三元组(A ,B ,C )个数是___________。

9.已知集合}1),{(},1),{(},1),{(22=+==+==+=y x y x C ay x y x B y ax y x A ,问:

当a 取何值时,C B A )(为恰有2个元素的集合?说明理由,若改为3个元素集合,结论如何?

10.求集合B 和C ,使得}10,,2,1{ =C B ,并且C 的元素乘积等于B 的元素和。

11.S 是Q 的子集且满足:若Q r ∈,则0,,=∈-∈r S r S r 恰有一个成立,并且若S b S a ∈∈,,则S b a S ab ∈+∈,,试确定集合S 。

12.集合S={1,2,3,4,5,6,7,8,9,0}的若干个五元子集满足:S 中的任何两个元素至多出现在两个不同的五元子集中,问:至多有多少个五元子集?

六、联赛二试水平训练题

1.321,,S S S 是三个非空整数集,已知对于1,2,3的任意一个排列k j i ,,,如果i S x ∈,j S y ∈,则i S y x ∈-。求证:321,,S S S 中必有两个相等。

2.求证:集合{1,2,…,1989}可以划分为117个互不相交的子集)117,,2,1( =i A i ,使得(1)每个i A 恰有17个元素;(2)每个i A 中各元素之和相同。

3.某人写了n 封信,同时写了n 个信封,然后将信任意装入信封,问:每封信都装错的情况有多少种?

4.设2021,,,a a a 是20个两两不同的整数,且整合}201{≤≤≤+j i a a j i 中有201个不同的元素,求集合}201{≤<≤-j i a a j i 中不同元素个数的最小可能值。

5.设S 是由n 2个人组成的集合。求证:其中必定有两个人,他们的公共朋友的个数为偶数。

6.对于整数4≥n ,求出最小的整数)(n f ,使得对于任何正整数m ,集合

}1,,1,{-++n m m m 的任一个)(n f 元子集中,均有至少3个两两互质的元素。

7.设集合S={1,2,…,50},求最小自然数k ,使S 的任意一个s 元子集中都存在两个不同的数a 和b ,满足ab b a )(+。

8.集合+∈=N k k X },6,,2,1{ ,试作出X 的三元子集族&,满足:

(1)X 的任意一个二元子集至少被族&中的一个三元子集包含;

(2))k 的元素个数表示&&(6&2

=。 9.设集合}21

{,m ,,A =,求最小的正整数m ,使得对A 的任意一个14-分划1421,,,A A A ,一定存在某个集合)141(≤≤i A i ,在i A 中有两个元素a 和b 满足

b a b 3

4≤<。

集合与简易逻辑知识点归纳(1)

{}9B =,;B A =B B = )()(); U U B A B =? )()()U U B A B =? ()()card A B card A =+ ()()card B card A B - ()U A =e()U A =e13设全集,2,3,4A = {3,4,5} B = {4,7,8}, 求:(C U A )∩ B), (C U A)(A ∪B), C U B). 有两相)(,2121x x x x <有两相等a b x x 221- ==无实根 有意义的

①一个命题的否命题为真,它的逆 命题一定为真. (否命题?逆命 题.)②一个命题为真,则它的逆 否命题一定为真.(原命题?逆 否命题.) 4.反证法是中学数学的重要方法。 会用反证法证明一些代数命题。 充分条件与必要条件 答案见下一页

