当前位置:文档之家› 金属的塑性变形与再结晶-实验报告

金属的塑性变形与再结晶-实验报告

金属的塑性变形与再结晶-实验报告
金属的塑性变形与再结晶-实验报告

金属的塑性变形与再结晶

实验目的:

1. 研究低碳钢在塑性变形后组织性能的变化规律。

2. 讨论塑性变形后低碳钢在加热时组织与性能的变化规律。

3.了解变形程度对再结晶后晶粒大小的影响。

实验设备及材料:

1.各种变形的低碳钢式样一套。

2.同一变形度(51%)的式样一套。

3.洛氏硬度计,加热炉,金相显微镜及砂纸,抛光机和侵蚀剂。

4.塑性变形后再结晶的工业纯铁显微式样一套。

5.不同变形度经再结晶后具有不同晶粒度的铝片式样一套。

实验步骤:

1.每人领取两块式样,一块用于研究不同形变程度对硬度的影响,另一块研究

不同温度对性能的影响。

2.研究16Mn钢的硬度与变形的关系:

测量变形程度为0%,40%,50%,64%的硬度记录在表3-1中。

根据表中的数据,以变形度(%)为横坐标,硬度(HRB)为纵坐标,绘制出

图3-1

结论:钢的硬度随着冷变形程度的增加而增加.

3.研究变形后的16Mn钢加热是硬度的变化:

以同一变形程度51%的16Mn钢试样,测量其硬度后,分别加热至100℃,300℃,500℃,550℃,600℃,700℃,800℃保温30分钟后测量硬度,将数据列入表3-2中。

根据表3-2中的数据,以加热温度为横坐标,硬度为纵坐标,绘制出加热温度与硬度的曲线关系如图3-2。

图3-2

结论:

随着16Mn钢塑性变形后加热温度升高,硬度减小,

加热温度小于500℃时,硬度减小不明显

加热温度大于500℃时,随着加热温度升高,硬度急剧减小

第六章 回复与再结晶

第六章回复与再结晶 (一)填空题 1. 金属再结晶概念的前提是,它与重结晶的主要区别是。 2. 金属的最低再结晶温度是指,它与熔点的大致关系是。 3 钢在常温下的变形加工称,铅在常温下的变形加工称。 4.回复是,再结晶是。 5.临界变形量的定义是,通常临界变形量约在范围内。 6 金属板材深冲压时形成制耳是由于造成的。 7.根据经验公式得知,纯铁的最低再结晶温度为。 (二)判断题 1.金属的预先变形越大,其开始再结晶的温度越高。(×) 2.变形金属的再结晶退火温度越高,退火后得到的晶粒越粗大。(√)3.金属的热加工是指在室温以上的塑性变形过程。(×) 4.金属铸件不能通过再结晶退火来细化晶粒。(√) 金属铸件不能通过再结晶退火达到细化晶粒的目的,因为铸件,没有经受冷变形加工,所以当加热至再结晶退火温度时,其组织不会发生根本变化,因而达不到细化晶粒的目的。 再结晶退火必须用于经冷塑性变形加工的材料,其目的是改善冷变形后材料的组织和性能。再结晶退火的温度较低,一般都在临界点以下。若对铸件采用再结晶退火,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。 5.再结晶过程是形核和核长大过程,所以再结晶过程也是相变过程。(×); 6 从金属学的观点看,凡是加热以后的变形为热加工,反之不加热的变形为冷加工。 (×) 7 在一定范围内增加冷变形金属的变形量,会使再结晶温度下降。( √) 8.凡是重要的结构零件一般都应进行锻造加工。(√) 9.在冷拔钢丝时,如果总变形量很大,中间需安排几次退火工序。( √) 10.从本质上讲,热加工变形不产生加工硬化现象,而冷加工变形会产生加工硬化现象。这是两者的主要区别。( ×) (三)选择题 1.变形金属在加热时发生的再结晶过程是一个新晶粒代替旧晶粒的过程,这种新晶粒的晶型( )。 A.与变形前的金属相同 B 与变形后的金属相同 C 与再结晶前的金属相同D.形成新的晶型 2.金属的再结晶温度是( ) A.一个确定的温度值B.一个温度范围 C 一个临界点D.一个最高的温度值 3.为了提高大跨距铜导线的强度,可以采取适当的( A )。 A.冷塑变形加去应力退火 B 冷塑变形加再结晶退火 C 热处理强化D.热加工强化 4 下面制造齿轮的方法中,较为理想的方法是( C )。 A.用厚钢板切出圆饼再加工成齿轮B用粗钢棒切下圆饼再加工成齿轮 C 由圆钢棒热锻成圆饼再加工成齿轮D.由钢液浇注成圆饼再加工成齿轮 5.下面说法正确的是( C )。 A.冷加工钨在1 000℃发生再结晶 B 钢的再结晶退火温度为450℃ C 冷加工铅在0℃也会发生再结晶D.冷加工铝的T再≈0.4Tm=0.4X660℃=264℃ 6 下列工艺操作正确的是(D ) 。 A.用冷拉强化的弹簧丝绳吊装大型零件淬火加热时入炉和出炉 B 用冷拉强化的弹簧钢丝作沙发弹簧 C 室温可以将保险丝拉成细丝而不采取中间退火 D.铅的铸锭在室温多次轧制成为薄板,中间应进行再结晶退火 7 冷加工金属回复时,位错(C )。

上海交大材基-第五章塑性变形与回复再结晶--复习提纲.

