当前位置:文档之家› 实验二电容反馈式三点式振荡器

实验二电容反馈式三点式振荡器

实验二电容反馈式三点式振荡器
实验二电容反馈式三点式振荡器

电容反馈LC振荡器实验内容及步骤

讲义不要带出本实验室,以便后来者使用电容反馈LC振荡器实验内容及步骤 1、静态工作点的设置 实验电路如图所示。实验步骤: 1、接好地线与12V电源线,此时电路没有振荡。 2、用万用表测量三极管发射极对地电压V E。由于R2为1.5k,所以只要V E=3V, 则I EQ=2mA。 2、了解振荡频率与谐振回路参数的关系 由公式 f L或C t变化时,振荡频率将随之变化。 1、接好地线与12V电源线,此时电路没有振荡。设置I EQ=2mA, 2、将C点接C3,A点接C6,D点接R5,B点分别接C8,C9,C10,测量三种情 况下振荡频率f和输出正弦波的峰-峰值V p-p,并将测量数据填入下表。 3、计算频率的理论值并与测量值比较。

3、了解幅度(峰-峰值Vp-p )与I EQ 的关系 实验步骤: 1、D 接R 5,C 接C 2,A 接C 6, 2、设置静态电流I EQ =0.8mA 。 3、B 接C 10,并测量振荡频率f 和峰-峰值V p-p 。 4、以I EQ 为横坐标,V p-p 为纵坐标,画出峰峰值与静态工作点电流之间的关系,注意分析振荡幅度和频率与I EQ 的关系。并与理论进行比较。 对于其他的I EQ 值,重复上述1~3步骤,并填写下面的表4-4格。 4、测量反馈系数与幅度的关系 实验步骤: 1、静态电流I EQ 设置为2mA 。 2、D 接R 5,C 接C 2,B 接C 9,A 接C 5。 3、测量峰峰值。 4、计算反馈系数C C F 上 下 ,比较反馈系数与峰峰值(幅度)的关系。 对于A 分别接C 6,C 7的情况,重复上述2、3两个步骤,将所得数据填写下表。 5、测量Q 值对振荡频率稳定性的影响 谐振回路的Q 值与回路的电阻有关,改变与电感并联的电阻阻值就可以改变谐振回路的Q 值。 实验步骤: 1、设置I EQ =2mA 。 2、A 接C 5,C 接C 2,B 接C 10,D 分别接R 5,R 6,R 7,观察振荡器是否振荡,如果振荡,测量其频率。填写下面的表格。

5.3.2 三点式振荡电路

5.3.2 三点式振荡电路 定义:三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的反馈型振荡器。 三点式振荡电路用电感耦合或电容耦合代替变压器耦合,可以克服变压器耦合振荡器只适宜于低频振荡的缺点,是一种广泛应用的振荡电路,其工作频率可从几兆赫到几百兆赫。 1、三点式振荡器的构成原则 图5 —20 三点式振荡器的原理图 图5 —20是三点式振荡器的原理电路(交流通路)为了便于分析,图中忽略了回路损耗,三个电抗元件

be ce bc X X X 、和构成了决定振荡频率的并联谐振回路。 要产生振荡,对谐振网络的要求:? 必须满足谐振回路的总电抗0be ce bc X X X ++=,回路呈现纯阻 性。 反馈电压f u 作为输入加在晶体管的b 、e 极,输出o u 加在晶体管的c 、e 之间,共射组态为反相放大器,放大 器的的输出电压o u 与输入电压i u (即f u )反相,而反馈 电压f u 又是o u 在bc X 、be X 支路中分配在be X 上的电压。 要满足正反馈,必须有 ()be be f o o be bc ce X X X X X u u u ==-+ (5.3.1) 为了满足相位平衡条件,f u 和o u 必须反相,由式(5.3.1)可知必有0be ce X X >成立,即 be X 和ce X 必须是同性质电抗,而 ()bc be ce X X X =-+必为异性电抗。 综上所述,三点式振荡器构成的一般原则: (1) 为满足相位平衡条件,与晶体管发射极相连

的两个电抗元件be X 、ce X 必须为同性, 而不与发射极相连的电抗元件bc X 的电 抗性质与前者相反,概括起来“射同基 反”。此构成原则同样适用于场效应管电路,对应 的有“源同栅反”。 (2) 振荡器的振荡频率可利用谐振回路的谐振频率来估 算。 若与发射极相连的两个电抗元件be X 、ce X 为容性的,称为电容三点式振荡器,也称为考比兹振荡器(Colpitts),如图5 —21(a )所示; 若与发射极相连的两个电抗元件be X 、ce X 为 感性的,称为电感三点式振荡器,也称为哈特莱振荡器(Hartley),如图5 —21(b )所示。 图5 —21 电容三点式与电感三点式振荡器电路原理图

电容三点式震荡电路的设计..