数学基础知识与典型例题(第一章集合与简易逻辑)答案 例1选A; 例2填{(2,1)} 注:方程组解的集合应是点集. 例3解:∵{}9A B =,∴9A ∈.⑴若219a -=,则5a =,此时{}{}4,9,25,9,0,4A B =-=-, {}9,4A B =-,与已知矛盾,舍去.⑵若29a =,则3a =±①当3 a =时,{}{}4,5,9,2,2,9A B =-=--.B 中有两个元素均为2-,与集合中元素的互异性矛盾,应舍去.②当3a =-时,{}{}4,7,9,9,8,4A B =--=-,符合题意.综上所述,3a =-. [点评]本题考查集合元素基本特征──确定性、互异性、无序性,切入点是分类讨论思想,由于集 合中元素用字母表示,检验必不可少。 例4C 例5C 例6①?,②ü,③ü,④ 例7填2 例8C 例9? 例10解:∵M={y|y =x 2+1,x ∈R}={y |y ≥1},N={y|y =x +1,x ∈R}={y|y ∈R}∴ M∩N=M={y|y ≥1} 注:在集合运算之前,首先要识别集合,即认清集合中元素的特征。M 、N 均为数集,不能误认为是点集,从而解方程组。其次要化简集合。实际上,从函数角度看,本题中的M ,N 分别是二次函数和一次函数的值域。一般地,集合{y |y =f (x ),x ∈A}应看成是函数y =f (x )的值域,通过求函数值域化简集合。此集合与集合{(x ,y )|y=x 2+1,x ∈R}是有本质差异的,后者是点集,表示抛物线y =x 2+1上的所有点,属于图形范畴。集合中元素特征与代表元素的字母无关,例如{y|y ≥1}={x |x ≥1}。 例11填?注:点集与数集的交集是φ. 例12埴?,R 例13解:∵C U A = {1,2,6,7,8} ,C U B = {1,2,3,5,6}, ∴(C U A)∩(C U B) = {1,2,6} ,(C U A)∪(C U B) = {1,2,3,5,6,7,8}, A ∪ B = {3,4,5,7,8},A∩B = {4},∴ C U (A ∪B) = {1,2,6} ,C U (A∩B) = {1,2,3,5,6,7,8} 例145,6a b ==-; 例15原不等式的解集是{}37|<<-x x 例16 53|332 2x R x x ??∈-<-+-->+?? ≥或,即3344123x x x x ? 2或x <31,∴原不等式的解集为{x | x >2或x <31}.方法2:(整体换元转化法)分析:把右边看成常数c ,就同)0(>>+c c b ax 一样∵|4x -3|>2x +1?4x -3>2x +1或4x -3<-(2x +1) ? x >2 或x < 31,∴原不等式的解集为{x | x >2或x <3 1}. 例18分析:关键是去掉绝对值. 方法1:零点分段讨论法(利用绝对值的代数定义) ①当1-x ,∴}32 1 |{<2 1}. 方法2:数形结合:从形的方面考虑,不等式|x -3|-|x +1|<1表示数轴上到3和-1两点的距离之差小于1的点 ∴原不等式的解集为{x |x > 2 1 }. 例19答:{x |x ≤0或1??????????-<>-<>≤≤--≠????? ? ? ???>+-<+-≤-+≠+13 21 0121 0)1(2230)1(24020 12k k k k k k k k k k k k k 或或. 1 3 212<<-<<-?k k 或∴实数k 的取值范围是{k|-2?=+-R 的解集为函数在上恒大于 22,2, |2||2|2. 2,2,1|2|121.,,2 11 0.,, 1.(0,][1,). 22 x c x c x x c y x x c c c x c x x c R c c P c P c c -?+-=∴=+-??>?> <≥?+∞R ≥函数在上的最小值为不等式的解集为如果正确且Q 不正确则≤如果不正确且Q 正确则所以的取值范围为 例26答:552x x x >?><或. 例27答既不充分也不必要 解:∵“若 x + y =3,则x = 1或y = 2”是假命题,其逆命题也不成立. ∴逆否命题: “若12x y ≠≠或,则3x y +≠”是假命题, 否命题也不成立. 故3≠+y x 是12x y ≠≠或的既不充分也不必要条件. 例28选B 例29选A

集合与简易逻辑知识点整理

集合与简易逻辑 知识点整理 班级: 姓名: 1.集合中元素的性质(三要素): ; ; 。 2.常见数集:自然数集 ;自然数集 ;正整数集 ; 整数集 ;有理数集 ;实数集 。 3.子集:A B ?? ; 真子集:A B ≠ ?? ; 补(余)集:A C B ? ; 【注意】空集是任意集合的子集,是任意非空集合的真子集。 4.交集:A B ?? ; 并集:A B ?? 。 笛摩根定律:()U C A B ?= ;()U C A B ?= 。 性质:A B A ?=? ;A B A ?=? 。 5.用下列符号填空: "","","","","",""≠ ∈???=≠ 0 N ;{}0 R ;φ {}0;{}1,2 {}(1,2);{}0x x ≥ {} 0y y ≥ 6.含绝对值的不等式的解法:【注意】含等号时端点要取到。 x a < (0)a >的解集是 ;x a > (0)a >的解集是 。 (0)ax b c c +<>? a x b <+< ;(0)ax b c c +<