第5章材料的形变和再结晶 提纲 5.1 弹性和粘弹性 5.2 晶体的塑性变形(重点) 5.3 回复和再结晶(重点) 5.4 高聚物的塑性变形 学习要求 掌握材料的变形机制及特征,以及变形对材料组织结构、性能的影响;冷、热加工变形材料的回复和结晶过程。 1.材料的弹性变形本质、弹性的不完整性及黏弹性; 2.单晶体塑性变形方式、特点及机制(滑移、孪生、扭折) 3.多晶体、合金塑性变形的特点及其影响因素 4.塑性变形对材料组织与性能的影响; 5.材料塑性变形的回复、再结晶和晶粒长大过程; 6.影响回复、再结晶和晶粒长大的诸多因素(包括变形程度、第二相粒子、工艺参数等) 7、结晶动力学的形式理论(J-M-A方程) 8、热加工变形下动态回复、再结晶的微观组织特点、对性能影响。 9、陶瓷、高聚物材料的变形特点 重点内容 1. 弹性变形的特征,虎克定律(公式),弹性模量和切变弹性模量; 材料在外力作用下发生变形。当外力较小时,产生弹性变形。弹性变形是可逆变形,卸载时,变形消失并恢复原状。在弹性变形范围内,其应力与应变之间保持线性函数关系,即服从虎克(Hooke)定律: 式中E为正弹性模量,G为切变模量。它们之间存在如下关系: 弹性模量是表征晶体中原子间结合力强弱的物理量,故是组织结

构不敏感参数。在工程上,弹性模量则是材料刚度的度量。 2. 弹性的不完整性和粘弹性; 理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等。3. 滑移系,施密特法则(公式),滑移的临界分切应力; 晶体中一个滑移面和该面上一个滑移方向组成。 fcc和bcc,bcc的滑移系?滑移系多少与塑性之间的关系。 滑移的临界分切应力: 如何判断晶体中各个滑移系能不能开动? 解释几何软化和几何硬化?为何多晶体塑性变形时要求至少有5个独立的滑移系进行滑移? 4. 滑移的位错机制,派-纳力(公式); 为什么晶体中滑移系为原子密度最大的面和方向? 5. 比较塑性变形两种基本形式:滑移与孪生的异同特点; 6. 多晶体塑性变形的特点:晶粒取向的影响,晶界的影响;

回复与再结晶

1、一块单相多晶体包含。 A.不同化学成分的几部分晶体B.相同化学成分,不同结构的几部分晶体C.相同化学成分,相同结构,不同位向的几部分晶体 2、在立方系中点阵常数通常指。 A.最近的原子间距B.晶胞棱边的长度 3、每一个面心立方晶胞中有八面体间隙m个,四面体间隙n个,其中。 A.m=4,n=8B.m=13,n=8C.m=1,n=4 4、原子排列最密的一族晶面其面间距。 A.最小B.最大 5、晶体中存在许多点缺陷,例如 A.被激发的电子B.空位C.沉淀相粒子 6、金属中通常存在着溶质原子或杂质原子,它们的存在。 A.总是使晶格常数增大B.总是使晶格常数减小C.可能使晶格常数增大,也可能使晶格常数减小 7、金属中点缺陷的存在使电阻。 A.增大B.减小C.不受影响 8、空位在过程中起重要作用。

A.形变孪晶的形成B.自扩散C.交滑移 9、金属的自扩散的激活能应等于。 A.空位的形成能与迁移激活能的总和B.空位的形成能C.空位的迁移能 10、位错线上的割阶一般通过形成 A.位错的交割B.交滑移C.孪生 一、名词解释 沉淀硬化、细晶强化、孪生、扭折、第一类残余应力、第二类残余应力、、回复、再结晶、多边形化、临界变形量、冷加工、热加工、动态回复、动态再结晶 沉淀硬化:在金属的过饱和固溶体中形成溶质原子偏聚区和由之脱出微粒弥散分布于基体中导致硬化。 细晶强化:通过细化晶粒而使金属材料力学性能提高的方法。 孪生:在切应力作用下,晶体的一部分沿一定晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。 扭折:在滑移受阻、孪生不利的条件下,晶体所做的不均匀塑性变形和适应外力作用,是位错汇集引起协调性的形变。 按残余应力作用范围不同,可分为宏观残余应力和微观残余应力等两大类,其中宏观残余应力称为第一类残余应力(由整个物体变形不均匀引起),微观残余应力称为第二类残余应力(由晶粒变形不均匀引起)。 储存能:在塑性变形中外力所作的功除大部分转化为热之外,由于金属内部的形变不均匀及点阵畸变,尚有一小部分以畸变能的形式储存在形变金属内部,这部分能量叫做储存能。回复:经冷塑性变形的金属加热时,尚未发生光学显微组织变化前(即再结晶之前)的微观结构变化过程。 再结晶:经冷变形的金属在一定温度下加热时,通过新的等轴晶粒形成并逐步取代变形晶粒的过程。 多边形化:指回复过程中油位错重新分布而形成确定的亚晶结构过程。 临界变形量:需要超过某个最小的形变量才能发生再结晶,这最少的形变量就称为临界变形量。 冷加工:在再结晶温度以下的加工过程;在没有回复和在接近的条件下进行的塑性变形加工。热加工:在再结晶温度以上的加工过程;在再结晶过程得到充分进行的条件下进行的塑性变形加工。 动态回复:热加工时由于温度很高,金属在变形的同时发生回复,同时发生加工硬化和软化两个相反的过程。这种在热变形时由于温度和外力联合作用下发生的回复过程 动态再结晶:是指金属在热变形过程中发生的再结晶现象。 二、问答题