北方民族大学课程设计报告 院(部、中心)电气信息工程学院 姓名郭佳学号 21000065 专业通信工程班级 1 同组人员 课程名称通信电路课程设计 设计题目名称 500KHz电容三点式LC正弦波振荡器的设计起止时间2013.3.4——2013.4.28 成绩 指导教师签名 北方民族大学教务处制

摘要 本次课设介绍了电容三点式高频振荡电路的设计方法,反馈振荡器的原理和分析以及电容三点式电路参数的计算,并利用其它相关电路为辅助工具来调试放大电路,解决了放大电路中经常出现的自激振荡问题和难以准确的调谐问题。同时也给出了具体的理论依据和调试方案,从而实现了快速、有效的分析和制作,振荡器电路。并以500KHz的振荡器为例,利用multisim制作仿真的模型。 关键字:电容三点式振荡仿真

目录 目录 (3) 1、概述 (4) 2、三点式电容振荡器 (5) 2.1 反馈振荡器的原理和分析 (5) 2.2 电容三点式参数 (6) 2.3设计要求 (8) 3、电路设计 (8) 4 、调试与总结 (10) 1 仿真 (10) 2、总结: (11) 5、心得体会 (11)

1、概述 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个 是反馈电压 U f 和输入电压 U i 要相等,这是振幅平衡条件。二是U f 和U i 必 须相位相同,这是相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。 正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。能够产生正弦波的电路称为正弦波振荡器。通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。

压控振荡器原理和应用说明

压控振荡器(VCO 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj 随反向偏置电压VT 变化而变化的特点(VT=OV 时Cj 是最大值,一 般变容管VT 落在2V-8V 压间,Cj 呈线性变化,VT 在8-10V 则一般为非线性变化,如图1 所示,VT 在10-20V 时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当 改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO 。 压控振荡器的调谐电压 VT 要针对所要求的产品类别及典型应用环境(例如用户提供调谐要 求,在锁相环使用中泵源提供的输出控制电压范围等 )来选择或设计,不同的压控振荡器, 对调谐电压VT 有不同的要求,一般而言,对调谐线性有较高要求者, VT 选在1-10V ,对宽 频带调谐时,VT 则多选择1-20V 或1-24V 。图1为变容二极管的V — C 特性曲线。 图1变容二极管的V — C 特性曲线 三压控振荡器的基本参数 1工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“ MHZ 或 “GHz 。 2输出功率:在工作频段内输出功率标称值,用 Po 表示。通常单位为“ dBmW 。 3输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△ P 表示,通常 单位为“ dBmW 。 4调谐灵敏度:定义为调谐电压每变化1V 时,引起振荡频率的变化量,用 MHz/ △ VT 表示,在线性区,灵敏度最咼,在非线性区灵敏度降低。 5谐波抑制:定义在测试频点,二次谐波抑制 =10Log (P 基波/P 谐波)(dBmw )。 6推频系数:定义为供电电压每变化1V 时,引起的测试频点振荡频率的变化量,用 MHz/V 表 示。 7相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振 f0为fm 的带内,各杂散能量的总和按fin 平均值+15f0点频谱能量之比,单位为dBC/Hz 相位噪 声特点是频谱能量集中在f0附近,因此fm 越小,相噪测量值就越大,目前测量相噪选定 WV) 0 8 10

电容三点式振荡器-高频课设

1 概述 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。 一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持下去。选频网络则只允许某个特定频率 f 能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电 压 U f 和输入电压 U i 要相等,这是振幅平衡条件。二是U f 和U i 必须相位相同,这是 相位平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 振荡器的用途十分广泛,它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器。功率振荡器在工业方面(例如感应加热、介质加热等)的用途也日益广阔。 正弦波是电子技术、通信和电子测量等领域中应用最广泛的波形之一。能够产生正弦波的电路称为正弦波振荡器。通常,按工作原理的不同,正弦振荡器分为反馈型和负载型两种,前者应用更为广泛。在没有外加输入信号的条件下,电路自动将直流电源提供的能量转换为具有一定频率、一定波形和一定振幅的交变振荡信号输出。

2 三点式电容振荡器 2.1 反馈振荡器的原理和分析 反馈振荡器原理方框图如图2.1所示。反馈型振荡器是由放大器和反馈网络组成的一 个闭合环路,放大器通常是以某种选频网络(如振荡回路)作负载,是一个调谐放大器。 图2.1 反馈振荡器方框图 为了能产生自激振荡,必须有正反馈,即反馈到输入端的自你好与放大器输入端的信号相位相同。定义A (S )为开环放大器的电压放大倍数: ) () ()(S U S U S A i o = F(S)为反馈网络的电压反馈系数: ) () ()('S U S U S F o i = )(S A f 为闭环电压放大倍数: ) ()(1) ()()()(S F S A S A s U s U S A i o f ?-== 在振荡开始时,由于激励信号较弱,输出电压的振幅o U 则比较小,此后经过不断放大与反馈循环,输出幅度o U 开始逐渐增大,为了维持这一过程使输出振幅不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡,即: 1)( jw T 因此起振的振幅条件是:

四LC电容反馈式三点式振荡器

实验四 LC 电容反馈式三点式振荡器 一、实验目的 1. 掌握LC 三点式振荡电路的基本原理,掌握LC 电容反馈式三点振荡电路 的设计及电路参数计算; 2. 掌握振荡回路Q 值对频率稳定度的影响; 3. 弄清振荡器反馈系数不同时,静态工作电流EQ I 对振荡器起振及振幅的 影响。 二、预习要求 1. 弄清LC 振荡器的工件原理; 2. 分析图4-1电路的工作原理及各元件的作用,计算晶体管静态工作电流 EQ I 的最大值(设晶体管的β值为50); 3. 电路中,1L =3.3h μ, 若C =120pf , C '=680pf ,计算当T C =50pf 和T C =150pf 时振荡频率各为多少? 三、仪器设备 1. 双踪示波器 1台 2. 高频电路实验学习机 1台 3. 万用表 1块 4. 实验板1G 1块 四、实验内容及步骤 实验电路见图4-1。实验前根据4-1所示原理图在实验板上找到相应器件及插孔并弄清其作用。 1. 检查静态工作点 (1)在实验板+12V 插孔上接入+12V 直流电源,注意电源极性不能接反。

+12V 图4-1 LC电容反馈式三点式振荡器原理图 (2)C、R、 T C不接,C'接(C'=680pf),用示波器观察振荡器停振时 的情况(此时用示波器观察应为一条直线)。 注意:连接C'的导线要尽量短。 (3)改变电位器 P R(0~47KΩ),用万用表测得晶体管V的发射极工作 电压 EQ U, EQ U可连续变化,记下 EQ U的最大值 max EQ U,计算 max EQ I的值,填入表4.1中。 表4.1 其中:max max 4 EQ EQ U I R =(已知 4 R=1KΩ)。 2.振荡频率与振荡幅度的测试

lc压控振荡器实验报告doc

lc压控振荡器实验报告 篇一:实验2 振荡器实验 实验二振荡器 (A)三点式正弦波振荡器 一、实验目的 1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1. 熟悉振荡器模块各元件及其作用。 2. 进行LC振荡器波段工作研究。 3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4. 测试LC振荡器的频率稳定度。 三、基本原理 图6-1 正弦波振荡器(4.5MHz) 【电路连接】将开关S2的1拨上2拨下, S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振 荡频率。振荡频率可调范围为:

?3.9799?M??f0??? ? ?4.7079?M? CCI?25p CCI? 5p 调节电容CCI,使振荡器的频率约为4.5MHz 。振荡电路反馈系数: F= C1356 ??0.12 C20470 振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。 四、实验步骤 根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 1. 调整静态工作点,观察振荡情况。 1)将开关S2全拨下,S1全拨下,使振荡电路停振 调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),使其为5.0V(或稍小,以振荡信号不失真为准),这时表明振荡管的静态工作点电流IEQ=5.0mA(即调节W1使

电容三点式振荡电路

电容三点式振荡电路的分析与仿真 摘要:自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定度、反馈系数、输出波形、起振等因素的综合考虑,本设计采用的是电容三点式振荡器。 关键词:电容三点式、multisim、振荡器 引言:不需外加输入信号,便能自行产生输出信号的电路称为振荡器。按照产生的波形,振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特性的器件构成的振荡器,在这种电路中,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。本次设计我们采用的是电容三点式振荡电路。

设计原理: 1、电容三点式振荡电路 (1)线路特点 电容三点式振荡器的基本电路如图(1)所示。与发射极连接的两个电抗元件为同性质的容抗元件C2和C3;与基极和集电极连接的为异性质的电抗元件L。它的反馈电压是由电容C3上获得,晶体管的三个电极分别与回路电容的三个端点相连接,故称之为电容反馈三端式振荡器。电路中集电极和基极均采取并联馈电方式。C7为隔直电容。 图(1) (2)起振条件和振荡频率 由图可以看出,反馈电压与输入电压同相,满足相位起振条件,这时可以调整反馈系数F,使之满足A0F>1就可以起振。

压控LC电容三点式振荡器设计及仿真

实验二压控LC 电容三点式振荡器设计及仿真 一、实验目的 1、了解和掌握LC 电容三点式振荡器电路组成和工作原理。 2、了解和掌握压控振荡器电路原理。 3、理解电路元件参数对性能指标的影响。 4、熟悉电路分析软件的使用。 二、实验准备 1、学习LC 电容三点式西勒振荡器电路组成和工作原理。 2、学习压控振荡器的工作原理。 3、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 三、设计要求及主要指标 1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。 2、实现电压控制振荡器频率变化。 3、分析静态工作点,振荡回路各参数影响,变容二极管参数。 4、振荡频率范围:50MHz~70MHz,控制电压范围3~10V。 5、三极管选用MPSH10(特征频率最小为650MHz,最大IC 电流50mA,可 满足频率范围要求),直流电压源12V,变容二极管选用MV209。 四、设计步骤 1、整体电路的设计框图