一元二次不等式2 0ax bx c ++>(0)a ≠恒成立? 。 一元二次不等式2 0ax bx c ++≥(0)a ≠恒成立? 。 9.简单分式不等式的解法: () 0()f x g x > ?()()0f x g x ?>?()0()0f x g x >??>?或()0()0f x g x ;则p q 是的 条件; 若,p q q p ≠>?;则p q 是的 条件; 若p q ?;则p q 是的 条件; 若,p q q p ≠>≠>;则p q 是的 条件。

集合与简易逻辑试卷及详细答案

集合与简易逻辑 一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求) 1.集合M={x|lg x>0},N={x|x2≤4},则M∩N=( ) A.(1,2) B.[1,2) C.(1,2] D.[1,2] 2.已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表示的集合等于() A.{-1,2} B.{-1,0} C.{0,1} D.{1,2} 3.已知Z A={x∈Z|x<6},Z B={x∈Z|x≤2},则A与B的关系是() A.AB B.AB C.A=B D.Z A Z B 4.已知集合A为数集,则“A∩{0,1}={0}”是“A={0}”的() A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 5.下列选项中,p是q的必要不充分条件的是() A.p:a+c>b+d,q:a>b且c>d

B.p:a>1,b>1,q:f(x)=a x-b(a>0,且a≠1)的图像不过第二象限 C.p:x=1,q:x2=x D.p:a>1,q:f(x)=log a x(a>0,且a≠1)在(0,+∞)上为增函数 6.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数.则下列命题中为真命题的是() A.(非p)或q B.p且q C.(非p)且(非q) D.(非p)或(非q) 7.下列命题中,真命题是() B.x∈R,2x>x2 C.a+b=0的充要条件是a b=-1 D.a>1,b>1是ab>1的充分条件 8.已知命题p:“x>3”是“x2>9”的充要条件,命题q:“a c2>b c2”是“a>b”的充要条件,则() A.“p或q”为真B.“p且q”为真 C.p真q假D.p,q均为假 9.命题p:x∈R,x2+1>0,命题q:θ∈R,sin2θ+cos2θ=,则下列命题中真命题是() A.p∧q B.(非p)∧q C.(非p)∨q D.p∧(非q) 10.已知直线l1:x+ay+1=0,直线l2:ax+y+2=0,则命题“若a=1或a=-1,则直线l1与l2平行”的否命题为() A.若a≠1且a≠-1,则直线l1与l2不平行 B.若a≠1或a≠-1,则直线l1与l2不平行 C.若a=1或a=-1,则直线l1与l2不平行 D.若a≠1或a≠-1,则直线l1与l2平行 11.命题“x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是()

高中数学复习讲义 第一章 集合与简易逻辑

高中数学复习讲义 第一章 集合与简易逻辑 第1课时 集合的概念及运算 【考点导读】 1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用. 2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义. 3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用. 4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想. 【基础练习】 1.集合用列举法表 2.设集合,,则 3.已知集合,,则集合_ 4.设全集,集合,,则实数a 的值为_____. 【范例解析】 例.已知为实数集,集合.若,或,求集合B . 【反馈演练】 1.设集合,,,则=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =,则P +Q 中元素的个数是______个. 3.设集合,. (1)若,求实数a 的取值范围; {(,)02,02,,}x y x y x y Z ≤≤≤<∈{21,}A x x k k Z ==-∈{2,}B x x k k Z ==∈A B ?={0,1,2}M ={2,}N x x a a M ==∈M N ?={1,3,5,7,9}I ={1,5,9}A a =-{5,7}I C A =R 2{320}A x x x =-+≤R B C A R ?={01R B C A x x ?=<<23}x <<{ }2,1=A {}3,2,1=B {}4,3,2=C ()C B A U ?},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q 2{60}P x x x =--<{23}Q x a x a =≤≤+P Q P ?=