金属的塑性变形与再结晶-材料科学基础学习知识-实验-06

实验六金属的塑性变形与再结晶 (Plastic Deformation and Recrystallization of Metals)实验学时:2 实验类型:综合 前修课程名称:《材料科学导论》 适用专业:材料科学与工程 一、实验目的 1.观察显微镜下变形孪晶与退火孪晶的特征; 2.了解金属经冷加工变形后显微组织及机械性能的变化; 3.讨论冷加工变形度对再结晶后晶粒大小的影响。 二、概述 1.显微镜下的滑移线与变形孪晶 金属受力超过弹性极限后,在金属中将产生塑性变形。金属单晶体变形机理指出,塑性变形的基本方式为:滑移和孪晶两种。 所谓滑移,是晶体在切应力作用下借助于金属薄层沿滑移面相对移动(实质为位错沿滑移面运动)的结果。滑移后在滑移面两侧的晶体位向保持不变。 把抛光的纯铝试样拉伸,试样表面会有变形台阶出现,一组细小的台阶在显微镜下只能观察到一条黑线,即称为滑移带。变形后的显微组织是由许多滑移带(平行的黑线)所组成。

在显微镜下能清楚地看到多晶体变形的特点:① 各晶粒内滑移带的方向不同(因晶粒方位各不相同);② 各晶粒之间形变程度不均匀,有的晶粒内滑移带多(即变形量大),有的晶粒内滑移带少(即变形量小);③ 在同一晶粒内,晶粒中心与晶粒边界变形量也不相同,晶粒中心滑移带密,而边界滑移带稀,并可发现在一些变形量大的晶粒内,滑移沿几个系统进行,经常看见双滑移现象(在面心立方晶格情况下很易发现),即两组平行的黑线在晶粒内部交错起来,将晶粒分成许多小块。(注:此类样品制备困难,需要先将样品进行抛光,再进行拉伸,拉伸后立即直接在显微镜下观察;若此时再进行样品的磨光、抛光,滑移带将消失,观察不到。原因是:滑移带是位错滑移现象在金属表面造成的不平整台阶,不是材料内部晶体结构的变化,样品制备过程会造成滑移带的消失。) 另一种变形的方式为孪晶。不易产生滑移的金属,如六方晶系的镉、镁、铍、锌等,或某些金属当其滑移发生困难的时候,在切应力的作用下将发生的另一形式的变形,即晶体的一部分以一定的晶面(孪晶面或双晶面)为对称面,与晶体的另一部分发生对称移动,这种变形方式称为孪晶或双晶。 孪晶的结果是:孪晶面两侧晶体的位向发生变化,呈镜面对称。所以孪晶变形后,由于对光的反射能力不同,在显微镜下能看到较宽的变形痕迹——孪晶带或双晶带。在密排六方结构的锌中,由于其滑移系少,则易以孪晶方式变形,在显微镜下看到变形孪晶呈发亮的竹叶状特征。(注:孪晶是材料内部晶体结构上的变化,样品制备过程不会造成孪晶的消失。) 对体心立方结构的Fe -α,在常温时变形以滑移方式进行;而在0℃以下受冲击载荷时,则以孪晶方式变形;而面心立方结构大多是以滑移方式变形的。 2.变形程度对金属组织和性能的影响

金属塑性变形与断裂

金属塑性变形与断裂集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

金属材料塑性变形与断裂的关系 摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。金属塑性的好坏表明了它抑制断裂能力的高低。 关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀 氢脆高温断裂 一、解理断裂与塑变的关系 解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。断裂面沿一定的晶面发生,这个平面叫做解理面。解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。 第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。

第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。 从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。 二、准解理断裂与塑变的关系 准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。产生原因: (1)、从材料方面考虑,必为淬火加低温回火的组织,回火温度低,易产生此类断裂。 (2)、构件的工作温度与钢材的脆性转折温度基本相同。 (3)、构件的薄弱环节处处于平面应变状态。 (4)、材料的尺寸比较粗大。 (5)、回火马氏体组织的缺陷,如碳化物在回火时的定向析出。 准解理断裂往往开始是因为碳化物,析出物或者夹杂物在外力作用下产生裂纹,然后沿某一晶面解理扩展,之后以塑性变形方式撕裂,其断裂面上显现有较大的塑性变形,特征是断口上存在由于几个地方的小裂纹分别扩展相遇发生塑性撕裂而形成的撕裂岭。准解理断裂面不是一

第六章材料的塑性变形与再结晶

何谓滑移和孪生 滑移:晶体的一部分相对于另一部分沿某些晶面和晶向发生滑动 孪生:晶体的一部分相对于另一部分沿某些晶面和晶向作均匀切变 指出三种典型结构金属晶体的滑移面和滑移方向 1. 面心立方金属:密排面{}111密排晶向1101234=?个滑移系,塑性较好 2. 体心立方金属:密排面{}110密排晶向1111226=?个滑移系,塑性较好 3. 密排六方金属:室温时{}0001密排晶向2011331=?塑性较差 并比较其滑移难易程度 1. 当其他条件相同时,金属晶体中的滑移系越多,则滑移时可供采用的空间位 向也多,塑性也越好 2. 面心立方晶格的金属晶体的滑移系为12个,密排立方结构的金属晶体的滑移 系为3个()2011,0001,所以面心立方晶格的金属晶体更易发生滑移 3. 从此可以看出,面心立方和体心立方金属的塑性较好,而密排六方金属的塑 性较差 4. 金属塑性的好坏,不只是取决于滑移系的多少,还与滑移面上原子的密排程 度和滑移方向的数目有关 5. 例如Fe -α,它的滑移方向不及面心立方金属多,其滑移面上原子密排程度 也比面心立方金属低,因此它的滑移面间距较小,原子间结合力较大,必须在较大的应力作用下才开始滑移,所以它的塑性要比铜铝金银等面心立方金属差些 为何晶体的滑移通常沿着其最密晶面和最密晶向进行