整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分,设计中采用变容二极管MV209 来控制振荡器频率,由于负载会对振荡电路的 频 率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。 2、LC 振荡器设计 首先应选取满足设计要求的放大管,本设计中采用MPSH10 三极管,其特征频率f T=1000MHz。LC 振荡器的连接方式有很多,但其原理基本一致,本实验中采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频率而不对振荡回路的分压比产生影响的特点。电路图如下所示:

高频课设电容三端式振荡器

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 电容三端式振荡器 初始条件: 电容三端式振荡器原理,Multisim软件 要求完成的主要任务: (1)设计任务 根据电容三端式振荡器的原理,设计电路图,并在multisim软件仿真出波形结果。 (2)设计要求 ①正常工作状况时的波形图; ②起振条件的仿真,要求改变偏置电阻、相位电容和电源电压值,再观察起振波形和振荡电压的变化情况。 时间安排: 1、2014 年11月17 日集中,作课设具体实施计划与课程设计报告格式的要求说明。 2、2014 年11月17 日,查阅相关资料,学习基本原理。 3、2014 年11月18 日至2014 年11月20日,方案选择和电路设计。 4、2014 年11月20 日至2014 年11月21日,电路仿真和设计说明书撰写。 5、2014 年11月23 日上交课程设计报告,同时进行答辩。 课设答疑地点:鉴主13楼电子科学与技术实验室。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 1 克拉泼振荡器原理 (3) 1.1 克拉泼振荡器产生的原因 (3) 1.2 克拉泼振荡器电路分析 (3) 1.3 克拉泼振荡器起振条件 (4) 1.3.1 相位条件 (4) 1.3.2振幅条件 (4) 1.4 克拉泼振荡器的振荡频率 (5) 2 克拉泼振荡器仿真分析 (6) 2.1 正常起振的电路图 (6) 2.2改变偏置电阻的仿真 (7) 2.3改变相位电容的仿真 (8) 2.4改变电源大小的仿真 (8) 3 心得体会 (9) 参考文献 (10)

电容三点式震荡电路

摘要 弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定度、反馈系数、输出波形、起振等因素的综合考虑,本设计采用的是电容三点式振荡器的两种改进型振荡器之一的西勒振荡器。其具有输出波形好、工作频率高、改变电容调节频率时不影响反馈系数等优点,适用于宽波段、频率可调的场合。西勒振荡器由起能量控制作用的放大器、将输出信号送回到输入端的正反馈网络以及决定振荡频率的选频网络组成。但没有输入激励信号,而是由本身的正反馈信号来代替。当振荡器接通电源后,即开始有瞬变电流产生,经不断地对它进行放大、选频、反馈、再放大等多次循环,最终形成自激振荡,把输出信号的一部分再回送到输入端做输入信号,从而就会产生一定频率的正弦波信号输出。西勒振荡器广泛应用于各种电子设备中,特别是在通信系统中起着重要作用。它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分;各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器;并在自动控制装置和医疗设备等许多技术领域也得到了广泛的应用 关键词:电容三点式、西勒电路、mulsitis

1 设计原理 1.1电路选取 不需外加输入信号,便能自行产生输出信号的电路称为振荡器。按照产生的波形,振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特性的器件构成的振荡器,在这种电路中,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。本次设计我们采用的是电容三点式振荡电路,有与电容三点式振荡电路有一些缺陷,通过改进,得到了西勒振荡器。 1.2 电容三点式振荡器 电容三点式振荡器的基本电路如图1-3所示 图1-1电容三点式振荡器 由图可见:与发射极连接的两个电抗元件为同性质的容抗元件C 1和C 2 ;与基极和集电极 连接的为异性质的电抗元件L,根据前面所述的判别准则,该电路满足相位条件。 其工作过程是:振荡器接通电源后,由于电路中的电流从无到有变化,将产生脉动信号,因任一脉冲信号包含有许多不同频率的谐波,因振荡器电路中有一个LC谐振回路,具有选频作用,当LC谐振回路的固有频率与某一谐波频率相等时,电路产生谐振。虽然脉动的信号很微小,通过电路放大及正反馈使振荡幅度不断增大。当增大到一定程度时,导致晶体管进入非线性区域,产生自给偏压,使放大器的放大倍数减小,最后达到平衡,即AF=1,振荡幅度就不再增大了。于是使振荡器只有在某一频率时才能满足振荡条件,于是得到单一频率的振 荡信号输出。该振荡器的振荡频率o f为:

实验一 LC电容反馈 三点式振荡电路

实验一 LC电容反馈三点式振荡电路 一,实验目的: (1)掌握三点式振荡电路的基本原理,掌握LC电容反馈式三点振荡 电路设计及电参数计算 (2)掌握振荡回路Q值对频率稳定度的影响 (3)掌握振荡器反馈系数不同时,静态工作电流Ieo对振荡器及振 幅的影响 二,预习要求 (1)复习LC振荡器的工作原理 (2)分析图1-1电路的工作原理,及各元件的作用,并计算晶体管静 态工作电流Ic的最大值(设晶体管的β值为50) (3)实验电路中,L1=3.3uH,若C=120pf,C’=680pf,计算当Ct=50pf 和Ct=150pf时振荡频率各为多少 三,实验仪器 (1)双踪示波器 (2)频率计 (3)万用表 (4)实验板B1 四,实验内容及步骤 实验电路见1-1,实验前根据图1-1所示原理图在实验板上找到相应器件及插孔并了解其作用.

OUT 图1-1 LC电容反馈肆三点式振荡器原理图 1,检查静态工作点 (1)在实验板+12V扦孔上接入+12V直流电源,注意电源极性不能接 反 (2)反馈电容C不接,C’接入(C’=680pf),用示波器观察振荡器停 振时的情况 注意:连接C’的接线要尽量短 (3)改变电位器Rp测的晶体管V的发射极电压Ve,Ve可连续变化, 记下Ve的最大值,计算Ie值 Ie=Ve/Re 设Re=1k? 2,振荡频率与振荡幅度的测试 实验条件:I e=2Ma,c=120pf,C’=680pf,RL=110K (1)改变Ct电容,当分别接为C9,C10,C11时,记录相应的频率值,

并填入表3.1 (2)改变Ct电容,当分别接为C9,C10,C11时,用示波器测量相应振 荡电压的峰峰值Vp-p,h,并填入表1.1 表1.1 3,测试当C,C’不同时,起据点,振幅与工作电流Ier的关系(R=110K?) (1)取C=C3=100pf,C’=C4=1200pf,调电位器Rp使Ieq(静态值)分 别为表3.2所标各值,用示波器测量输出振荡幅度Vp-p,并填入表1.2 表1.2 (2)取C=C5=120pf,C’=C6=680pf,C=C7=680pf,C’=C8=120pf,分 别重复测试表3.2的内容 4,频率稳定度的影响 (1)回路LC参数固定时,改变并联在L上的电阻使等效Q值变化时, 对振荡频率的影响 实验条件:f=6.5MHZ时,C/C’=100/1200pf,Ieq=3mA改变L的并联电

晶体振荡器与压控振荡器

晶体振荡器与压控振荡器 一、实验目的: 1.掌握高频电子电路的基本设计能力及基本调试能力,并在此基础上设计并联变换的晶体正弦波振荡器。 2.比较LC振荡器和晶体振荡器的频率稳定度。 二、实验内容: 1.熟悉振荡器模块各元件及其作用。 2.分析与比较LC振荡器与晶体振荡器的频率稳定度。 3.改变变容二极管的偏置电压,观察振荡器输出频率的变化。 三、基本原理: 1.下图是石英晶体谐振器的等效电路: 图中C0是晶体作为电介质的静电容,其数值一般为几个皮法到几十皮法。L q、C q、r q是对应于机械共振经压电转换而呈现的电参数。r q是机械摩擦和空气阻尼引起的损耗。由图3-1可以看出,晶体振荡器是一串并联的振荡回路,其串联谐振频率f q和并联谐振频率f0分别为 f q=1/2πLqCq,f0= f q Co 1 Cq/ 图1 晶体振荡器的等效电路 当W<W q或W> W o时,晶体谐振器显容性;当W在W q和W o之间,晶体谐振器等效为一电感,而且为一数值巨大的非线性电感。由于Lq很大,即使在W q处其电抗变化率也很大。其电抗特性曲线如图所示。实际应用中晶体工作于W q~W o之间的频率,因而呈现感性。

图2 晶体的电抗特性曲线 设计内容及要求 2 并联型晶体振荡器 图3 c-b型并联晶体振荡器电路 图 4 皮尔斯原理电路图 5 交流等效电路

C3用来微调电路的振荡频率,使其工作在石英谐振器的标称频率上,C1、C2、C3串联组成石英晶体谐振器的负载电容C L上,其值为 C L=C1C2C3/(C1C2+C2C3+C1C3) C q/ (C0+C L)<<1 3.电路的选择: 晶体振荡电路中,与一般LC振荡器的振荡原理相同,只是把晶体置于反馈网络的振荡电路之中,作为一感性元件,与其他回路元件一起按照三端电路的基本准则组成三端振荡器。根据实际常用的两种类型,电感三点式和电容三点式。由于石英晶体存在感性和容性之分,且在感性容性之间有一条极陡峭的感抗曲线,而振荡器又被限定在此频率范围内工作。该电抗曲线对频率有极大的变化速度,亦即石英晶体在这频率范围内具有极陡峭的相频特性曲线。所以它具有很高的稳频能力,或者说具有很高的电感补偿能力。因此选用c-b型皮尔斯电路进行制作。 图 6 工作电路 4.选择晶体管和石英晶体 根据设计要求,