集合与简易逻辑知识点

集合、简易逻辑 知识梳理: 1、 集合:某些指定的对象集在一起就构成一个集合。集合中的每一个对象称为该集合的元素。 元素与集合的关系:A a ∈或A a ? 集合的常用表示法: 列举法 、 描述法 。集合元素的特征: 确定性 、 互异性 、 无序性 。 常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ?B 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ?B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 注:空集是任何集合的子集。是非空集合的真子集 结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ?即:B A ?=}{B x A x x ∈∈且,|。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ?即:B A ?=}{B x A x x ∈∈或,|。 记住两个常见的结论:B A A B A ??=?;A B A B A ??=?;

集合与简易逻辑测试题

[课题]第一章集合与简易逻辑测试题 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合A={x|x≤},a=3,则( ) A.a A B.a A C.{a}∈A D.{a} A 2.集合M={x|x=3k-2,k∈Z},Q={y|y=3l+1,l∈Z},S={z|z=6m+1,m∈Z}之间的关系是( ) A.S Q M B.S=Q M C.S Q=M D.S Q=M 3.若A={1,3,x},B={x2,1},且A∪B=A,则这样x的不同取值有( ) A.1个 B.2个 C.3个 D.4个 4.符合条件{a}P{a,b,c}的集合P的个数是( ) A.2 B.3 C.4 D.5 5.若A={x|x2-4x+3<0},B={x|x2-6x+8<0},C={x|2x2-9x+a<0},(A∩B)C,则a的取值范围是( ) A.a≤10 B.a≥9 C.a≤9 D.9≤a≤10 6.若a>0,使不等式|x-4|+|3-x|<a在R上的解非空,则a的值必为( ) A.0<a<1 B.0<a≤1 C.a>1 D.a≥1 7.集合A={x|x2-5x+4≤0},B={x|x2-5x+6≥0},则A∩B= ( ) A.{x|1≤x≤2,或3≤x≤4} B.{x|1≤x≤2,且3≤x≤4} C.{1,2,3,4} D.{x|1≤x≤4或2≤x≤3} 8.如果方程x2+(m-3)x+m的两根都是正数,则m的取值范围是( ) A.0<m≤3 B.m≥9或m≤1 C.0<m≤1 D.m>9 9.由下列各组命题构成“P或Q”,“P且Q”,“非P”形式的复合命题中,“P或Q”为真命题,“P且Q”为假命题,“非P”为真命题的是( )

2013高考数学基础检测:01专题一-集合与简易逻辑

2013高考数学基础检测:01专题一-集合与简易逻辑

专题一 集合与简易逻辑 一、选择题 1.若A={x ∈Z|2≤22-x <8}, B={x ∈R||log 2x|>1}, 则A ∩(C R B)的元素个数为( ) A .0 B .1 C .2 D .3 2.命题“若x 2<1,则-11或x<-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1 3.若集合M={0, 1, 2}, N={(x, y)|x-2y+1≥0且x-2y-1≤0, x 、y∈M},则N 中元素的个数为( ) A .9 B .6 C .4 D .2 4.对于集合M 、N ,定义M-N={x|x∈M,且x ?N},M ○+N=(M-N)∪(N -M).设A={y|y=x 2-3x, x∈R}, B={y|y=-2x , x∈R},则A ○+B=( ) A .],094(- B . )0,4 9[- C .),0()49,(+∞--∞ D .),0[)4 9,(+∞--∞ 5.命题“对任意的x∈R ,x 3-x 2+1≤0”的否定是( )

{x|x>0}=ф,则实数m 的取值范围是_________. 10.(2008年高考·全国卷Ⅱ)平面内的一个四边形为平行四边形的充分条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件①_____________________; 充要条件②_____________________.(写出你认为正确的两个充要条件) 11.下列结论中是真命题的有__________(填上序号即可) ①f(x)=ax 2+bx+c 在[0, +∞)上单调递增的一 个充分条件是-2a b <0; ②已知甲:x+y ≠3;乙:x ≠1或y ≠2.则甲是乙的充分不必要条件; ③数列{a n }, n ∈N * 是等差数列的充要条件是 P n (n, n S n )共线. 三、解答题 12.设全集U=R ,集合A={x|y=log 2 1 (x+3)(2-x)}, B={x|e x-1 ≥1}. (1)求A ∪B ; (2)求(C U A)∩B .