1.在晶体原子密度最大的晶面上,原子间的结合力最强,而面与面之间的距离 却最大,即密排面之间的原子间结合力最小,滑移阻力最小,最易于滑移2.沿最密晶向滑移的步长最小,这种滑移所需要的切应力最小 何谓加工硬化 金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象 运用位错理论说明细化晶粒可以提高材料强度的原因 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化 运用位错理论说明细化晶粒可以提高材料强度的原因 来自69页北京工业大学2009细晶强化的位错理论 1.金属多晶体材料塑性变形时,粗大晶粒的晶界处塞积的位错数目多,形成较 大的应力场,能够使相邻晶粒内的位错源启动,使变形继续 2.相反,细小晶粒的晶界处塞积的位错数目少,要使变形继续,必须施加更大 的外加作用力以激活相邻晶粒内的位错源 3.因此,细晶材料要发生塑性变形需要更大外部作用力,即晶粒越细小晶体强 度越高 单相固溶体合金的强度均高于纯溶剂组元的强度,试用位错理论分析之

回复与再结晶

理论课教案 编号:NGQD-0707-09版本号:A/0页码:编制/时间:审核/时间:批准/时间: 学科金属材料及 热处理 第三章金属的塑性变形与再结晶 第三节回复与再结晶 教学类型授新课授课时数1授课班级 教学目的 和要求 1、了解加热过程中,变形金属内部组织的变化。 教学重点和难点1、重点:回复、再结晶的作用。 2、难点:再结晶温度的计算。 教具准备 复习提问再结晶温度如何计算? 作业布置P33习题8 教学方法主要教学内容和过程附记 §3-3回复与再结晶 经冷塑性变形后的金属晶粒破碎,晶格扭曲,位错密度增高,产生内应力,其内部能量增高,因而组织处于不稳定 的状态,并存在向稳定状态转变的趋势。在低温下,这种转 变一般不易实现。而在加热时,由于原子的动能增大,活动 能力增强,冷塑性变形后的金属组织会发生一系列的变化, 最后趋于较稳定的状态。随着加热温度的升高,变形金属的 内部相继发生回复、再结晶、晶粒长大三个阶段的变化

理论课教案附页 编制/时间: 教学方法主要教学内容和过程附记 一、回复 回复:当加热温度不太高时,原子活动能力有所增加,原子已能作短距离的运动,此时,晶格畸变程度大为减轻, 从而使内应力有所降低,这个阶段称为回复。 1、回复是冷塑性变形金属在较低温度下加热的阶段。 在这个温度范围内,随温度的升高,变形金属中的原子活动 能力有所增大。 2、通过回复,变形金属的晶格畸变程度减轻,内应力 大部分消除,但金属的显微组织无明显变化,因此力学性能 变化不大。 3、在生产实际中,常利用回复现象将冷变形金属在低 温加热,进行消除内应力的处理,适当提高塑性、韧性、弹 性,以稳定其组织和尺寸,并保留加工硬化时留下的高硬度 的性能。 二、再结晶 再结晶:当冷塑性变形金属加热到较高温度时,由畸变晶粒通过形核及晶核长大而形成新的无畸变的等轴晶粒的 过程。 1、再结晶过程是发生在较高温度(再结晶温度以上), 其过程以形核和核长大的方式进行。(见教材P30) 2、再结晶后,冷变形金属的组织和性能恢复到变形前 的状态(教材P31) 3、再结晶过程是新晶粒重新形成的过程,而晶格类型 并没有发生改变,所以它不是相变过程。(教材P31)

上海交大材基第五章塑性变形与回复再结晶习题集讲解.

1 单晶体的塑性变形 铜单晶(a=0.36nm )在[112]方向加拉伸应力,拉伸应力为2.5×105Pa ,此条件下:(1)取向因子最大的滑移系有哪几个?(2)计算其分切应力多大? 解:(1) Cu 为F.C.C 结构,易滑移面为{1,1,1},滑移方向为〈1,1,0〉,可以分别求 出[112]方向与这些滑移系之间的两个夹角,然后得到12个取向因子的值。(这里省略了) 通过上述计算得到具体的滑移系(1,-1,1)[0,1,1]和(-1,1,1) [1,0,1]为具有最大取向因子滑移系。 (2) 根据施密特法则(公式略), F=δcosAcosB=1.02*105 Pa 何谓临界分切应力定律?哪些因素影响临界分切应力大小? 解:(略) 沿密排六方单晶的[0001]方向分别加拉伸力和压缩力,说明在这两种情况下,形变的可能方式。 解:1)滑移:a -拉伸的时,当c/a>=1.633,不会产生滑移,当c/a<1.633有可能产 生滑移,可产生滑移的是{1,1,-2,2}<1,1,-2,-3>;其他滑移面不能产生滑移; b -压缩的时候结果和拉伸一样; 2)孪生:拉伸和压缩的时候都可能产生孪生变形; 3)扭折:拉伸的时候一般不易扭折变形,压缩的时候可以产生扭折变形。 试指出单晶体的Cu 与α-Fe 中易滑移面的晶面与晶向,并分别求它们的滑移面间距,滑移方向上的原子间距及点阵阻力,已知泊松比为ν=0.3,G Cu =48300MPa , G α-Fe =81600MPa. 解:体心Fe 具有多种类的滑移系,但是滑移方向均相同。 力=90.56MPa 。

铝单晶体拉伸时,其力轴为[001],一个滑移系的临界分切应力为0.79MN/m2,取向因子COS φCOSλ=0.41,试问有几个滑移系可同时产生滑移?开动其中一个滑移系至少要施加多大的拉应力? 解:Al为F.C.C结构,其滑移系共有{1,1,1}4<1,1,0>3=12个。可以求得【001】与这些滑移系的取向因子。(可以列表列出来如下) 其它有4个滑移系,它们的滑移方向的第三个数字为0,因为取向因子为0,根据施密特法则,不能产生滑移。 开动其中一个滑移系需要施加的拉应力,可以根据施密特法则求得: F=0.79/0.41=1.93 MN/m2