电容三点式振荡器电路设计与实现

郑州轻工业学院本科 通信电子线路课程设计总结报告 设计题目:电容三点式振荡器电路设计与实现 学生姓名:赵玉春 系别:计算机与通信工程学院信息与通信工程系专业:通信工程 班级:08级1班 学号:58号 指导教师:曹瑞、黄敏 2010年12月25日

郑州轻工业学院 课程设计任务书 题目:电容三点式振荡器电路设计与实现 专业、班级通信工程08-1学号 58姓名赵玉春 主要内容、基本要求、主要参考资料等: 1、主要内容 1) 焊接振荡器电路板。 2) 通过LC振荡器和晶体振荡器输出的波形,对比分析LC振荡器与晶体振荡器的频率稳定度。 2、基本要求 元器件排放错落有致,节点焊接正确,设计结构设合理,实验数据可靠,结果输出稳定。 3、主要参考资料 [1]张启民编著.通信电子线路.西安:西安电子科技大学出版社,2004. [2]董尚斌等编.通信电子线路.北京:清华大学出版社,2007. [3]顾宝良编著.通信电子线路教程.北京:电子工业出版社,2007. 完成期限:2010年12月25日 指导教师签名: 课程负责人签名: 2010年12月25日

目录 1、设计题目 (4) 2、设计内容 (4) 3、设计思路 (4) 4、设计原理 (4) 5、运行结果 (9) 6、实验体会 (10) 7、参考文献 (11)

一:设计题目: 电容三点式振荡器电路设计与实现 二:设计内容: 1) 振荡器电路板的设计与焊接。 2) 调节LC振荡器和晶体振荡器中静态工作点,并了解反馈系数及负载对振荡器的影响。 3) 测试、分析比较LC振荡器与晶体振荡的稳定状况。 三:设计思路: 焊接一个符合电容三点式的电路板,电路板上包含有LC振荡电路和集体震荡器震荡电路。 焊接好电路板之后,调节LC振荡器和晶体振荡器的静态工作点。 观察LC振荡器和晶体振荡器的波形图,同时对LC振荡器和晶体振荡器所产生的波形图进行对比分析。 四:设计原理: 本次实验首先需要焊接电路板,在焊接电路板时需要注意一些节点的焊接,同时避免焊接时出现短路现象。 本次实验验中振荡器包含电容反馈LC三端振荡器和一个晶体振荡器。振荡电路主要由振荡回路模块、偏置电路模块、输出缓冲电路模块组成。它选择主要是根据所给定的工作频率(或工作频段)频率稳定度的要求。因为设计的电路要求是高频信号,故选择LC振荡电路或晶体振荡电路,现在分别应用这两种电路,分别比较它们的频稳性。 1) 三点式震荡电路的基本模型

实验3 电容三点式LC振荡器实验指导

实验3 电容三点式LC振荡器 一、实验准备 1.做本实验时应具备的知识点: ●三点式LC振荡器 ●西勒和克拉泼电路 ●电源电压、耦合电容、反馈系数、等效Q值对振荡器工作的影响 2.做本实验时所用到的仪器: ●LC振荡器模块 ●双踪示波器 ●万用表 二、实验目的 1.熟悉电子元器件和高频电子线路实验系统; 2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能; 3.熟悉静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响; 4.熟悉负载变化对振荡器振荡幅度的影响。 三、实验电路基本原理 1.概述 LC振荡器实质上是满足振荡条件的正反馈放大器。LC振荡器是指振荡回路是由LC元件组成的。从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。 在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振

荡频率可高达几百MHZ~GHZ。 2.LC振荡器的起振条件 一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。 3.LC振荡器的频率稳定度 频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。 4.LC振荡器的调整和参数选择 以实验采用改进型电容三点振荡电路(西勒电路)为例,交流等效电路如图3-1所示。 图3-1 电容三点式LC振荡器交流等效电路 (1)静态工作点的调整 合理选择振荡管的静态工作点,对振荡器工作的稳定性及波形的好坏,有一定的影响,偏置电路一般采用分压式电路。