高一数学上册第一章集合与简易逻辑精品教案

课 题:1.1集合-集合的概念(1) 教学过程: 一、复习引入: 1.集合论的创始人——康托尔(德国数学家)(见附录); 2.“物以类聚”,“人以群分”; 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的? (2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素. 定义:一般地,某些指定的对象集在一起就成为一个集合. 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集)。 (2)元素:集合中每个对象叫做这个集合的元素。 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合。记作N ,{} ,2,1,0=N (2)正整数集:非负整数集内排除0的集N *或N + {} ,3,2,1*=N (3)整数集:全体整数的集合。记作Z , {} ,,, 210±±=Z (4)有理数集:全体有理数的集合记作Q , {}整数与分数 =Q (5)实数集:全体实数的集合。记作R {} 数轴上的点所对应的数 =R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括 数0 (2)非负整数集内排除0的集,记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示, 例如,整数集内排除0的集,表示成Z * 3、元素对于集合的隶属关系 (1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A (2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ? 4、集合中元素的特性

集合与简易逻辑知识点

高考数学概念方法题型易误点技巧总结(一) 集合与简易逻辑 基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。 1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如(1)设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若 {0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。 (答:8)(2)设{(,)|,}U x y x R y R =∈∈,{(,)|20}A x y x y m =-+>,{(,)|B x y x y n =+-0}≤,那么点)()3,2(B C A P u ∈的充要条件是________(答:5,1<->n m );(3)非空集合 }5,4,3,2,1{?S ,且满足“若S a ∈,则S a ∈-6” ,这样的S 共有_____个(答:7) 2.遇到A B =?时,你是否注意到“极端”情况:A =?或B =?;同样当A B ?时,你是否忘记?=A 的情形?要注意到?是任何集合的子集,是任何非空集合的真子集。如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,则实数a =______.(答:10,1,2 a =) 3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数 依次为,n 2,12-n ,12-n .22-n 如满足{1,2}{1,2,3,4,5}M ??≠集合M 有______个。 (答:7) 4.集合的运算性质: ⑴A B A B A =??; ⑵A B B B A =??;⑶A B ?? u u A B ?痧; ⑷u u A B A B =???痧; ⑸u A B U A B =??e; ⑹()U C A B U U C A C B =;⑺()U U U C A B C A C B =.如设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___.(答:{2,3}A =,{2,4}B =) 5. 研究集合问题,一定要理解集合的意义――抓住集合的代表元素。如:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,如 (1)设集合{|M x y ==,集合N ={}2|,y y x x M =∈,则M N =___(答: [4,)+∞) ;(2)设集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+, }R λ∈,则=N M _____(答:)}2,2{(--) 6. 数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。如已知函 数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使 0)(>c f ,求实数p 的取值范围。 (答:3(3,)2 -) 7.复合命题真假的判断。“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”。如在下列说法中:⑴“p 且q ”为真是“p 或q ”为真的充分不必要条件;⑵“p 且q ”为假是“p 或

01集合与简易逻辑

北大附中2013届周练2 (时间120分钟满分150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.(2011年北京)已知集合A={x|x≠1,x∈R},A∪B=R,则集合B不可能是() A.{x|x>-2,x∈R}B.{x|x<-2,x∈R} C.{x|x≠-2,x∈R} D.{0,-2,1} 2.(2011年湖北八校联考)“a=-1”是“直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直”的 A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 3.(2011年黄冈3月质检)已知全集I={1,2,3,4,5,6,7},M={3,4,5},N={1,3,6},则集合{2,7}等于() A.(?I M)∩(?I N) B.(?I M)∪(?I N) C.M∪N D.M∩N 4.“a2+b2≠0”的含义为() A.a,b不全为0;B.a,b全不为0 C.a,b至少有一个为0;D.a不为0且b为0,或b不为0且a为0 5.设命题:p:若a>b,则1 a< 1 b;q:若 1 ab<0,则ab<0;给出以下3个复合命题:①p∧q; ②p∨q③?p∧?q.其中真命题个数为() A.0个B.1个C.2个D.3个 6.已知全集U=A∪B中有m个元素,(?U A)∪(?U B)中有n个元素.若A∩B非空,则A∩B 的元素个数为() A.mn B.m+n C.n-m D.m-n 7.命题“存在一个三角形,内角和不等于180°”的否定为() A.存在一个三角形,内角和等于180°;B.所有三角形,内角和都等于180° C.所有三角形,内角和都不等于180°;D.很多三角形,内角和不等于180° 8.已知条件p:(x+1)2>4,条件q:x>a,且?p是?q的充分而不必要条件,则a的取值范围是() A.a≥1 B.a≤1 C.a≥-3 D.a≤-3 9.(2011年湖北八市三月调考)设集合M={y|y=2x,x<0},N={y|y=log2x,0