【材料课件】实验三金属的塑性变形与再结晶组织观察

实验三金属的塑性变形与再结晶组织观察 目的 1.加深对材料塑性编写过程的理解; 2.认识塑性变形的典型组织; 3.理解变形量对再结晶后晶粒尺寸的影响。 一、塑性变形引起材料组织的变化 晶体塑性材料塑性变形的基本方式有四种:滑移、孪生、蠕变、粘滞性流动。 滑移是晶体中位错在外力作用下发生运动,造成晶体的两部分在滑移面上沿滑移方向的相对移动,滑移是位错的移动,晶体内部原子从一个平衡位置移到另一个平衡位置,不一起晶体内的组织变化,位错移出晶体的表面,形成滑移台阶,一个位错源发出的位错都移出,在晶体表明形成台阶在显微镜下可以见到,就是滑移线。 孪生是在滑移困难时以形成孪晶的方式发生的塑性变形,晶体发生孪生,在晶体表面产生浮凸,晶体内部生成的孪晶与原晶体的取向不一样,并有界面分隔,所以在晶体内重新制样后依然可以看到孪晶。 多晶体材料发生塑性变形后,原等轴晶粒被拉长或压扁,晶界变模糊。两相材料经过塑性变形后,第二相的分布也与变形方向有关。 塑性变形后进行退火加热发生再结晶的晶粒尺寸与变形量有直接的关系。在临界变形量(不同材料不相同,一般金属在2—10%之间)以下,金属材料不发生再结晶,材料维持原来的晶粒尺寸;在临界变形量附近,刚能形核,因核心数量很少而再结晶后的尺寸很大,有时甚至可得到单晶;一般情况随着变形量的增加,再结晶后的晶粒尺寸不断减小;当变形量过大(>70%)后,可能产生明显织构,在退火温度高时发生晶粒的异常长大。 二、实验内容 1.观察几种塑性变形后的组织形貌 ①.低碳钢拉伸后的组织变化:看断口附近,变形量最大,组织特征明显,白色的软相的 晶粒的形状分布,黑色较硬相形状分布特征。 ②纯铁压缩表面的滑移线:为了观察,现将试样磨平,再压缩变形,晶体表面可留下滑移 线。若再打磨则滑移线就不可见。一个滑移系能开动,与之平行的滑移系也可能开动,滑移线往往时互相平行,因为存在交滑移,滑移线为波浪状。 ③锌的变形孪晶:Zn是hcp晶系,仅有三个滑移系,多晶体变形就会发生孪生,从试样 上可见到变形产生的孪晶。

金属塑性变形理论习题集

《金属塑性变形理论》习题集 张贵杰编 河北联合大学 金属材料与加工工程系 2013年10月

前言 《金属塑性变形理论》是关于金属塑性加工学科的基础理论课,也是“金属材料工程”专业大学本科生的主干课程,同时也是报考材料科学与工程专业方向硕士研究生的必考科目。 《金属塑性变形理论》总学时为72,内容上分为两部分,即“金属塑性加工力学”(40学时)和“塑性加工金属学”(32学时)。 为使学生能够学好本课,以奠定扎实的理论基础,提高分析问题和解决问题的能力,编者集20余年的教学经验特编制本习题集,一方面作为学生在学习本课程时的辅导材料,供课下消化课堂内容时使用,另一方面也可供任课教师在授课时参考,此外对报考研究生的学生还具有指导复习的作用。 本“习题集”在编写时,充分考虑了学科内容的系统性、学生学习的连贯性以及与教材顺序的一致性。该“习题集”中具有前后关联的一个个题目,带有由浅入深的启发性,能够引导学生将所学的知识不断深化。教师也可根据教学进程从中选题,作为课外作业指导学生进行练习。所有这些都会有助于学生理解和消化课堂上所学习的内容,从而提高课下的学习效率。 编者 2013年10月

第一部分 金属塑性加工力学 第一章 应力状态分析 1. 金属塑性加工中的外力有哪几种?其意义如何? 2. 为什么应力分量的表达需用双下标?每个下标都表示何物理意义? 3. 已知应力状态如图1-1所示,写出应力分量,并以张量形式表示。 4. 已知应力状态的六个分量7-=x σ,4-=xy τ,0=y σ,4=yz τ, 8-=zx τ,15-=z σ(MPa),画出应力状态图,写出应力张量。 5. 作出单向拉伸、单向压缩、三向等值压缩、平面应力、平面应变、 纯剪切应力状态的应力Mehr 圆。 6. 已知应力状态如图1-2所示,当斜面法线方向与三个坐标轴夹角余 弦31 ===n m l 时,求该斜面上的全应力S 、全应力在坐标轴上的 分量x S 、y S 、z S 及斜面上的法线应力n σ和切应力n τ。 图 1-1 ?? ?? ? ??------ =1548404847σT x y z 图 1-2 x 10