时基电路构成的压控振荡器

555时基电路构成的压控振荡器 摘要:555电路是集模拟电路和数字电路于一体的集成电路,是在上世纪70年代,为制作定时器而被设计制造的。该电路具有灵活的引出端脚,使用者尽用其能,将其广泛运用于电子行业的各个领域内,并且该电路在科研、仪表、测量、控制等诸多领域内也得到了广泛的应用。本文主要从原理和应用两个方面讲述由555无稳态多谐振荡器电路构成的压控振荡器。 关键词: 1、引言 如今,555时基电路得到如此广泛的应用,这得益于该电路本身独特的优越性。按照555电路的应用特点,以数字电路的分类方法作为基本方式,可将其分为:多谐振荡器的应用方式、单稳态电路的应用方式、双稳态(R-S触发器)电路的应用方式以及施密特电路的应用方式。本文要讨论的压控振荡器是一种结构特殊的多谐振荡器,全称为电压控制的多谐振荡器,简称VCO。由555电路构成的压控振荡器具有电路简单、成本低、产生脉冲波形的线性度好等特点,因此压控振荡器电路在锁相技术、A/D转换、脉冲调制及遥测技术中有广泛的用途,是一种十分重要的电路。. 2、555电路原理图]1[ 图1、原理电路图

整个原理电路图有5个部分组成,这5个部分可以分为三大部分进行解释:(1)分压器与比较器 三个等值电阻(每个5KΩ)串联进行分压,将电源电压分别分压为U CC/3和2U CC/3。其中2U CC/3加至电压比较器A1的同相输入端,作为它的参考电压;U CC/加之电压比较器A2的反相输入端,作为它的参考电压。A1、A2是由两个差分电路组成的电压比较器,相当于两个运算放大器的输入电路。这两个参考电压决定了555电路的输入特性。 上述原理电路图有两个输入端,分别称为触发端(TR、2脚)和阀值端(TH、6脚),它们分别是A2的同相输入端和A1的反相输入端。根据电压比较器的工作原理:当对输入端2脚上加上低于U CC/3的输入电压时,比较器A2输出低电平;当加上高于U CC/3的输入电压时,A2输出高电平。对于输入端6脚,当对其加上低于2U CC/3的输入电压时,A1输出高电平;当对其加上高于2U CC/3的输入电压时,A1输出低电平。 (2)基本R-S触发器]1[ 在数字电路中,触发器分为同步R-S触发器和基本R-S触发器,555电路中使用 是基本R-S触发器。这种触发器由两个非门交叉连接组成,它的特点是需要低电平触发,即只有在输入端加以低电平或负脉冲,触发器才能翻转。 它的逻辑功能是:当R=0,S=1时,不管触发器原来是什么状态,都会被置成低电平0的状态;当R=1,S=0时,触发器被置成高电平1的状态;当R=1,S=1时,触发器保持原状态不变;当R=0,S=0时,触发器的状态不定,不过这种状态是不允许出现的,也是不可能出现的。 (3)输出级]2[ 为了提高555电路带负载的能力,使其能够直接驱动一定功率的负载,并且隔离负载对定时器的影响,在它的R-S触发器之后加入了一级输出级G3。该输出级G3将R-S 触发器的输出电平进行反相,并同时给予一定的功率放大后输出,这就使得555电路可以直接驱动小型继电器、扬声器等。 (4)放电电子开关]3[ 在由555电路组成的定时定路及各类触发器和振荡器中,它们的工作状态都和电容器的充、放电有关。例如在定时电路中,通常把上比较器的输入端TH(6脚)接到只电容C的正极。这个电容又通过一只串联电阻R接到电源的正极。工作时,电源通过电阻R向电容C充电,当电容充电使其电压达到阀值电平后,比较器A1输出低电平,触发器R-S翻转,它的输出端变为高电平,经过一级反相器反相为低电平后作为一种控制信号输出,实现对电路的一种工作状态的控制。 ( 5 ) 555定时器的基本功能]4[ ①R=0,无论其他输入为何值(用×表示),必有Q=1,U O为低电平0,T D饱和导通,故R端称为置0端或复位端。 ②R=1,U TH>2U CC/3、U TR>U CC/3时,U O1为低电平,U O2为高电平,使Q=1、

LC电容反馈三点式振荡器proteus仿真实验

实验报告 课程名称:高频电子线路 实验名称:LC电容反馈三点式振荡器 姓名: xxx 专业班级xxxxx 一、实验目的 1:掌握LC三点式振荡电路的基本原理及电路设计和电参数计算2:掌握振荡器反馈系数不同时,静态工作电流I(EQ)对振荡器的起振及幅度的影响。 二、实验内容及其结果 实验电路如下: 1:检查静态工作点 (1):改变电位器RV,测得三极管Q的发射及电压V(E),V(E)可以连续变化,记下V(E)的最大值,并计算I(E)=V(E)/R(E).