(完整版)集合与简易逻辑测试题(高中)

金华中学2010届高三第一轮复习《集合与简易逻辑》单元测试 一、单项选择题(本大题共10小题,每小题5分) 1.设合集U=R ,集合}1|{},1|{2 >=>=x x P x x M ,则下列关系中正确的是( ) A .M=P B .M P C . P M D .M ?P 2.如果集合{ }8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B , 那么( A U )B I 等于 ( ) (A){}5 (B) { }8,7,6,5,4,3,1 (C) {}8,2 (D) {}7,3,1 3.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若 }6,2,1{=Q ,则P+Q 中元素的个数是( ) ( ) (A) 6 (B) 7 (C) 8 (D) 9 4. 设集合{}21|<≤-=x x A ,{}a x x B <=|,若φ≠B A I ,则a 的取值 范围是( ) (A )2a (C )1->a (D )21≤<-a 5. 集合A ={x |1 1 +-x x <0},B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是 ( ) (A )-2≤b <0 (B )0<b ≤2 (C )-3<b <-1 (D )-1≤b <2 6.设集合A ={x | 1 1 +-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠φ ”的( ) (A )充分不必要条件(B )必要不充分条件(C)充要条件 (D)既不充分又不必要条件 7. 已知23:,522:>=+q p ,则下列判断中,错误..的是 ( ) (A)p 或q 为真,非q 为假 (B) p 或q 为真,非p 为真 (C)p 且q 为假,非p 为假 (D) p 且q 为假,p 或q 为真 8.a 1、b 1、c 1、a 2、b 2、c 2均为非零实数,不等式a 1x 2+b 1x +c 1<0和a 2x 2 +b 2x +c 2<0的解集分别为集合M 和N ,那么“111222 a b c a b c ==”是“M =N ” ( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 9.“2 1 = m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的 ( ) (A)充分必要条件 (B)充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件 10. 已知01a b <<<,不等式lg()1x x a b -<的解集是{|10}x x -<<,则,a b 满足的关系是( ) (A )1110a b -> (B )1110a b -= (C )1110a b -< (D )a 、b 的关系不能确定 二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上) 11.对任意实数a ,b ,c ,给出下列命题: ①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数” 的充要条件 ③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中为真命题的是 12.若集合{ }x A ,3,1=,{}2 ,1x B =,且{}x B A ,3,1=Y ,则=x 13.两个三角形面积相等且两边对应相等,是两个三角形全等的 条件 14.若0)2)(1(=+-y x ,则1=x 或2-=y 的否命题是 15.已知集合M ={x |1≤x ≤10,x ∈N },对它的非空子集A ,将A 中每个元素k ,都乘以(-1)k 再求和(如A={1,3,6},可求得和为(-1)·1+(-1)3·3+(-1)6·6=2, 则对M 的所有非空子集,这些和的总和是 . 三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)

第一章 集合与简易逻辑1

第一章 集合与简易逻辑 一、集合的定义小测 姓名 : 座号: 1、下列对象中不能组成集合的是( B ) A.所有小于10的自然数; B.某班个子高的同学 C.方程012=-x 的所有解 D.不等式02>-x 的所有解。 2、指出下列各集合中,( C )集合是空集。 A.方程60x +=的解集; B.方程012=-x 的解集 C.大于-4且小于-2的所有偶数组成的集合 D.方程226>0x x -+的解集 3、指出下列各集合中,(B )是空集,( A)是有限集,(C D )是无限集. A.{|10}x x += B.2{|10}x x += C.{(,)|}x y x y = D.{|50}x x -≤< 4、用符号“∈”或“?”填空 1)3- ? N 5.0 ? N 3 ∈ N 2)5.1 ? Z 5- ∈Z 3 ∈ Z 3)2.0- ∈ Q π ?Q 21.7∈ Q 4) 5.1∈ R 2.1- ∈ R π ∈ R 5、用列举法表示下列各集合; 1)大于-4且小于12的所有偶数组成的集合{2,0,2,4,6,8,10}- ;