9塑性变形与回复再结晶实验指导书4

实验4 塑性变形与回复再结晶 一、实验目的 1.加深对加工硬化现象和回复再结晶的认识。 2.通过实验分析加工温度和变形程度对所选原材料组织和性能的影响。 3.测定所选原材料(例如工业纯铝)的形变度与再结晶后的晶粒度的关系曲线。 二、实验原理 1、加工硬化现象 当金属与合金在外力的作用下,应力超过弹性极限以后,将发生塑性形变。金属在塑性形变过程中,组织与性能将发生变化。一般说来随着形变程度的增加,金属的强度、硬度提高而塑性下降,同时也造成其它物理化学性能的明显变化。人们就把金属因塑性变而导致的强度和硬度增加的现象称为加工硬化。 2、金属经塑性形变后显微组织的变化 金属经塑性形变以后,其组织发生以下的变化。 (1)金属在塑性形变后,组织也将发生相应的变化,例如在轧制后,晶粒沿着形变方向被拉长,其程度随形变量的加大而增大,当形变量很大时,晶粒伸长呈“纤维状”。与此同时,除晶粒的形状发生变化外,组织中的第二相也将发生变化,硬的相将破碎,软的相将发生形变等。 (2)塑性形变导致金属组织内部的亚结构细化。在形变不大的情况下,晶粒内首先出现明显的滑移带,随着形变量的加大。滑移带逐渐增多。射线结构分析结果表明:晶粒被碎化成许多位向略有不同(位向差一般不大于1°)的晶块,其大小约为10-3~10-6厘米,即在原来晶粒内出现了很多小晶块,这种组织称为亚结构。 (3)金属塑性形变时,由于各部分的形变的不均匀性而造成的内应力(第一类,第二类,第三类内应力)将增大。 (4)当金属的塑性形变量很大时,在形变过程中晶体将产生转动和旋转,使各晶粒的某一晶向都不同程度的转向与外力相近的方向,这样便使得原来晶向不同的晶粒取向渐趋一致。而使其具有择优趋向组织称之为形变结构。 金属塑性形变后组织和性能的变化规律,在生产中有一定的实际意义,为此应了解这一变化规律,从而能更好的为生产服务。 塑性形变的方式,主要有两种。其一是滑移形变方式,其二是孪晶形变方式。至于形变结构与机理,这里不做叙述。 3、回复与再结晶 由于塑性形变,使晶格畸变增大(使错密度增加,亚结构细化等),使得冷形变金属的自由能升高而处于不稳定状态。因此,便有一种向较稳定状态转化的自发趋势。 如将冷形变后的金属加热到较高的温度,使其原子具有一定的扩散能力,就会产生一系列组织与性能的变化。这个变化过程就是回复——再结晶及晶粒长大(聚集再结晶)过程,参看图1。 回复:当加热温度较(再结晶温度)低时,通过原子作短距离的扩散,使某些晶体缺陷互相抵消而使缺陷数量减少;使晶格畸变程度减轻(由多边化结果导致);第一类、第二类内应力基本消除;显微组织无变化,机械性能和物理化学性能部分的恢复到形变前的状态,如硬度、强度稍微下降,塑性略有提高;导磁率上升,比电阻下降等,这一过程称为回复。 再结晶:冷形变金属加热到某一温度,由于原子扩散能力的增大,组织和性能将发生剧烈的变化,完全回复到形变以前的情况。从显微组织看形变组织完全消失,代之的是新的等轴晶粒;其强度硬度下降而塑性提高。把在这一温度下组织和性能发生剧烈变化的现象称做

第五章材料变形与再结晶答案.doc

第五章固体材料的塑性变形 Chapter 5 Plastic Deformation 作业1:在面心立方晶体结构中,有一位错可以在(111)和(111) Solution: 4歩0 晶面上发生交滑移,请确定这个位错的伯氏矢量? 作业2:在面心立方晶体中有三个滑移系,假定在Au晶体的[100]± 施加2MPa的拉伸应力,其临界分切应力是0. 91MPa o证明滑移不会在(111)晶面的三个滑移系上滑移? The three slip systems in the (111) plane are (111) [101], (111) [llo], (111) Oil]. Because [100]丄[oii], that is 入=90°,so r( resolred shear stress in (lll)[oii]) is 0.

COS60°=T So: Measurable slip will not occur on any of the three slip systems in the (111) plane. 作业3?:在面心立方晶体中,沿[i23]方向施加2 MPa的正应力。滑移面是(111),滑移方向是[101]o请确定临界分切应力Tor To solve this problem, we must find both cos0 and cos(p? This can be done suing the vector dot product: |[123j[ioq V14V2 Solving equation T C R =(ycos6cos(p for T C R and substituting the data given in the problem statement yields: T cR=(2Mpa)x(0.617)x(0.756)=0.933Mpa 作业4:假定某面心立方晶体可以开动的滑移系为(ni)[011]o试回答: (1)给出引起滑移的单位位错得相应矢量,并说明之。

第五章塑性变形与回复再结晶--习题集

psi是一种压力单位,定义为英镑/平方英寸,145psi=1Mpa PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I 是英寸inch。把所有的单位换成公制单位就可以算出:1bar≈14.5psi 1 KSI = 1000 lb / in. 2 = 1000 x 0.4536 x 9.8 N / (25.4 mm)2 = 6.89 N / mm2 材料机械强度性能单位,要用到试验机来检测 Density of Slip Planes The planar density of the (112) plane in BCC iron is 9.94 atoms/cm2. Calculate the planar density of the (110) plane and the interplanar spacings for both the (112) and the (110) planes. On which type of plane would slip normally occur? (112) planar density: The point of this problem is that slip generally occurs in high density directions and on high density planes. The high density directions are directions in which the Burgers' vector is short, and the high density planes are the "smoothest" for slip. It will help to visualize these two planes as we calculate the atom density.