实验结果如下: (1):在V(E)最大时的静态工作电路如下: 由上图知:Umax(E)=5.62319V, Imax(E)=5.62319mA. (2):交流通路如下: (3):实验电路中,各元器件作用分析 图中:C2,C3与L1构成型LC滤波电路;RV、R2,R4组成

分压时偏置电路;R3为集电极直流负载电阻;C1,C4隔直电容,C,C

’’,L2,CT构成并联谐振回路;RL是负载电阻。 2:振荡频率与震荡幅度的测试 实验条件:U(E)=2V,C=120pF,C’’=680pF,RL=110K. 改变电容CT值,记录相应的频率值以及相应的振荡电压的峰-峰值,填入下表。 实验结果如下: X方向一方格代表0.5uS,Y方向一方格表示5V。CT(pF)F(MHZ)V(p-p) 5038.5 100 2.59 150210 结果分析:由上表数据可知,与理论推测比较吻合;因为电容CT变化会直接影响三极管Q的等效负载,CT减小,负载也会相应减小,进而使三极管的放大倍数减小;而对于振荡频率的变化,源于振荡频率f(0)在L2一定时与C(总)成反比,故有CT增大而,F减小。 3:测量C,C’’不同时,起振点幅度与工作电流I(EQ)的关系

压控振荡器原理和应用说明

压控振荡器(VCO) 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj随反向偏置电压VT变化而变化的特点(VT=0V时Cj是最大值,一般变容管VT落在2V-8V压间,Cj呈线性变化,VT在8-10V则一般为非线性变化,如图1所示,VT在10-20V时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO)。压控振荡器的调谐电压VT要针对所要求的产品类别及典型应用环境(例如用户提供调谐要求,在锁相环使用中泵源提供的输出控制电压范围等)来选择或设计,不同的压控振荡器,对调谐电压VT有不同的要求,一般而言,对调谐线性有较高要求者,VT选在1-10V,对宽频带调谐时,VT则多选择1-20V或1-24V。图1为变容二极管的V-C特性曲线。 (V) T 图1变容二极管的V-C特性曲线 三压控振荡器的基本参数 1 工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“MHz”或 “GHz”。 2 输出功率:在工作频段内输出功率标称值,用Po表示。通常单位为“dBmw”。 3 输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△P表示,通常 单位为“dBmw”。 4 调谐灵敏度:定义为调谐电压每变化1V时,引起振荡频率的变化量,用MHz/ △VT 表示,在线性区,灵敏度最高,在非线性区灵敏度降低。 5 谐波抑制:定义在测试频点,二次谐波抑制=10Log(P基波/P谐波)(dBmw)。 6 推频系数:定义为供电电压每变化1V时,引起的测试频点振荡频率的变化量,用MHz/V表示。 7 相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振f0为fm 的带内,各杂散能量的总和按fin平均值+15f0点频谱能量之比,单位为dBC/Hz;相位噪 声特点是频谱能量集中在f0附近,因此fm越小,相噪测量值就越大,目前测量相噪选定

三点式振荡器

改进型电容三点式振荡电路的设计 摘要 高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。 高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。振荡器的功能是产生标准的信号源,广泛应用于各类电 子设备中。为此,振荡器是电子技术领域中最基本的电子线路,也是从事电 子技术工作人员必须要熟练掌握的基本电路。 本次课设设计了改进型电容三点式高频振荡器,介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。使用 Protel2004DXP制作PCB板,并使用环氧树脂铜箔板和FeCl3进行了制 板和焊接。使用实验要求的电源和频率计进行验证,实现了设计目标。 1 实验原理 1.1 振荡的原理 三点式LC正弦波振荡器的组成法则(相位条件)是:与晶体管发射极相连的两个电抗元件应为同性质的电抗,而与晶体管集电极—基极相连的电抗元件应与前者性质相反。图1-1所示为满足组成法则的基本电容反馈LC振荡器共基极接法的典型电路。当电路参数选取合适,满足振幅起振条件时,电路起振。当忽 f可近似认为等略负载电阻、晶体管参数及分布电容等因素影响时,振荡频率 osc f,即 于谐振回路的固有振荡频率 o f=(1)

式中 C 近似等于1C 与2C 的串联值 12 12 C C C C C ≈ + (2) 图1-1 电容反馈LC 振荡器 由图1-1所画出的分析起振条件的小信号等效电路如图1-2所示。 图1-2 分析起振条件的小信号等效电路 由图1-2分析可知,振荡器的起振条件为: e L e L m ng g n g g n g +=+>'''1 )(1 (3) 式中 '011 ,//L e L e e g g R R r = = 0e R 为LC 振荡回路的等效谐振电阻; 电路的反馈系数 1 12 f C k n C C =≈ + (4) 由式(3)看出,由于晶体管输入电阻e r 对回路的负载作用,反馈系数f k 并不是越大越容易起振,反馈系数太大会使增益A 降低,且会降低回路的有载Q 值,使回路的选择性变差,振荡波形产生失真,频率稳定性降低;所以,在晶体管参数一定的情况下,可以调节负载和反馈系数,保证电路起振。f k 的取值一般在0.1—0.5 之间。

相关主题
文本预览
相关文档 最新文档