2)方程2560x x -+=的解集 {2,3} ; 6、描述法表示下列各集合 1)小于5的所有整数组成的集合 {|5,}x x x Z <∈ ; 2)不等式210x +≤的解集 1{|}2 x x ≤- ; 3)所有的奇数组成的集合 {|21,}x x k k Z =+∈ ; 4)在直角坐标系中,由x 轴上所有的点组成的集合 {(,)|0}x y y = ; 5)在直角坐标系中,由第一象限的所有点组成的集合 {(,)|0,0}x y x y >> 。 7、用列举法表示下列各集合; 1)方程2340x x --=的解集;2)方程430x +=的解集; {1,4}- 3{}4- 3)由数1,4,9,16,25组成的集合;4)所有的正奇数组成的集合 {1,4,9,16,25} {|21,}x x k k N =+∈ 7、描述法表示下列各集合 1)大于3的所有实数组成的集合 {|3}x x > ; 2)小于20的所有自然数组成的集合 {|20,}x x x N <∈ ; 3)大于5的所有偶数组成的集合 {|2,,2}x x k k N k =∈> ; 4)不等式450x -<的解集 5{|}4x x < ; 5)由第四象限所有点组成的集合 {(,)|0,0}x y x y >< ; 8、用列举法表示下列各集合; 1)小于5的所有正整数组成的集合; {1,2,3,4}

必修一集合与简易逻辑知识点经典总结

集合、简易逻辑 集合知识梳理: 1、 集合:某些指定的对象集在一起就构成一个集合。集合中的每一个对象称为该集合的元素。 元素与集合的关系:A a ∈或A a ? 集合的常用表示法: 列举法 、 描述法 。集合元素的特征: 确定性 、 互异性 、 无序性 。 常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ?B 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为 A ? B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 注:空集是任何集合的子集。是非空集合的真子集 结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ?即:B A ?=}{B x A x x ∈∈且,|。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ?即:B A ?=}{B x A x x ∈∈或,|。 记住两个常见的结论:B A A B A ??=?;A B A B A ??=?; 命题知识梳理: 1、命题:可以判断真假的语句叫做命题。(全称命题 特称命题) ⑴全称量词——“所有的”、“任意一个”等,用“?”表示; 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

第一章集合与简易逻辑小结

第一章集合与简易逻辑小结 Summary of the first chapter set and simple l ogic

第一章集合与简易逻辑小结 前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。本教案根据数学课程标准的要求和针对教学对象是高中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。便于学习和使用,本文下载后内容可随意修改调整及打印。 教学目的:⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.教学重点: 1.有关集合的基本概念; 2.逻辑联结词“或”、“且”、“非”与充要条件教学难点: 1.有关集合的各个概念的含义以及这些概念相互之间的区别与联系; 2.对一些代数命题真假的判断. 授课类型:复习授课课时安排:1课时教具:多媒体、实物投影仪内容分析:这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合

部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识.教学过程:一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:【知识点与学习目标】:【高考评析】集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法.【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.【数学思想】 1、等价转化的数学思想; 2、求补集的思想; 3、分类思想; 4、数形结合思想.【解题规律】 1、如何解决与集合的运算有关的问题: 1)对所给的集合进行尽可能的化简; 2)有意识应用维恩图来寻找各集合之间的关系; 3)有意识运用数轴或其它方法来直观显示各集合的元素. 2.如何解决与简易逻辑有关的问题: 1)力求寻找构成此复合命题的简单命题; 2)利用子集与推出关系的联系将问题转化为集合问题二、基本知识点:集合: 1、集合中的元素属性:

第一章集合与简易逻辑(教案)

1 高中数学第一册(上) 第一章集合与简易逻辑 ◇教材分析 【知识结构】本章知识主要分为集合、简单不等式的解法(可看做集合的化简)、简易逻辑三部分: 【知识点与学习目标】 【高考评析】 集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法. ◇学习指导 【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆. 【数学思想】1.等价转化的数学思想;2.求补集的思想; 3.分类思想;4.数形结合思想.