金属塑性变形原理

金属塑性变形原理 1、变形和应力 1.1塑性变形与弹性变形 金属晶格在受力时发生歪扭或拉长,当外力未超过原子之间的结合力时,去掉外力之后晶格便会由变形的状态恢复到原始状态,也就是说,未超过金属本身弹性极限的变形叫金属的弹性变形。多晶体发生弹性变形时,各个晶粒的受力状态是不均匀的。 当加在晶体上的外力超过其弹性极限时,去掉外力之后歪扭的晶格和破碎的晶体不能恢复到原始状态,这种永久变形叫金属的塑性变形。金属发生塑性变形必然引起金属晶体组织结构的破坏,使晶格发生歪扭和紊乱,使晶粒破碎并且使晶粒形状发生变化,一般晶粒沿着受力方向被拉长或压缩。 1.2应力和应力集中 塑性变形时,作用于金属上的外力有作用力和反作用力。由于这两种外力的作用,在金属内部将产生与外力大小相平衡的内力。单位面积上的这种内力称为应力,以σ表示。 σ=P/S 式中σ——物体产生的应力,MPa: P——作用于物体的外力,N; S——承受外力作用的物体面积,mm2。 当金属内部存在应力,其表面又有尖角、尖缺口、结疤、折叠、划伤、裂纹等缺陷存在时,应力将在这些缺陷处集中分布,使这些缺陷部位的实际应力比正常应力高数倍。这种现象叫做应力集中。 金属内部的气泡、缩孔、裂纹、夹杂物及残余应力等对应力的反应与物体的表面缺陷相同,在应力作用下,也会发生应力集中。 应力集中在很大程度上提高了金属的变形抗力,降低了金属的塑性,金属的破坏往往最先从应力集中的地方开始。 2、塑性变形基本定律 2.1体积不变定律 钢锭在头几道轧制中因其缩孔、疏松、气泡、裂纹等缺陷受压缩而致密,体积有所减少,此后各轧制道次的金属体积就不再发生变化。这种轧制前后体积不变的客观事实叫做体积不变定律。它是计算轧制变形前后的轧件尺寸的基本依据。 H、B、L——轧制前轧件的高、宽、长;h、b、l——轧制后轧件的高、宽、长。根据体积不变定律,轧件轧制前后体积相等,即 HBL=hbl 2.2最小阻力定律 钢在塑性变形时,金属沿着变形抵抗力最小的方向流动,这就叫做最小阻力定律。根据这个定律,在自由变形的情况下,金属的流动总是取最短的路线,因为最短的路线抵抗变形的阻力最小,这个最短的路线,即是从该动点到断面周界的垂线。

材料的变形与再结晶

材料的变形与再结晶 1.一根长为5m,直径为3mm的铝线,已知铝的弹性模量为70GPa,求在200N 的拉力作用下,此线的总长度。 2.一Mg合金的屈服强度为180MPa,E为45GPa,a)求不至于使一块10mm?2mm 的Mg板发生塑性变形的最大载荷;b)在此载荷作用下,该镁板每mm的伸长量为多少? 3. 已知烧结Al 2O 3 的孔隙度为5%,其E=370GPa。若另一烧结Al 2 O 3 的E=270GPa, 试求其孔隙度。 4. 有一Cu-30%Zn黄铜板冷轧25%后厚度变为1cm,接着再将此板厚度减少到0.6cm,试求总冷变形度,并推测冷轧后性能变化。 5. 有一截面为10mm?10mm的镍基合金试样,其长度为40mm,拉伸实验结果如下: 载荷(N)标距长度(mm) 0 40.0 43,100 40.1 86,200 40.2 102,000 40.4 104,800 40.8 109,600 41.6 113,800 42.4 121,300 44.0 126,900 46.0 127,600 48.0 113,800(破断)50.2 试计算其抗拉强度σ b ,屈服强度σ 0.2 ,弹性模量E以及延伸率δ。 6. 将一根长为20m,直径为14mm的铝棒通过孔径为12.7mm的模具拉拔,求a)这根铝棒拉拔后的尺寸;b)这根铝棒要承受的冷加工率。

7. 确定下列情况下的工程应变ε e 和真应变ε T ,说明何者更能反映真实的变形特 性: a)由L伸长至1.1L; b)由h压缩至0.9h; c)由L伸长至2L; d)由h压缩至0.5h。 8. 对于预先经过退火的金属多晶体,其真实应力—应变曲线的塑性部分可近似 表示为,其中k和n为经验常数,分别称为强度系数和应变硬化指 数。若有A,B两种材料,其k值大致相等,而n A =0.5,n B =0.2,则问a)那一种 材料的硬化能力较高,为什么?b)同样的塑性应变时,A和B哪个位错密度高, 为什么?c)导出应变硬化指数n和应变硬化率之间的数学公式。 9. 有一70MPa应力作用在fcc晶体的[001]方向上,求作用在(111)和(111)滑移系上的分切应力。 10. 有一bcc晶体的[111]滑移系的临界分切力为60MPa,试问在[001]和[010]方向必须施加多少的应力才会产生滑移? 11. Zn单晶在拉伸之前的滑移方向与拉伸轴的夹角为45?,拉伸后滑移方向与拉伸轴的夹角为30?,求拉伸后的延伸率。 12. Al单晶在室温时的临界分切应力τC =7.9×105Pa。若室温下对铝单晶试样作为拉伸试验时,拉伸轴为[123]方向,试计算引起该样品屈服所需加的应力。 13. Al单晶制成拉伸试棒(其截面积为9mm2)进行室温拉伸,拉伸轴与[001]交成36.7?,与[011]交成19.1?,与[111]交成22.2?,开始屈服时载荷为20.40N,试确定主滑移系的分切应力。 14. Mg单晶体的试样拉伸时,三个滑移方向与拉伸轴分别交成38°、45°、85°,而基面法线与拉伸轴交成60°。如果在拉应力为2.05MPa时开始观察到塑性变形,则Mg的临界分切应力为多少? 15. MgO为NaCl型结构,其滑移面为{110},滑移方向为<110>,试问沿哪一方向拉伸(或压缩)不能引起滑移?