2 【解题规律】 1.如何解决与集合的运算有关的问题? 1)对所给的集合进行尽可能的化简; 2)有意识应用维恩图来寻找各集合之间的关系; 3)有意识运用数轴或其它方法来直观显示各集合的元素. 2.如何解决与简易逻辑有关的问题? 1)力求寻找构成此复合命题的简单命题; 2)利用子集与推出关系的联系将问题转化为集合问题. 引言 通过一个实际问题,目的是为了引出本章的内容。 1、分析这个问题,要用数学语言描述它,就是把它数学化,这就需要集合与逻辑的知识; 2、要解决问题,也需要集合与逻辑的知识. 在教学时,主要是把这个问题本身讲清楚,点出为什么“回答有20名同学参赛”不一定对.而要进一步认识、讨论这个问题,就需要运用本章所学的有关集合与逻辑的知识了. §1.1集合 〖教学目的〗通过本小节的学习,使学生达到以下要求: (1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义; (3)初步了解有限集、无限集、空集的意义. 〖教学重点与难点〗本小节的重点是集合的基本概念与表示方法;难点是运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合. 〖教学过程〗 ☆本小节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子. 1、集合的概念: 在初中代数里学习数的分类时,就用到“正数的集合”,“负数的集合”等此外,对于一元一次不等式2x一1>3,所有大于2的实数都是它的解.我们也可以说,这些数组成这个不等式的解的集合,简称为这个不等式的解集. 在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合. 一般地,某些指定的对象集在一起就成为一个集合,也简称集.这句话,只是对集合概念的描述性说明.集合则是集合论中原始的、不定义的概念.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.例如,“我校篮球队的队员”组成一个集合;“太平洋、大西洋、印度

高中数学竞赛标准讲义第一章集合与简易逻辑

第一章 集合与简易逻辑 一、基础知识 定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记 为A x ∈,否则称x 不属于A ,记作A x ?。例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、 整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用?来表示。集合分有限集和无限集两种。 集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。例如{有理数},}0{>x x 分别表示有理数集和正实数集。 定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ?,例如Z N ?。规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。 定义3 交集,}.{B x A x x B A ∈∈=且I 定义4 并集,}.{B x A x x B A ∈∈=或Y 定义5 补集,若},{,1A x I x x A C I A ?∈=?且则称为A 在I 中的补集。 定义6 差集,},{\B x A x x B A ?∈=且。 定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合 },,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞ 定理1 集合的性质:对任意集合A ,B ,C ,有: (1));()()(C A B A C B A I Y I Y I = (2))()()(C A B A C B A Y I Y I Y =; (3));(111B A C B C A C I Y = (4)).(111B A C B C A C Y I = 【证明】这里仅证(1)、(3),其余由读者自己完成。 (1)若)(C B A x Y I ∈,则A x ∈,且B x ∈或C x ∈,所以)(B A x I ∈或)(C A x I ∈,即)()(C A B A x I Y I ∈;反之,)()(C A B A x I Y I ∈,则)(B A x I ∈或)(C A x I ∈,即A x ∈且B x ∈或C x ∈,即A x ∈且)(C B x Y ∈,即).(C B A x Y I ∈ (3)若B C A C x 11Y ∈,则A C x 1∈或B C x 1∈,所以A x ?或B x ?,所以)(B A x I ?,又I x ∈,所以)(1B A C x I ∈,即)(111B A C B C A C I Y ?,反之也有 .)(111B C A C B A C Y I ? 定理2 加法原理:做一件事有n 类办法,第一类办法中有1m 种不同的方法,第二类办法中有2m 种不同的方法,…,第n 类办法中有n m 种不同的方法,那么完成这件事一共有n m m m N +++=Λ21种不同的方法。 定理3 乘法原理:做一件事分n 个步骤,第一步有1m 种不同的方法,第二步有2m 种不同的方法,…,第n 步有n m 种不同的方法,那么完成这件事一共有n m m m N ???=Λ21种不同的方法。 二、方法与例题 1.利用集合中元素的属性,检验元素是否属于集合。 例1 设},,{2 2Z y x y x a a M ∈-==,求证: (1))(,12Z k M k ∈∈-;

相关主题
文本预览
相关文档 最新文档