(完整版)《金属塑性成形原理》习题答案

金属塑性成形原理》 习题答案 一、填空题 1. 衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率。 2. 所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。 3. 金属热塑性变形机理主要有:晶内滑移、晶内孪生、晶界滑移和扩散蠕变等。 4. 请将以下应力张量分解为应力球张量和应力偏张量 5. 对应变张量,请写出其八面体线变与八面体切应变的表达式。 =

6.1864 年法国工程师屈雷斯加( H.Tresca )根据库伦在土力学中研究成果, 并从他自已所做的金属挤压试验,提出材料的屈服与最大切应力有关,如果 采用数学的方式,屈雷斯加屈服条件可表述为 。 7. 金属塑性成形过程中影响摩擦系数的因素有很多, 归结起来主要有 金属的 种类和 化学成分 、 工具的表面状态 、 接触面上的单位压力 、 变形温度 、 变形速度 等几方面的因素。 8. 变形体处于塑性平面应变状态时,在塑性流动平面上滑移线上任一点的切 线方向即 为该点的最大切应力方向。对于理想刚塑性材料处于平面应变状态 下,塑性区内各点的应力状态不同其实质只是 平均应力 不同,而各点处 的 最大切应力 为材料常数。 9. 在众多的静可容应力场和动可容速度场中,必然有一个应力场和与之对应 的速度 场,它们满足全部的静可容和动可容条件,此唯一的应力场和速度场, 称之为 真实 应力场和 真实 速度场,由此导出的载荷,即为 真实 载荷, 它是唯一的。 10. 设平面三角形单元内部任意点的位移采用如下的线性多项式来表示: 11、金属塑性成形有如下特点: 、 、 、 12、按照成形的特点,一般将塑性成形分为 和 两大类,按 照成形时工件的温度还可以分为 、 和 三类。 13、金属的超塑性分为 和 两大类。 14、晶内变形的主要方式和单晶体一样分为 和 。 其中 变形是主要的,而 变形是次要的,一般仅起调节作用。 ,则单元内任一点外的应变可表示为

塑性变形对金属组织和性能的影响

塑性变形对金属组织和性能的影响 1. 塑性变形对金属组织结构的影响 (1)晶粒发生变形金属发生塑性变形后,晶粒沿形变方向被拉长或压扁。当变形量很大时, 晶粒变成细条状(拉伸时), 金属中的夹杂物也被拉长, 形成纤维组织。 变形前后晶粒形状变化示意图 (2)亚结构形成金属经大的塑性变形时, 由于位错的密度增大和发生交互作用, 大量位错堆积在局部地区, 并相互缠结, 形成不均匀的分布, 使晶粒分化成许多位向略有不同的小晶块, 而在晶粒内产生亚晶粒。 金属经变形后的亚结构 (3)形变织构产生金属塑性变形到很大程度(70%以上)时, 由于晶粒发生转动, 使各晶粒的位向趋近于一致, 形成特殊的择优取向, 这种有序化的结构叫做形变织构。形变织构一般分两种:一种是各晶粒的一定晶向平行于拉拔方向, 称为丝织构, 例如低碳钢经高度冷拔后, 其<100>平行于拔丝方向; 另

一种是各晶粒的一定晶面和晶向平行于轧制方向, 称为板织构, 低碳钢的板织构为{001}<110>。 形变织构示意图 2. 塑性变形对金属性能的影响 (1)形变强化金属发生塑性变形, 随变形度的增大, 金属的强度和硬度显著提高, 塑性和韧性明显下降。这种现象称为加工硬化, 也叫形变强化。 产生加工硬化的原因是:金属发生塑性变形时, 位错密度增加, 位错间的交互作用增强, 相互缠结, 造成位错运动阻力的增大, 引起塑性变形抗力提高。另一方面由于晶粒破碎细化, 使强度得以提高。在生产中可通过冷轧、冷拔提高钢板或钢丝的强度。 (2)产生各向异性由于纤维组织和形变织构的形成, 使金属的性能产生各向异性。如沿纤维方向的强度和塑性明显高于垂直方向的。用有织构的板材冲制筒形零件时, 即由于在不同方向上塑性差别很大, 零件的边缘出现“制耳”。在某些情况下, 织构的各向异性也有好处。制造变压器铁芯的硅钢片, 因沿[100]方向最易磁化, 采用这种织构可使铁损大大减小, 因而变压器的效率大大提高。

金属的塑性变形

二、金属的塑性变形 材料受力后要发生变形,变形可分为三个阶段:弹性变形;弹-塑性变形;断裂。外力较小时产生弹性变形,外力较大时产生塑性变形,而当外力过大时就会发生断裂。在整个变形过程中,对材料组织、性能影响最大的是弹-塑性阶段的塑性变形部分。如:锻造、轧制、拉拔、挤压、冲压等生产上的许多加工方法,都要求使金属产生变形,一方面获得所要求的形状及尺寸,另一方面可引起金属内部组织和结构的变化,从而获得所要求的性能。因此研究塑性变形特征与组织结构之间相互关系的规律性,具有重要的理论和实际意义。 弹性变形(Elastic Deformation) 1.1 弹性变形特征(Character of Elastic Deformation) 1.变形是可逆的; 2.应力与应变保持单值线性函数关系,符合Hooke定律:σ=Eε,τ=Gγ,G=E/2(1-ν) 3.弹性变形量随材料的不同而异。 1.2 弹性的不完整性(Imperfection of Elastane) 工程上应用的材料为多晶体,内部存在各种类型的缺陷,弹性变形时,可能出现加载线与卸载线不重合、应变的发展跟不上应力的变化等现象,称为弹性的不完整性,包括包申格效应、弹性后效、弹性滞后等。 1.包申格效应(Bauschinger effect) 现象:下图为退火轧制黄铜在不同载荷条件下弹性极限的变化情况。 曲线A:初次拉伸曲线,σe=240Pa 曲线B:初次压缩曲线,σe=178Pa 曲线C:B再压缩曲线,σe↑,σe=278Pa 曲线D:第二次拉伸曲线,σe↓,σe=85Pa 可见:B、C为同向加载,σe↑;C、D为反向加载,σe↓。 定义:材料经预先加载产生少量塑性变形,然后同向加载则σe升高,反向加载则σe降低的现象,称为包申格效应。对承受应变疲劳的工件是很重要的。 2.弹性后效(Anelasticity) 理想晶体(Perfect crystals):

相关主题
文本预览
相关文档 最新文档